首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在进行未来破坏性地震的强地面运动数值模拟时,震源参数选取的准确性对地震动预测的结果影响很大。震源参数的确定存在很多不确定性因素,既包含随机的不确定性因素,又包含认知的不确定性因素。本文在大量地震事件及文献调研的基础上,运用统计学方法对具备随机不确定性特征的震源参数进行统计研究,以震源参数经验公式的形态建立解释其随机性和不确定性的数学模型。为了研究局部地区震源参数的定标关系特征,获得更加适用于局部地震密集区域,尤其是包含中国大陆地区在内的局部区域的震源参数的经验关系,本文从GCMT地震目录中选取了1 700多个MW≥5.5的地震事件,运用统计学方法研究地震密集地区的震源参数经验关系,包括震级、地震矩、破裂面积等,增加了相对较大的局部范围内凹凸体的地震样本数量,从统计学角度计算更加适合局部区域的震源参数的经验关系。统计结果表明:局部区域震例获得的震源参数的经验关系与不限区域震例获得的经验关系存在差异,尤其是涉及到断层破裂面积、凹凸体相关参数时差异较大,局部区域内震例获得的震源参数的经验关系将更具有代表性。应用本文获得的相对局部区域的经验公式计算未来破坏性地震的强地面运动所需的震源参数时,获得的地震动预测结果将更能体现目标区域真实的地震动特征,进而提高地震动预测结果的可靠性。   相似文献   

2.
建立包含震源、沉积盆地和表层低速沉积层的二维模型,采用交错网格有限差分/伪谱混合方法求解地震波传播,讨论沉积层厚度和速度对地震地面运动的作用。结果表明:沉积层内产生的地震波的多重反射以及转换会引起地面运动持续时间的延长,它们的相干叠加会造成地面运动峰值的放大;随着沉积层速度的增加,多重反射与转换波的能量减小,地面运动持续时间减小,但是不同速度或者不同厚度的低速层模型均显示出一致的地面运动峰值放大特征。结果说明,在包含震源、沉积盆地和沉积层的模型中,沉积层对地面运动的作用机理更复杂。在实际应用中有必要同时考虑这些因素的综合作用。  相似文献   

3.
强地面运动衰减的经验关系综述   总被引:3,自引:0,他引:3  
建立强地面运动衰减的经验关系时,至少要考虑四个方面的参数,即地震动参数,震源参数,传播介质参数和场地条件参数。该文首先阐述了影响地面运动的几个主要因素;评述了近年来发展的几个衰减模型,最后介绍了一些不同地区的衰减关系。  相似文献   

4.
In this study, the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions. The simulation was conducted with a hybrid methodology, combining a stochastic high-frequency simulation with a low-frequency ground motion simulation, from the regional 1-D velocity structure model and the Wang WM et al.(2022) source rupture model,respect...  相似文献   

5.
— The mapping of the seismic ground motion in Bucharest, due to the strong Vrancea earthquakes is carried out using a complex hybrid waveform modeling method which combines the modal summation technique, valid for laterally homogeneous anelastic media, with finite-differences technique, and optimizes the advantages of both methods. For recent earthquakes, it is possible to validate the modeling by comparing the synthetic seismograms with the records. We consider for our computations the frequency range from 0.05 to 1.0 Hz and control the synthetic signals against the accelerograms of the Magurele station, low-pass filtered with a cut-off frequency of 1.0 Hz of the 3 last major strong (Mw > 6) Vrancea earthquakes. Using the hybrid method with a double-couple seismic source approximation, scaled for the source dimensions and relatively simple regional (bedrock) and local structure models, we succeeded in reproducing the recorded ground motion in Bucharest at a satisfactory level for seismic engineering. Extending the modeling to the entire territory of the Bucharest area, we construct a new seismic microzonation map, where five different zones are identified by their characteristic response spectra.  相似文献   

6.
运用经验格林函数法模拟了2008年5月12日汶川8.0级大地震的近场强地面运动.拟合过程中,首先参考其他学者反演结果给出的滑动量分布的特征,确定强震动生成区的大致范围;然后利用Somerville等(1999)提出的地震矩与凹凸体面积间的经验关系式确定强震动生成区(SMGA)细小划分的初值,继而利用遗传优化算法确定以上两者的最优值及其他震源参数.数值模拟波形同实际地震观测记录在时间域和频率域分别进行了比较,结果显示,在所选取的18个观测台中,多数台站的数值模拟结果同实际观测结果符合得很好,特别是大于1 Hz的高频部分.我们发现断层面上有5个强震动生成区,其中两个的位置与其他学者反演的滑动量集中分布区相一致,但强震动生成区规模和上升时间比Somerville等(1999)获得的定标率外延的估计值要小.  相似文献   

