首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

2.
In a comprehensive U–Pb electron microprobe study of zircon and monazite from the khondalite belt of Trivandrum Block in southern Kerala, we present age data on five key metapelite locations (Nedumpara, Oottukuzhi, Kulappara, Poolanthara and Paranthal). The rocks here, characterized by the assemblage of garnet–sillimanite–spinel–cordierite–biotite–K–feldsapr–plagiocalse–quartz–graphite, have been subjected to granulite facies metamorphism under extreme thermal conditions as indicated by the stability of spinel + quartz and the presence of mesoperthites that equilibrated at ultrahigh-temperature (ca. 1000 °C) conditions. The oldest spot age of 3534 Ma comes from the core of a detrital zircon at Nedumpara and is by far the oldest age reported from this supracrustal belt. Regression of age data from several spot analyses in single zircons shows “isochrons” ranging from 3193 ± 72 to 2148 ± 94 Ma, indicating heterogeneous population of zircons derived from multiple provenance. However, majority of zircons from the various localities shows Neoproterozoic apparent ages with sharply defined peaks in individual localities, ranging between 644–746 Ma. The youngest zircon age of 483 Ma was obtained from the outermost rim of a grain that incorporates a relict core displaying ages in the range of 2061–2543 Ma.The cores of monazites also show apparent older ages of Palaeo-Mesoproterozoic range, which are mantled by late Neoproterozoic/Cambrian rims. The oldest monazite core has an apparent age of 2057 Ma. Extensive growth of new monazite during latest Neoproterozoic to Cambrian–Ordovician times is also displayed by grain cores with apparent ages up to 622 Ma. The homogeneous core of a sub-rounded monazite grain yielded a maximum age of 569 Ma, markedly younger than the 610 Ma age reported in a previous study from homogenous and rounded zircon core from a metapelite in Trivandrum Block. These younger ages from abraded grains that have undergone fluvial transport are interpreted to indicate that deposition within the khondalite belt was as young as, or later than, this range. Probability density plots indicate that majority of the monazite grain population belong to Late Proterozoic/Cambrian age (ca. 560–520 Ma) with major peaks defining sharp spikes in individual localities.The age data presented in this study indicate that the metasediments of the Trivandrum Block sourced from Archaean and Paleo-Mesoproterozoic crustal fragments that were probably assembled in older supercontinents like Ur and Columbia. The largest age population of zircons belong to the Neoproterozoic, and are obviously related to orogenies during the pre-assembly phase of Gondwana, possibly from terrains belonging to the East African Orogen. Several prominent age spikes within the broad late Neoproterozoic–Cambrian age range displayed by monazites denote the dynamic conditions and extreme thermal perturbations attending the birth of Gondwana. Our study further establishes the coherent link between India and Madagascar within the East Gondwana ensemble prior to the final assembly of the Gondwana supercontinent.  相似文献   

