共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACTWater temperature dynamics in a reservoir are affected by its bathymetry, climatic conditions and hydrological processes. Miyun Reservoir in China is a large and deep reservoir that experienced a large water level decline in 1999–2004 due to low rainfall and relatively high water supply to Beijing. To study changes of stratification characteristics in Miyun Reservoir from 1998 to 2011, the one-dimensional year-round lake model MINLAKE2010 was modified by adding a new selective withdraw module and a reservoir hydrological model. Simulation results under three scenarios demonstrated that the new MINLAKE2012 model accurately predicted daily water levels and temperature dynamics during the water level fluctuation period. The water level decline led to 7.6 and 3.8°C increases in the maximum and mean bottom temperatures and about 29 days reduction in the stratification days. These simulation results provide an insight into the thermal evolution of Miyun Reservoir during the planned future water filling process.
Editor D. Koutsoyiannis Associate editor M. Acreman 相似文献
2.
The thermal pollution patch of Hadera power plant was used as a natural laboratory to evaluate the potential long-term effects of rise in Eastern Mediterranean SST on living benthic foraminifera. Their sensitivity to environmental changes makes foraminifera ideal for this study. Ten monthly sampling campaigns were performed in four stations located along a temperature gradient up to 10 °C from the discharge site of heated seawater to a control station. The SST along this transect varied between 25/18 °C in winter and 36/31 °C in summer. A significant negative correlation was found between SST in all stations and benthic foraminiferal abundance, species richness and diversity. The total foraminiferal abundance and species richness was particularly low at the thermally polluted stations especially during summer when SST exceeded 30 °C, but also throughout the entire year. This indicates that thermal pollution has a detrimental effect on benthic foraminifera, irrelevant to the natural seasonal changes in SST. 相似文献
3.
This study focused on the effects of upstream reservoir thermal dynamics and downstream tidal influences on temperatures in a 25-km reach of Alouette River (coastal British Columbia, Canada) below a control dam and upstream of its confluence with Pitt River. Temperature was monitored during summer 2013 using 25 sensors. Water was released from the reservoir through a low level outlet at approximately 2.7 m3 s−1, except during late spring when a higher flow was released over the dam spillway. Temperature variations in the lowest section of Alouette River, and in the lower portion of a tributary, were distinct from those further upstream due to backwatering effects associated with a semi-diurnal tide, which can cause flow reversals in Pitt River. An internal seiche was identified in the reservoir during mid-summer that resulted in oscillating releases of warmer and cooler water with an amplitude of up to 6°C and a period of approximately 12 hr. Wavelet analysis and band-pass filtering indicated that the 12-hr signal declined in strength with downstream distance, but remained detectable about 15 km below the dam. In contrast, the 24-hr diel signal increased in strength with distance below the dam. Travel times computed via cross-correlation of the 12-hr signals with that at the low level outlet were within ±10% of those estimated from measured mean velocities. Lagrangian tracking of water parcels using the derived travel times indicated that the cooling effect of periodic releases of cold water during the seiching period persisted to the lower extent of the non-tidal reach. The tidally influenced locations experienced higher temperatures than those recorded in the non-tidal portion of Alouette River, although the relative roles of heating in the upstream tidal reach versus upstream advection of water associated with tide-driven flow reversals in Pitt River require further study. 相似文献
4.
国内对于作为饮用水水源地并具有水温分层特征的深水型水库环保疏浚,缺乏长期实测评价工程前后水质变化规律以及易于发生变化的水质参数的实例.因此,对于这种类型的环保疏浚,如何进行效果评价并在工程实施中控制敏感参数成为一个没有解决的问题.本文以典型的饮用水水源地、深水型的通济桥水库为对象,通过长期水质监测,研究了环保疏浚的影响.结果发现环保疏浚对总氮(TN)削减起到较好的效果,但是疏浚期间总磷(TP)浓度明显上升,完工半年后TP浓度仍略高于往年同期水平.其中,坝前库区TN浓度降低至疏浚前多年同期均值的56%~87%,而TP浓度却为疏浚前的1.87倍以上.并发现浊度、TN、TP和锰(Mn)对于环保疏浚敏感响应.其中,TP波动与底泥扰动引起的浊度变化有密切的关系;坝前库区疏浚新生底泥Mn含量较高(1251.25 mg/kg),夏季水温分层加剧了库底水体的厌氧状态,是Mn出现异常的主要原因.以通济桥水库为鉴,建议深水型环保疏浚重点考虑底泥扰动及后续季节性水温分层对水质控制效果产生的影响. 相似文献
5.