7.
Two kinds of methods for determining seismic parameters are presented,that is,the potential seismic source zoning method and grid-spatially smoothing method. The Gaussian smoothing method and the modified Gaussian smoothing method are described in detail, and a comprehensive analysis of the advantages and disadvantages of these methods is made. Then,we take central China as the study region,and use the Gaussian smoothing method and potential seismic source zoning method to build seismic models to calculate the mean annual seismic rate. Seismic hazard is calculated using the probabilistic seismic hazard analysis method to construct the ground motion acceleration zoning maps. The differences between the maps and these models are discussed and the causes are investigated. The results show that the spatial smoothing method is suitable for estimating the seismic hazard over the moderate and low seismicity regions or the hazard caused by background seismicity; while the potential seismic source zoning method is suitable for estimating the seismic hazard in well-defined seismotectonics. Combining the spatial smoothing method and the potential seismic source zoning method with an integrated account of the seismicity and known seismotectonics is a feasible approach to estimate the seismic hazard in moderate and low seismicity regions.  相似文献   

8.
地震动强度及频谱特征对场地地震反应分析结果的影响.   总被引:4,自引:3,他引:1  
通过收集整理235个实际钻孔资料并建立了2820个计算工况,运用一维波动等效线性化地震反应分析方法,基于不同类别场地条件,研究在不同强度、频谱特性的地震动输入形式下,场地条件对地表地震动参数影响,重点考察地表峰值加速度的变化特征及规律,并对计算结果进行了统计回归分析,给出了不同场地类别条件下地表峰值放大倍数的一般经验值.由于我国现行抗震设计规范中,没有考虑地震烈度或地震动强度对设计反应谱的影响,也没有考虑地震动频谱特性对地表峰值的影响,因此,本文的研究成果可为未来修订抗震设计规范提供参考依据.  相似文献   

9.
在广州市目标区内的主要活动断层危险性评价的基础上,综合活断层探测的研究成果和资料,对于具有潜在发震可能的主要断层,基于凹凸体震源模型建模理论进行了特征计算模型的建模。根据断层地震危险性分析确定的断层发震震级和几何参数,进行了断层的宏观参数和微观参数的设定。为通过复核预测方法计算与合成近断层强地震动场和城市危害性评价提供了科学的依据。  相似文献   

10.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

11.
We developed a recipe for predicting strong ground motions based on a characterization of the source model for future crustal earthquakes. From recent developments of waveform inversion of strong motion data used to estimate the rupture process, we have inferred that strong ground motion is primarily related to the slip heterogeneity inside the source rather than average slip in the entire rupture area. Asperities are characterized as regions that have large slip relative to the average slip on the rupture area. The asperity areas, as well as the total rupture area, scale with seismic moment. We determined that the areas of strong motion generation approximately coincide with the asperity areas. Based on the scaling relationships, the deductive source model for the prediction of strong ground motions is characterized by three kinds of parameters: outer, inner, and extra fault parameters. The outer fault parameters are defined as entire rupture area and total seismic moment. The inner fault parameters are defined as slip heterogeneity inside the source, area of asperities, and stress drop on each asperity based on the multiple-asperity model. The pattern of rupture nucleation and termination are the extra fault parameters that are related to geomorphology of active faults. We have examined the validity of the earthquake sources constructed by our recipe by comparing simulated and observed ground motions from recent inland crustal earthquakes, such as the 1995 Kobe and 2005 Fukuoka earthquakes.  相似文献   

12.
利用概率地震危险性分析(CPSHA)方法,对山东某场地进行地震危险性分析,通过对该场地划分潜在震源区,确定地震活动性参数及地震动衰减关系,计算分析地震危险性概率,基本确定对该场地地震动峰值加速度起主要贡献的几个潜在震源区及贡献值,并确定该场地50年超越概率10%的水平向基岩地震动加速度峰值。结果发现,CPSHA方法以具体的构造尺度和更加细致的构造标志来划分潜在震源区,使潜在震源区规模缩减,从而更能反映地震活动在空间分布上的不均匀性。  相似文献   