3.
The Madurai Block in the Southern Granulite Terrane(SGT)of Peninsular India is one of the largest crustal blocks within the Neoproterozoic Gondwana assembly.This block is composed of three sub-blocks:the Neoarchean Northern Madurai block,Paleoproterozoic Central Madurai block and the dominantly Neoproterozoic Southern Madurai Block.The margins of these blocks are well-known for the occurrence of ultrahigh-temperature(UHT)granulite facies rocks mostly represented by Mg-Al metasediments.Here we report a dismembered layered mafic–ultramafic intrusion occurring in association with Mg-Al granulites from the classic locality of Ganguvarpatti in the Central Madurai Block.The major rock types of the layered intrusion include spinel orthopyroxenite,garnet-bearing gabbro,gabbro and gabbroic anorthosite showing rhythmic stratification and cumulate texture.The orthopyroxene-cordierite granulite from the associated Mg-Al layer is composed of spinel,cordierite and orthopyroxene.The pyroxene in both rock units is high-Al orthopyroxene formed under UHT metamorphic conditions.Conventional thermobarometry yields near-peak metamorphic conditions of 9.5–10 kbar pressure and a minimum temperature of 980℃.We computed P–T pseudosections and contoured for the compositional as well as modal isopleths of the major mineral phases,which yield temperature above 1000℃.FMAS petrogenetic grid,Al-in-orthopyroxene isopleth,conventional thermobarometry and calculated pseudosection reveal a clockwise pressure–temperature(P–T)path and near isothermal decompression.The U–Pb data on zircon grains from the layered magmatic suite indicate emplacement of the protolith at ca.2.0 Ga and the metamorphic overgrowths yield weighted 206Pb/238U mean ages ca.520 Ma.Monazite from the garnet-bearing gabbro and Opx-Crd granulite yielded 206Pb/238U weighted mean ages of ca.532 Ma and 523 Ma marking the timing of metamorphism.We correlate the layered intrusion to a Paleoproterozoic suprasubduction zone setting,defining the Ganguvarpatti area as part of a collisional suture assembling the Northern and Central Madurai Blocks.The Paleoproterozoic magmatism and late Neoproterozoic-Cambrian UHT metamorphism can be linked to the tectonics of the Columbia and Gondwana supercontinents.  相似文献   

4.
Southern India occupies a central position in the Late Neoproterozoic–Cambrian Gondwana supercontinent assembly. The Proterozoic mosaic of southern India comprises a collage of crustal blocks dissected by Late Neoproterozoic–Cambrian crust-scale shear/suture zones. Among these, the Palghat–Cauvery Suture Zone (PCSZ) has been identified as the trace of the Cambrian suture representing Mozambique Ocean closure during the final phase of amalgamation of the Gondwana supercontinent. Here we propose a model involving Pacific-type orogeny to explain the Neoproterozoic evolution of southern India and its final amalgamation within the Gondwana assembly. Our model envisages an early rifting stage which gave birth to the Mozambique Ocean, followed by the initiation of southward subduction of the oceanic plate beneath a thick tectosphere-bearing Archean Dharwar Craton. Slices of the ocean floor carrying dunite–pyroxenite–gabbro sequence intruded by mafic dykes representing a probable ophiolite suite and invaded by plagiogranite are exposed at Manamedu along the southern part the PCSZ. Evidence for the southward subduction and subsequent northward extrusion are preserved in the PCSZ where the orogenic core carries high-pressure and ultrahigh-temperature metamorphic assemblages with ages corresponding to the Cambrian collisional orogeny. Typical eclogites facies rocks with garnet + omphacite + quartz and diagnostic ultrahigh-temperature assemblages with sapphirine + quartz, spinel + quartz and high alumina orthopyroxene + sillimanite + quartz indicate extreme metamorphism during the subduction–collision process. Eclogites and UHT granulites in the orogenic core define PT maxima of 1000 °C and up to 20 kbar. The close association of eclogites with ultramafic rocks having abyssal signatures together with linear belts of iron formation and metachert in several localities within the PCSZ probably represents subduction–accretion setting. Fragments of the mantle wedge were brought up through extrusion tectonics within the orogenic core, which now occur as suprasubduction zone/arc assemblages including chromitites, highly depleted dunites, and pyroxene bearing ultramafic assemblages around Salem. Extensive CO2 metasomatism of the ultramafic units generated magnesite deposits such as those around Salem. High temperature ocean floor hydrothermal alteration is also indicated by the occurrence of diopsidite dykes with calcite veining. Thermal metamorphism from the top resulted in the dehydration of the passive margin sediments trapped beneath the orogenic core, releasing copious hydrous fluids which moved upward and caused widespread hydration, as commonly preserved in the Barrovian amphibolite facies units in the PCSZ. The crustal flower structure mapped from PCSZ supports the extrusion model, and the large scale north verging thrusts towards the north of the orogenic core may represent a fold-thrust belt. Towards the south of the PCSZ is the Madurai Block where evidence for extensive magmatism occurs, represented by a number of granitic plutons and igneous charnockite massifs of possible tonalite–trondhjemite–granodiorite (TTG) setting, with ages ranging from ca. 750–560 Ma suggesting a long-lived Neoproterozoic magmatic arc within a > 200 km wide belt. All these magmatic units were subsequently metamorphosed, when the Pacific-type orogeny switched over to collision-type in the Cambrian during the final phase of assembly of the Gondwana supercontinent. One of the most notable aspects is the occurrence of arc magmatic rocks together with high P/T rocks, representing the deeply eroded zone of subduction. The juxtaposition of these contrasting rock units may suggest the root of an evolved Andean-type margin, as in many arc environments the roots of the arc comprise ultramafic/mafic cumulates and the felsic rocks represent the core of the arc. The final phase of the orogeny witnessed the closure of an extensive ocean — the Mozambique Ocean — and the collisional assembly of continental fragments within the Gondwana supercontinent amalgam. The tectonic history of southern India represents a progressive sequence from Pacific-type to collision-type orogeny which finally gave rise to a Himalayan-type Cambrian orogen with characteristic magmatic, metasomatic and metamorphic factories operating in subduction–collision setting.  相似文献   