Surface water–groundwater interaction in the hyporheic zone may enhance biogeochemical cycling in streams, and it has been hypothesized that streams exchanging more water with the hyporheic zone should have more rapid nitrate utilization. We used simultaneous conservative solute and nitrate addition tracer tests to measure transient storage (which includes hyporheic exchange and in‐stream storage) and the rate of nitrate uptake along three reaches within the Red Canyon Creek watershed, Wyoming. We calibrated a one‐dimensional transport model, incorporating transient storage (OTIS‐P), to the conservative solute breakthrough curves and used the results to determine the degree of transient storage in each reach. The nitrate uptake length was quantified from the exponential decrease in nitrate concentration with distance during the tracer tests. Nitrate uptake along the most downstream reach of Red Canyon Creek was rapid (turnover time K?1c = 32 min), compared with nitrate uptake reported in other studies (K?1c = 12 to 551 min), but other sites within the watershed showed little nitrate retention or loss. The uptake length Sw‐NO?3 for the most downstream reach was 500 m and the mass transfer coefficient Vf‐NO?3 was 6·3 m min?1. Results from 15 other nitrate‐addition tracer tests were used to create a regression model relating transient storage and measures of stream flow to nitrate uptake length. The model, which includes specific discharge and transient storage area, explains almost half the variability in nitrate uptake length (adjusted R2 = 0·44) and is most effective for comparing sites with very different stream characteristics. Although large differences in specific discharge and storage zone area explain inter‐site differences in nitrate uptake, other unmeasured variables, such as available organic carbon and microbial community composition, are likely important for predicting differences in nitrate uptake between sites with similar specific discharge rates and storage zone areas, such as when making intra‐site comparisons. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
6.
How does river hydrology and morphology change due to tidal influence? We contend that this is a question of particular consequence to many earth surface disciplines, but one that has not been adequately addressed. Previous studies have relied on gradients in channel morphology and stratigraphy to infer energy regime of channels. However, in tidal rivers geomorphology influences the energy regime while the energy regime influences morphology; thus, geomorphic and stratigraphic patterns do not fully resolve the mechanisms which lead to change. We addressed this problem by comparing measurements of hydraulic energy and channel morphology along a tidal gradient to predictions of these characteristics in the absence of tides, and attributed the differences to tidal processes. Measurements of discharge, channel area, and energy dissipation (in kJ day–1) were made over a 24·8 hour period at four sites spanning the non‐tidal to tidal freshwater Newport River, NC. We then predicted those characteristics under non‐tidal conditions using hydraulic geometry relationships and literature values from coastal plain rivers. Discharge was enhanced more than 10‐fold by tide, and this tidal effect increased from upstream to downstream along the tidal gradient. Cross‐sectional area increased three‐fold due to tide. Energy dissipation measured in the upper tidal river was four‐fold lower than predicted to occur in the absence of tide because tides decreased average velocity and discharge. Energy dissipation measured downstream was similar to that predicted to occur without tides, although there was large uncertainty in predicted values downstream. While this limited dataset does not permit us to make broad generalizations for definitive models, it does provide a proof‐of‐concept for a new approach to addressing a critical problem at the interface of fluvial and coastal morphology. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
7.
为探究极端天气下流域内水质对土地利用的响应关系,本研究基于不同空间尺度(1000 m河段缓冲区、500 m河岸带缓冲区及子流域)的土地利用指数以及旱季(2019年11月)、雨季-洪水期(2020年7月)和雨季-干旱期(2022年8月)的水质数据,探究流域内土地利用对水质的多时空尺度影响,从而得到保护流域水质和规划流域内土地利用格局的最佳时空尺度和对水质影响最显著的预测因子。研究表明:(1)流域水质受极端天气影响,降雨会增强水体的稀释能力,高温会加快水中微生物反应速率,具体表现为雨季-洪水期的水质较好,雨季-干旱期次之,旱季较差。(2)土地利用对水质指标的影响存在时空尺度效应,土地利用在子流域和旱季尺度下对河流水质影响最显著。(3)不同土地利用指数对流域水质影响存在差异,耕地、林地、斑块密度、最大斑块指数和边缘密度是影响水质指标最显著的解释变量。其中林地与多数水质指标具有负相关关系,建设用地、耕地、斑块密度与较多水质指标存在正相关关系。本研究结果为合理规划土地利用格局以及保护河流水质提供科学依据,对三峡库区环境可持续发展及生态保护具有一定意义。 相似文献
8.
The effect of rates of sedimentation and tidal submersion regimes on the growth of salt marsh plants 总被引:1,自引:0,他引:1
A system of tidal mesocosms has been constructed in order to determine interactions between rates of accretion and duration of inundation. Plants are grown in three tanks in which different tidal regimes are simulated by a system of electronically controlled pumps. Sediment is added to give four different rates of accretion and the mesocosms are run under controlled greenhouse conditions. To date experiments have been conducted with seedlings of Salicornia europaea and Aster tripolium. The longest duration of immersion reduces the growth rate of root and shoot of Salicornia seedlings but Aster was unaffected by 5 h submersion daily. Both species, however, responded positively to all rates of sediment addition up to the equivalent of 60 mm per year. The implication of these findings are discussed in relation to salt marsh development. 相似文献
9.
