首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
Concentrations of Cd, Cr, Cu, Ni and Pb were determined in filtered water, suspended particulate matter, and bottom sediments from a 2000 km section of the Ob and Irtysh Rivers. Dissolved Cd, Cr, Cu and Ni concentrations are similar to, or higher than, results from other Russian Arctic and large world river-estuaries. Concentrations of Cd, Cr, Cu, Ni and Pb in suspended particulate matter are generally comparable to results from other Russian Arctic and large world rivers and estuaries. Comparison of trace metal ratios in crustal material and suspended particulate matter and bottom sediment suggests that the source of Cr, Cu and Ni is continental weathering. Particulate Cd and Pb are elevated relative to their crustal abundance, suggesting a source of these metals to the Ob-Irtysh in addition to continental weathering.  相似文献   

2.
Origin of dolostone remained a controversial subject, although numerous dolomitization models had been proposed to date. Because of the dolomitization’s potential to be hydrocarbon reservoirs, one debatable issue was the role of dolomitization in porosity construction or destruction. Based upon case studies of dolostone reservoirs in various geological settings such as evaporative tidal flat (Ordos Basin, NW China), evaporative platform (Sichuan Basin, SW China), and burial and hydrothermal diagenesis (Tarim Basin, NW China), here we systematically discuss the origin of porosity in dolostone reservoirs. Contrary to traditional concepts, which regarded dolomitization as a significant mechanism for porosity creation, we found two dominant factors controlling reservoir development in dolostones, i.e., porosity inherited from precursor carbonates and porosity resulted from post-dolomitization dissolution. Actually, dolomitization rarely had a notable effect on porosity creation but rather in many cases destroyed pre-existing porosity such as saddle dolostone precipitation in vugs and fractures. Porosity in dolostones associated with evaporative tidal flat or evaporative platform was generally created by subaerial dissolution of evaporites and/or undolomitized components. Porosity in burial dolostones was inherited mostly from precursor carbonates, which could be enlarged due to subsequent dissolution. Intercrystalline porosity in hydrothermal dolostones was either formed during dolo- mitization or inherited from precursor carbonates, whereas dissolution-enlarged intercrystalline pores and/or vugs were usually interpreted to be the result of hydrothermal alteration. These understandings on dolostone porosity shed light on reservoir prediction. Dolostone reservoirs associated with evaporative tidal flat were laterally distributed as banded or quasi-stratified shapes in evaporite-bearing dolostones, and vertically presented as multi-interval patterns on tops of shallowing-upward cycles. Dolostone reservoirs associated with evaporative platform commonly occurred along epiplatforms or beneath evaporite beds, and vertically presented as multi-interval patterns in dolostones and/or evaporite-bearing dolostones of reef/shoal facies. Constrained by primary sedimentary facies, burial dolostone reservoirs were distributed in dolomitized, porous sediments of reef/shoal facies, and occurred vertically as multi-interval patterns in crystalline dolostones on tops of shallowing-upward cycles. Hydrothermal dolomitization was obviously controlled by conduits (e.g., faults, unconformities), along which lenticular reservoirs could develop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号