5.
The eastern Amery Ice Shelf (EAIS) and southwestern Prydz Bay are situated near the junction between the Late Neoproterozoic/Cambrian high-grade complex of the Prydz Belt and the Early Neoproterozoic Rayner Complex. The area contains an important geological section for understanding the tectonic evolution of East Antarctica. SHRIMP U–Pb analyses on zircons of felsic orthogneisses and mafic granulites from the area indicate that their protoliths were emplaced during four episodes of ca. 1380 Ma, ca. 1210–1170 Ma, ca. 1130–1120 Ma and ca. 1060–1020 Ma. Subsequently, these rocks experienced two episodes of high-grade metamorphism at > 970 Ma and ca. 930–900 Ma, and furthermore, most of them (except for some from the Munro Kerr Mountains and Reinbolt Hills) were subjected to high-grade metamorphic recrystallization at ca. 535 Ma. Two suites of charnockite, i.e. the Reinbolt and Jennings charnockites, intrude the Late Mesoproterozoic/Early Neoproterozoic and Late Neoproterozoic/Cambrian high-grade complexes at > 955 Ma and 500 Ma, respectively. These, together with associated granites of similar ages, reflect late- to post-orogenic magmatism occurring during the two major orogenic events. The similarity in age patterns suggests that the EAIS–Prydz Bay region may have suffered from the same high-grade tectonothermal evolution with the Rayner Complex and the Eastern Ghats of India. Three segments might constitute a previously unified Late Mesoproterozoic/Early Neoproterozoic orogen that resulted from the long-term magmatic accretion from ca. 1380 to 1020 Ma and eventual collision before ca. 900 Ma between India and the western portion of East Antarctica. The Prydz Belt may have developed on the eastern margin of the Indo-Antarctica continental block, and the Late Neoproterozoic/Cambrian suture assembling Indo-Antarctica and Australo-Antarctica continental blocks should be located southeastwards of the EAIS–Prydz Bay region.  相似文献   