13.
14.
Fourier-amplitude spectrum is one of the most important parameters describing earthquake ground motion, and it is widely used for strong ground motion prediction and seismic hazard estimation. The relationships between Fourier-acceleration spectra, earthquake magnitude and distance were analysed for different seismic regions (the Caucasus and Taiwan island) on the basis of ground motion recordings of small to moderate (3.5≤ML≤6.5) earthquakes. It has been found that the acceleration spectra of the most significant part of the records, starting from S-wave arrival, can be modelled accurately by the Brune's “ω-squared” point-source model. Parameters of the model are found to be region-dependent. Peak ground accelerations and response spectra for condition of rock sites were calculated using stochastic simulation technique and obtained models of source spectra. The modelled ground-motion parameters are compared with those predicted by recent empirical attenuation relationship for California.  相似文献   

15.
破坏性地震强度预测可用于工程领域抗震设防以及地震危险性分析评估,是防震减灾中一项很重要的基础工作.为了再现九寨沟地震的地震动强度,评估缺失强震记录的九寨章扎台站的地震动强度,本文用经验格林函数法对九寨沟地震进行了数值模拟.选取了震源周边地震动峰值加速度超过10 Gal的10个强震台站进行模拟.因未得到九寨沟地震的余震,初次尝试将汶川地震和定西地震的余震作为格林函数模拟九寨沟地震.模拟结果整体上可以反映各台站地震动的强度特征,尤其是地震动高频成份拟合较好.模拟值的地震动峰值加速度、时程数据、反应谱等与观测值拟合较好.预测结果显示漳扎镇的地震动峰值加速度值约为180~200 Gal.预测结果也表明在缺少大震的余震记录时,经验格林函数法使用其他大震的余震同样可以再现目标地震的强度特征.本研究也为经验格林函数方法在缺乏小震记录地区的使用积累了经验.最后总结了格林函数的选取标准,为经验格林函数方法来预测未来强震动特征积累了经验.  相似文献   

16.
Dense strong motion observation networks provided us with valuable data for studying strong motion generation from large earthquakes. From kinematic waveform inversion of seismic data, the slip distribution on the fault surface of large earthquakes is known to be spatially heterogeneous. Because heterogeneities in the slip and stress drop distributions control the generation of near-source ground motion, it is important to characterize these heterogeneities for past earthquakes in constructing a source model for reliable prediction of strong ground motion. The stress changes during large earthquakes on the faults recently occurring in Japan are estimated from the detailed slip models obtained by the kinematic waveform inversion. The stress drops on and off asperities are summarized on the basis of the stress change distributions obtained here. In this paper, we define the asperity to be a rectangular area whose slip is 1.5 or more times larger than the average slip over the fault according to the previous study for inland crustal earthquakes. The average static stress drops on the asperities of the earthquakes studied here are in the range 6?C23?MPa, whereas those off the asperities are below 3?MPa. We compiled the stress drop on the asperities together with a data set from previous studies of other inland earthquakes in Japan and elsewhere. The static stress drop on the asperity depends on its depth, and we obtained an empirical relationship between the static stress drop and the asperity??s depth. Moreover, surface-breaking asperities seemed to have smaller stress drops than buried asperities. Simple ground motion simulations using the characterized asperity source models reveal that deep asperities generate larger ground motion than shallow asperities, because of the different stress drops of the asperities. These characteristics can be used for advanced source modeling in strong ground motion prediction for inland crustal earthquakes.  相似文献   