温度和压力是沉积盆地两个重要的物理场,温度影响着超压的形成和分布.本文根据钻孔实测温度和压力数据分析了川中古隆起现今压力与温度的关系;在实验室对封闭流体进行了多组温-压关系实验;利用等效镜质体反射率和包裹体测温数据恢复了川中古隆起不同井区在白垩纪抬升之前的最大古地温,并在此基础上分析了温度降低对研究区超压的影响;最后探讨了生烃增压和欠压实超压形成过程中温度的作用.研究结果表明,川中古隆起现今超压层的压力系数与温度呈正相关关系;在绝对密封的条件下,当压力大于15 MPa时,温度每变化1 ℃,压力变化1.076 MPa.川中地区不同井区自晚白垩世以来的差异性降温是现今同一超压层系超压强度不同的主要因素,此外超压层还应发生了流体的横向压力传递和泄漏.下古生界原油裂解形成超压的时间是180~110 Ma;气态烃伴生的盐水包裹体均一温度暗示了在90 Ma超压发生调整.盆地模拟结果显示温度对上三叠统须家河组的欠压实增压影响微弱. 相似文献
10.
This paper presents a field study conducted in northwest Turkey and characterizes the NH3 concentration and emission measured in summer season from three chicken farms. The influence of environmental conditions on NH3 concentration and emission was also investigated in this study. Ammonia concentration, temperature, relative humidity and airflow rate were continuously recorded for four sequential days. The environmental conditions were measured using a multifunction temperature and humidity‐meter with a hot wire probe. Portable multiple gas detectors with electro‐chemical sensors were used to measure NH3 concentration. The NH3 emission rates for houses were calculated by multiplying simultaneously measured NH3 concentrations and air flow rates. The average daily mean (ADM) house concentrations of house 1 (H1), house 2 (H2), and house 3 (H3) were measured as 4.43, 3.71, and 6.20 ppm, respectively. NH3 concentration was inversely proportional to temperature (r = ?0.279), relative humidity (r = ?0.063) and airflow rate (r = ?0.554) for all monitored houses. The ADM house NH3 emission was 135 g/(h house) for H1, 255 g/(h house) for H2, and 117 g/(h house) for H3. The combined average emission rate in this study (0.26 g/(d bird)) was lower than the emission rate measured in chicken farms in the USA. However, our results were comparable to rates calculated in European studies because house design, ventilation system and bird diet applied in Turkish chicken farms are very similar to those employed in European countries. The NH3 emissions were significantly correlated to NH3 concentrations (r = 0.45, p ≤ 0.001) and airflow rates (r = 0.97, p ≤ 0.001). A clear diurnal pattern was obtained for NH3 concentrations rather than NH3 emissions at the end of the study. 相似文献
11.
2012-2018年巢湖水质变化趋势分析和蓝藻防控建议 总被引:1,自引:3,他引:1
巢湖自1990s中期至2012年间水质明显改善,但是近年来水质改善效果变缓,2018年蓝藻水华面积显著增加,为有效评估巢湖水体环境的变化,通过对2012-2018年巢湖17个点位的逐月调查数据分析阐述了近年来巢湖水质和藻情的变化特征,并在流域空间尺度上分析了巢湖流域水污染治理的进展和不足,为后续治理方向的调整和确定提供支撑.2012-2018年湖区调查数据显示:巢湖湖体总磷和总氮浓度显著升高,铵态氮浓度显著下降,水华蓝藻总量显著升高.在空间上,各污染指标水平呈现由西向东呈逐渐降低的趋势,但是各指标在不同湖区随时间的变化趋势差异明显,西部湖区的总磷、总氮和水华蓝藻指标近年来略有下降或持平,中部和东部湖区则显著升高,所以巢湖湖体总氮和总磷浓度的升高主要源于中、东部湖区的升高,这也是这两个湖区水华蓝藻变动的主要驱动因素.主要入湖河口数据显示:西部4条主要入湖污染河流(南淝河、十五里河、塘西河和派河)水质明显改善,但仍处于较高污染水平,中东部入湖河流(兆河、双桥河和柘皋河)总磷浓度明显升高,是中东部湖区水体营养盐升高的主要原因.中东部河流入湖污染的增加加剧了该区域湖体的富营养化水平,尤其是总磷... 相似文献
12.