6.
The Madurai Block (MB) is the largest Precambrian crustal block in the Southern Granulite Terrane (SGT) of India and hosts rare cordierite- and orthopyroxene-bearing granulites. Investigations based on field study, petrology, metamorphic PT estimation, and detrital zircon geochronology of these granulites are crucial for understanding the ultrahigh-temperature (UHT) metamorphism and crustal evolution in this block. Here we investigate the petrology and zircon U–Pb geochronology of two new localities of cordierite granulites at Kottayam (southern MB; SMB) and Munnar (central MB; CMB). Petrographic observations and phase equilibria modelling results indicate that these rocks experienced UHT metamorphism with the peak temperature exceeding 950℃ and involving clockwise P–T paths. The prograde mineral assemblages define the PT conditions of 6.8–8.7 kbar and 750–875℃. The peak conditions are estimated using pseudosection modelling and geothermometry, which yield PT estimates of 7.1–9.1 kbar and 955–985℃. The retrograde cooling and decompression are inferred at 860–790℃ and <6.5 kbar, respectively. Partial melting played an important role during metamorphism and contributed to the overgrowth around detrital zircons. The melt production process was probably related to biotite dehydration melting, and was mainly triggered by heating, with or without the effect of decompression. Detrital zircons in cordierite granulite samples from the two localities show similar age distributions and have dominantly Neoproterozoic ages (1024–760 Ma). The zircon cores show oscillatory zoning with a wide range of Th/U ratios (0.01–0.96), implying complex protoliths from multiple Neoproterozoic provenances from both southern and central domains of the MBs. Zircon rims and homogeneous bright zircons yield mean ages of 549 ± 5 Ma, 536 ± 6 Ma, and 544 ± 6 Ma, which are interpreted to represent zircon overgrowths during the post-peak cooling and decompression process. The timing of peak UHT metamorphism is constrained as 549–599 Ma, which coincides with the assembly of the Gondwana supercontinent.  相似文献   

7.
Bulk composition and specific reaction history among common silicate minerals have been proposed as controls on monazite growth in metapelitic rocks during amphibolite facies metamorphism. It has also been implied that monazite that formed during greenschist facies metamorphism may be preserved unchanged under upper amphibolite facies conditions. If correct, this would make the interpretation of monazite ages in polymetamorphic rocks exceedingly difficult, because isotopic dates could vary significantly in rocks that have experienced identical metamorphic conditions but differ only slightly in whole-rock composition. Low-Ca pelitic schists from the Mount Barren Group in southwestern Australia display a range of whole-rock compositions in AFM space and different peak mineral assemblages resulting from amphibolite facies metamorphism (∼8 kb, 650 °C). In this study, we test whether bulk composition controls the formation of monazite through geochronology and textural evidence linking monazite growth with deformation and peak metamorphism. X-ray element mapping of monazite from the metapelitic rocks reveals concentric zoning in many grains with compositionally distinct cores and rims. In situ SHRIMP U-Pb geochronology of monazite yields two 207Pb/206Pb age populations. The cores, and texturally early monazite, give an age of 1209 ± 10 Ma, interpreted to record prograde metamorphism, whereas the rims and “late” monazite define a single population of 1186 ± 6 Ma, which is considered the likely age of peak thermal metamorphism. The growth of monazite was widespread in low-Ca pelitic schists representing a broad range of compositions in AFM space, indicating that variations in bulk composition in AFM space did not control the formation of monazite during amphibolite facies metamorphism in the Mount Barren Group.  相似文献   

8.
Northwestern Fujian Province is one of the most important Pre-Palaeozoic areas in the Cathaysia Block of South China. Metavolcano-sedimentary and metasedimentary rocks of different types, ages and metamorphic grades (granulite to upper greenschist facies) are present, and previously were divided into several Formations and Groups. Tectonic contacts occur between some units, whereas (deformed) unconformities have been reported between others. New SHRIMP U–Pb zircon ages presented here indicate that the original lithostratigraphy and the old “Group” and “Formation” terminology should be abandoned. Thus the “Tianjingping Formation” was not formed in the Archaean or Palaeoproterozoic, as previously considered, but must be younger than its youngest detrital zircons (1790 Ma) but older than regional metamorphism (460 Ma). Besides magmatic zircon ages of 807 Ma obtained from metavolcano-sedimentary rocks of the “Nanshan Formation” and 751–728 Ma for the “Mamianshan Group”, many inherited and detrital zircons with ages ranging from 1.0 to 0.8 Ga were also found in them. These ages indicate that the geological evolution of the study area may be related to the assembly and subsequent break-up of the Rodinia supercontinent. The new zircon results poorly constrain the age of the “Mayuan Group” as Neoproterozoic to early Palaeozoic (728–458 Ma), and not Palaeoproterozoic as previously thought. Many older inherited and detrital zircons with ages of 3.6, 2.8, 2.7, 2.6–2.5, 2.0–1.8 and 1.6 Ga were found in this study. A 3.6 Ga detrital grain is the oldest one so far identified in northwestern Fujian Province as well as throughout the Cathaysia Block. Nd isotope tDM values of eight volcano-sedimentary and clastic sedimentary rock samples centre on 2.73–1.68 Ga, being much older than the formation ages of their protoliths and thus showing that the recycling of older crust played an important role in their formation. These rocks underwent high grade metamorphism in the early Palaeozoic (458–425 Ma) during an important tectono-thermal event in the Cathaysia Block.  相似文献   