17.
The seismological model was developed initially from the fundamental relationship between earthquake ground motion properties and the seismic moment generated at the source of the earthquake. Following two decades of continuous seismological research in the United States, seismological models which realistically account for both the source and path effects on the seismic shear waves have been developed and their accuracy rigorously verified (particularly in the long and medium period ranges). An important finding from the seismological research by Atkinson and Boore and their co‐investigators is the similarity of the average frequency characteristics of seismic waves generated at the source between the seemingly very different seismic environments of Eastern and Western North America (ENA and WNA, respectively). A generic definition of the average source properties of earthquakes has therefore been postulated, referred to herein as the generic source model. Further, the generic ‘hard rock’ crustal model which is characteristic of ENA and the generic ‘rock’ crustal model characteristic of WNA have been developed to combine with the generic source model, hence enabling simulations to be made of the important path‐related modifications to ground motions arising from different types of crustal rock materials. It has been found that the anelastic contribution to whole path attenuation is consistent between the ENA and WNA models, for earthquake ground motions (response spectral velocities and displacements) in the near and medium fields, indicating that differences in the ENA and WNA motions arise principally from the other forms of path‐related modifications, namely the mid‐crust amplification and the combined effect of the upper‐crust amplification and attenuation, both of which are significant only for the generic WNA ‘rock’ earthquake ground motions. This paper aims to demonstrate the effective utilization of the latest seismological model, comprising the generic source and crustal models, to develop a response spectral attenuation model for direct engineering applications. The developed attenuation model also comprises a source factor and several crustal (wave‐path modification) component factors, and thus has also been termed herein the component attenuation model (CAM). Generic attenuation relationships in CAM, which embrace both ENA and WNA conditions, have been developed using stochastic simulations. The crustal classification of a region outside North America can be based upon regional seismological and geological information. CAM is particularly useful for areas where local strong motion data are lacking for satisfactory empirical modelling. In the companion paper entitled ‘response spectrum modelling for rock sites in low and moderate seismicity regions combining velocity, displacement and acceleration predictions’, the CAM procedure has been incorporated into a response spectrum model which can be used to effectively define the seismic hazard of bedrock sites in low and moderate seismicity regions. This paper and the companion paper constitute the basis of a long‐term objective of the authors, to develop and effectively utilize the seismological model for engineering applications worldwide.  相似文献   

18.
Strong ground motions caused by earthquakes with magnitudes ranging from 3.5 to 6.9 and hypocentral distances of up to 300 km were recorded by local broadband stations and three-component accelerograms within Georgia’s enhanced digital seismic network. Such data mixing is particularly effective in areas where strong ground motion data are lacking. The data were used to produce models based on ground-motion prediction equations (GMPEs), one benefit of which is that they take into consideration information from waveforms across a wide range of frequencies. In this study, models were developed to predict ground motions for peak ground acceleration and 5%-damped pseudo-absolute-acceleration spectra for periods between 0.01 and 10 s. Short-period ground motions decayed faster than long-period motions, though decay was still in the order of approximately 1/r. Faulting mechanisms and local soil conditions greatly influence GMPEs. The spectral acceleration (SA) of thrust faults was higher than that for either strike-slip or normal faults but the influence of strike-slip faulting on SA was slightly greater than that for normal faults. Soft soils also caused significantly more amplification than rocky sites.  相似文献   

19.
A detailed numerical simulation of the ground motion and a site response analysis for two towns in the Marche Region (Treia and Cagli) is carried out on the basis of structural models deduced from available geological and geophysical data. In both cases, the reference event is an M = 5.7 earthquake associated with a normal fault located beneath each town. The ground motion is computed using the 2D spectral element method (SPEM 2D). The method solves the propagation of the seismic field through complex geological structures and enables an estimate of the effects of deep crustal structure, superficial geology, and topography on ground motion. Numerical simulations of the seismic field are performed along 2D vertical planes containing the seismic source. Strong ground motion has not been yet recorded in the two towns; therefore, the numerical simulation of ground motion represents a way to overcome the lack of instrumental data. The simulations carried out for Treia show that ground motion is influenced by both source mechanism and effects due to propagation through the geological structure, while ground motion in Cagli features strong local effects, caused by the presence of alluvial deposits under a large area of the town.  相似文献   

20.
台湾集集地震近场地震动的上盘效应   总被引:32,自引:12,他引:32       下载免费PDF全文
俞言祥  高孟潭 《地震学报》2001,24(6):615-621
1999年9月21日(当地时间)台湾集集7.6级地震是一个逆断层型地震.用回归分析法对台湾集集地震的加速度峰值数据进行分析,得出了这次地震的水平与垂直向的加速度峰值衰减关系.从残差分布上看,位于断层上盘和下盘上的加速度峰值与从衰减关系所得到的结果相比存在不同的系统偏差,断层上盘地表的加速度峰值较高,而下盘地表的加速度峰值较低.从这次地震的加速度峰值分布等值线图上也可以看出,加速度峰值的分布相对于断层呈现明显的不对称性,上盘衰减较慢而下盘衰减较快.在近断层强地面运动研究、地震危险性分析、设定地震研究与震害预测等工作中,应考虑可能地震的震源机制特点,以便使所用的衰减模型更能反映不同地震环境地区的地震动分布特征.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号