9.
The Precambrian/Cambrian (PC/C) boundary is one of the most important intervals for the evolution of life, represented by prominent biological evolution from the first appearance of soft-bodied animals from the late Neoproterozoic to the sudden diversification of animals with mineralized skeletons in the Cambrian. In South China several areas contain many fossils and are well exposed, suitable for the investigation of PC/C boundary. However, geochronological relationships are still poorly known because of lack of combined detailed investigations of internal structures of zircons and in-situ U–Pb dating.We focus on the internal structure of zircons from a tuff layer within Bed 5 in the Meishucun section on which we undertook cathodoluminescence (CL) imaging and in-situ U–Pb dating with LA-ICP-MS and nano-SIMS. Over 600 zircons from the tuff layer were classified into three types based on their CL images: oscillatory rims, inherited cores and dull structures. U–Pb dating of the internal structure of the zircons by LA-ICP-MS clearly shows a distinct unimodal age population dependent on the structure: 531 ± 17 Ma for the oscillatory rims and 515 Ma for the dull structures. The clear oscillatory zonation, the prismatic morphology, and their occurrence indicate that the oscillatory rims were formed from felsic magmatism, and that the U–Pb nano-SIMS age of 536.5 ± 2.5 Ma records the depositional age of the tuff. Our results indicate that the PC/C boundary is situated below Bed 5, and therefore the bottom of Zone 1 (Marker A) is more appropriate for the PC/C boundary than is the top of Zone 1 (Marker B). The age of a positive anomaly (P2) in the early Cambrian is estimated to be ca. 536 Ma.  相似文献   

10.
In the Central Zone of the Limpopo Belt (South Africa), Palaeoproterozoic granulite-facies metamorphism was superimposed on an earlier Archaean orogenic history. Previously determined ages of  2030–2020 Ma obtained from high-temperature chronometers (zircon, garnet, monazite) are generally thought to provide the best estimate of the peak of Palaeoproterozoic granulite-facies metamorphism in the Central Zone, whereas ages as young as  2006 Ma from late melt patches suggest that temperatures remained above the wet solidus for an extended period. We present a new MC-ICP-MS 207Pb–206Pb age of 2030.9 ± 1.5 Ma for titanite found in amphibolite- to greenschist-facies alteration zones developed adjacent to quartz vein systems and related pegmatites that cut a strongly deformed Central Zone metabasite. This age could potentially date cooling of rocks at this locality to temperatures below the wet solidus. Alternatively, the titanite could be inherited from the metabasite host, and the age determined from it date the peak of metamorphism. Integration of the geochronology with LA-ICP-MS trace element data for minerals from the metabasite, the hydrothermal vein systems and comparable rocks elsewhere shows that the titanite formed during the amphibolite-facies hydrothermal alteration, not at the metamorphic peak or during the greenschist-facies phase of veining. This suggests that high-grade rocks in the Central Zone have cooled differentially through the wet solidus, and provides timing constraints on when Palaeoproterozoic reworking in the Central Zone began. This study illustrates the potential of combined geochronological and high-resolution geochemical studies to accurately match mineral ages to distinct crustal processes.  相似文献   

11.
The age of pseudotachylite formation in the crustal-scale Cauvery Shear Zone system of the Precambrian Southern Granulite Terrain (South India) has been analyzed by laser-probe 40Ar–39Ar dating. Laser spot analyses from a pseudotachylite from the Salem–Attur shear zone have yielded ages ranging from 1214 to 904 Ma. Some evidence for the presence of excess Ar is indicated by the scatter of ages from this locality. The host gneiss preserves Palaeoproterozoic Rb–Sr whole rock–biotite ages (2350 ± 11 to 2241 ± 11 Ma). A mylonite in the Koorg shear, ca. 200 km to the north, yielded an age of 895 ± 17 Ma the consistency of the age distribution from spot analyses precludes the presence of significant excess Ar. Despite published evidence for the growth of high-grade minerals within some components of the Cauvery Shear Zone during the Pan-African event (700–550 Ma), the pseudotachylites in this study provide no evidence for Pan-African formation. Instead they document the first evidence for Mesoproterozoic tectonism in the Cauvery Shear Zone system, thus prompting a review of the correlation between the Cauvery Shear Zone system and the large-scale shear zones located elsewhere in eastern Gondwana.  相似文献   

12.
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions. Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic–Cambrian. Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madurai Block. Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons, among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic (ca. 2980–1670 Ma, with peaks at 2900–2800 Ma, 2700–2600 Ma, 2500–2300 Ma, 2100–2000 Ma). Zircons in two samples show magmatic zircons with dominantly Neoproterozoic (950–550 Ma) ages. The metamorphic zircons from the quartzites define ages in the range of 580–500 Ma, correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly. The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment, positive Ce, Sm anomalies and negative Eu, Pr, Nd anomalies. The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages. Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses, the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment. Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block. Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south, with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure, part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic–Cambrian.  相似文献   

13.
Metamorphic decarbonation reactions and volcanic degassing lead to significant influx of CO2, a major greenhouse gas, into the ocean-atmosphere system from the solid Earth. Here we present quantitative estimates on CO2 derived through metamorphic degassing during ultrahigh-temperature (UHT) metamorphism in the Neoproterozoic through the mineralogical and geological analyses of the UHT decarbonation. Our computations show that an extra flux of CO2 was added to the atmosphere through a Himalayan scale UHT metamorphism to the extent of 6 × 1016 to 3.0 × 1018 mol/my, for a duration of 10 my. A calculation of the impact of the extra CO2 influx to the global mean temperature in the context of carbon cycle and greenhouse effect of CO2 shows that at the peak influx stage, the steady state temperature would be raised by 4 °C from 15 °C and by 13 °C from 4 °C. Our results have important bearing in evaluating the mechanism of melting and the duration of the Snowball Earth. Our estimate of the maximum degassing rate during UHT metamorphism suggests that the duration of the Marinoan snowball Earth was probably shorter, and the recovery from an ice-covered Earth to ocean-covered Earth was faster than previous estimates.  相似文献   

14.
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

15.
K. Sajeev  M. Santosh  H.S. Kim 《Lithos》2006,92(3-4):465-483
The Kodaikanal region of the Madurai Block in southern India exposes a segment of high-grade metamorphic rocks dominated by an aluminous garnet–cordierite–spinel–sillimanite–quartz migmatite suite, designated herein as the Kodaikanal Metapelite Belt (KMB). These rocks were subjected to extreme crustal metamorphism during the Late Neoproterozoic despite the lack of diagnostic ultrahigh-temperature assemblages. The rocks preserve microstructural evidence demonstrating initial-heating, dehydration melting to generate the peak metamorphic assemblage and later retrogression of the residual assemblages with remaining melt. The peak metamorphic assemblage is interpreted to be garnet + sillimanite + K-feldspar + spinel + Fe–Ti oxide + quartz + melt, which indicates pressure–temperature (P–T) conditions around 950–1000 °C and 7–8 kbar based on calculated phase diagrams. A clockwise P–T path is proposed by integrating microstructural information with pseudosections. We show that evidence for extreme crustal metamorphism at ultrahigh-temperature conditions can be extracted even in the cases where the rocks lack diagnostic ultrahigh-temperature mineral assemblages. Our approach confirms the widespread regional occurrence of UHT metamorphism in the Madurai Block during Gondwana assembly and point out the need for similar studies on adjacent continental fragments.  相似文献   

16.
The Madurai Block, southern India, lies between the Palghat-Cauvery and the Achankovil shear zones. The Karur area represents a portion of the granulite-facies terrain of the Madurai block. High-pressure (HP) and ultrahigh-temperature (UHT) mafic granulites have been found as enclaves within the gneisses. The peak assemblage (M1) consists of garnet, orthopyroxene, clinopyroxene, quartz, and plagioclase. Garnet breaking down during isothermal decompression is indicated by the development of pyroxene+plagioclase symplectites, which characterize the M2 stage of metamorphism. Late stage hornblende-plagioclase symplectites rimming garnet is related to the decompression-cooling M3 stage of metamorphism. Peak metamorphism M1 occurs at ~12 kbar pressure and temperatures in excess of 1,000°C. This was followed by a retrograde M2 stage when the mafic granulites suffered isothermal decompression to 6 kbar to 7 kbar at 800–900°C. At the terminal retrograde stage M3 solid-melt back reaction took place at 4.5–5.5 kbar and 650–700°C. The proposed clockwise P-T path implies that rocks from the study area could have resulted from thickened continental crust undergoing decompression. The SHRIMP data presented here from the Karur area provide evidence for a Neoproterozoic (521?±?8 Ma) metamorphic event in the Madurai block. The formation of symplectic assemblages during near isothermal decompression can be attributed to tectonic activity coinciding with the Pan-African phase of a global orogeny.  相似文献   

17.
Sukhoi Log is one of the largest gold deposits in Russia (1100 t Au at 2.45 g/t). Like many other sediment-hosted gold deposits throughout the world, Sukhoi Log preserves textural, structural and geochemical evidence for multiple generations of Au enrichment and pyrite growth.The deposit is located in the Lena gold province of Siberia, on the edge of the Siberian Craton and occurs in the core of a recumbent anticline in a Neoproterozoic black shale and quartz-rich siltstone-sandstone turbidite succession. Temporal constraints on pyrite paragenesis at the deposit have been determined using laser ablation inductively coupled mass spectrometry (LA-ICPMS) measurements of U, Th and Pb isotopes in pyrite, monazite and zircon. LA-ICPMS age determinations on detrital zircons indicate the host rocks were deposited after 600 ± 10 Ma and derived from a mixture of Palaeoproterozoic and Neoproterozoic sources. The U, Th and Pb isotopic systematics indicate the cores of large monazite crystals, which predate obvious tectonic fabric development in the host rocks, began growing at 573 ± 12 Ma. The rims of the same monazite crystals formed at 516 ± 10 Ma, during peak metamorphism and deformation. Small monazite crystals also grew in the sedimentary rocks during the Devonian (374 ± 20 Ma) and the Carboniferous or Early Permian (288 ± 22 Ma), possibly in response to fluid movements triggered by synchronous granite intrusion in the area. Multi-collector and quadrupole LA-ICPMS Pb isotopic determination on pyrite, combined with overprinting criteria, show that the earliest (stratiform) Pb and Au-bearing pyrite formed prior to metamorphism—possibly during sedimentation or early diagenesis (575-600 Ma). Small Au-rich pyrite nodules preserved as cores to folded bedding-parallel pyrite-quartz veins probably grew during late diagenesis or early metamorphism. Large pyrite euhedra, which overgrow the strong axial planar cleavage in the host rocks, have more radiogenic Pb-isotopic compositions and formed either late during or after deformation. Framboidal pyrite that is overgrown by both the late diagenetic-early metamorphic and syn- to post-metamorphic pyrite has the most radiogenic Pb-isotopic composition suggesting exchange with radiogenic Pb in the matrix may have continued until late in the history of the deposit.The dating and Pb isotopes support a multistage origin for the gold deposit with Au first introduced during or prior to growth of the earliest stratiform pyrite and progressively re-concentrated (with or without addition of further gold) during later metamorphic events.  相似文献   

18.
U–Pb (TIMS–ID and SIMS) and Sm–Nd analyses of zircons and garnet-whole rock pairs were applied on high-pressure granulite facies metapelites and metagranodiorite from Tcholliré and Banyo regions, respectively in the Adamawa–Yadé and Western Domains of the Central-African Fold Belt (CAFB) of Cameroon. Cathodoluminescence (CL) images of zircons reveal that they are made up of ubiquitous magmatitic xenocrystic cores, surrounded and/or overprinted by light unzoned recrystallized domains. U–Pb data on cores yield ages ranging from Paleoproterozoic to Neoproterozoic, which we consider as dating inheritances. Data on overgrowths and recrystallized domains give ages ranging between 594 and 604 Ma, interpreted as the time of HP granulite-facies metamorphism in the Tcholliré and Banyo regions. This is also supported by ages derived from Sm–Nd garnet-whole rock pairs. Sediments of the Tcholliré region were deposited after ca. 620 Ma from Paleoproterozoic, Mesoproteroszoic and Neoproterozoic protoliths, while those from the Banyo region were deposited after 617.6 ± 7.1 Ma essentially from Neoproterozoic protoliths.  相似文献   

19.
The Mozambique Ocean closed as Gondwana formed. Its suture has been identified in Madagascar (Betsimisaraka suture), but its continuation, into India, is controversial. The Palghat‐Cauvery shear system appears an ideal candidate as it: (i) lies along strike of the Betsimisaraka suture in Gondwana; (ii) forms a high‐pressure granulite belt; and (iii) separates crustal domains with different geological histories. However, existing age constraints have been used to suggest that the structure is Archaean/Palaeoproterozoic. Here we date metamorphic zircons using secondary ion mass spectrometry (535.0 ± 4.9 Ma) and monazites using electron probe micro‐analysis (537 ± 9, 532 ± 8, 525 ± 10 Ma). No evidence for an earlier metamorphic event was found. The identification of Palghat‐Cauvery high‐pressure metamorphism as Cambrian, and recognition that it bounds crustal domains of contrasting origin, points to it being the southern continuation of the Betsimisaraka suture and southern margin of Neoproterozoic India.  相似文献   

20.
Oxidised metasediments in the western Gawler Craton southern Australia record late Paleoproterozoic high-temperature (HT) to ultrahigh-temperature (UHT) metamorphism. The HT-UHT rocks are magnetite-rich and come from drill core in an unexposed region of the Gawler Craton. Coarse-grained cordierite-bearing assemblages that potentially contained osumilite are overprinted by orthopyroxene-sillimanite-bearing assemblages, which in turn are overprinted by garnet. This microstructural record indicates a metamorphic evolution involving early high-T, low-P conditions that were overprinted by lower thermal gradient assemblages. In situ LA–ICP–MS monazite U-Pb age dating yields a range of ages between 1850 and 1530 Ma with large populations at ca 1690–1650 Ma and ca 1600 Ma. Elsewhere in the Gawler Craton HT and UHT metamorphism occurred in the earliest Mesoproterozoic (ca 1580 Ma). The timing of the Australian UHT events coincides with several other documented examples and occurred during the postulated existence of the Columbia supercontinent. If arguments that link the formation of UHT belts to supercontinental amalgamation are valid, then the existence of ca 1700 to 1600 Ma UHT metamorphism may place additional constraints on the timing of Columbian assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号