Yaguang Zhu Yuanzheng Zhai Qingqing Du Yanguo Teng Jinsheng Wang Guang Yang 《水文研究》2019,33(6):945-961
Riverbank filtration (RBF) has been widely used throughout the world as an effective means to regulate surface water and groundwater resources and pretreat raw water for municipal water supply. The quality of the water from a riverside well field and the mixing ratios of surface water and groundwater is primarily impacted by the hydrodynamic processes in the RBF system. The RBF system is largely controlled by the water exploiting system in addition to the natural hydrologic condition of the river–aquifer system. As one of the most important design parameters of the riverside well field, the drawdown of groundwater level greatly determines the water head differences between the river water and groundwater as well as the field flow net, which subsequently impacts the mixing of river water and groundwater and water quality significantly. This study aimed to improve the understanding of the mixing process between the surface water and groundwater and estimate the impact of the RBF on the mixing ratio of surface water–groundwater and water quality quantitatively. A set of field pumping tests with various groundwater level drawdowns were carried out independently and successively at a riverside field with a single pumping well near the Songhua River in Northeast China in August 2017. During these tests, the water levels and hydrochemical parameters of the Songhua River, the adjacent aquifer, and the pumping well were monitored. The dynamic mixing process of the river water and groundwater and water quality under various drawdown conditions were analysed systematically using analytical methods. The results obtained from Dupuit method and the Mirror Image method in conjunction with the Hydrochemical Tracing method showed that the pumping water directly from the river water reached 60% ± 10% after a steady flow net was established. The larger the proportion of the pumping water captured from the river, the better quality of the pumping water was, because the quality of the river water (only limited to some water quality parameters monitored which were minority) was better than that of the groundwater. The results also showed that total Fe, TDS, total hardness, CODMn, and K+ were relatively sensitive to the changes of groundwater drawdown, and their concentrations decreased with an increase in the groundwater drawdown. It can be concluded that both the mixing ratio of the surface water and the groundwater and the water quality of the riverside well field can be regulated through adjusting the designed drawdown of the groundwater level, which is helpful for the design and the optimization of the riverside well water intake engineering. 相似文献
13.
Our work analyses the intra‐annual variability of the volume of water stored in 15 forested headwater catchments from south‐central Chile, aiming at understanding how forest management, hydrology, and climate influence the dynamic components of catchment storage. Thus, we address the following questions: (a) How does the annual water storage vary in catchments located in diverse hydroclimatic conditions and subject to variable forest management? (b) Which natural (i.e., hydrologic regime and physiographic setting) and anthropogenic factors explain the variance in water storage? Results show that the annual catchment storage increases at the beginning of each hydrological year in direct response to increases in rainfall. The maximum water storage ranges from 666 to 1,272 mm in these catchments. The catchments with Pinus or Eucalyptus spp. cover store less water than the catchments with mixed forest species cover. Forest cover (biomass volume, plantation density, and percentage of plantation and age) has the primary control on dynamic storage in all catchments. These results indicate that forest management may alter the catchment water storage. 相似文献
14.
流域内地表水、土壤水和地下水等水储量组分相互作用和影响,共同构成了陆地水储量(TWS)的动态变化格局。本文以GRACE卫星数据为基准,利用GLDAS数据解析1960-2019年鄱阳湖“五河”流域TWS的时空变化特征及各组分对其变化的贡献,采用相关分析方法分析TWS对降水的滞后响应关系,并进一步采用多元线性回归分析方法探究了“五河”流域TWS及各组分对鄱阳湖主湖区水量的影响。结果表明:“五河”流域年TWS在1960-2011年(P1)以-0.07 mm/a的下降,而在2012-2019年(P2)以3.37 mm/a的速率上升。相较于P1阶段,P2阶段春、夏季TWS盈余增强,秋、冬季TWS亏损减弱。春、夏季流域西部TWS变化逐渐由地表水转变为地下水储量主导,流域东部TWS变化主要由地下水储量主导;秋、冬季流域TWS变化主要为地下水储量主导,且地表水对TWS变化的贡献减弱。流域TWS对降水变化的响应滞时呈现夏、秋季短(1个月)而冬、春季长(3~6个月)的季节模式。地下水储量和土壤水对TWS变化的贡献增加会延长TWS对降水的响应滞时,而地表水对响应滞时起相反的作用。“五河”流域TWS与鄱阳湖主湖区水量具有显著的正相关性,地表水和地下水储量增加对湖区水体的增长具有正向作用,而土壤水增加对湖区水体的增长具有反向作用。本研究解析了近六十年鄱阳湖“五河”流域陆地水储量的变化及其对主湖区水量的影响,可为流域水安全管理提供参考。 相似文献
15.
Employing long‐range correlation, complexity features and clustering, this study investigated the influence of dam and lake‐river systems on the Yangtze River flow. The impact of the Gezhouba Dam and the lake systems on streamflow was evaluated by analysing daily streamflow records at the Cuntan, the Yichang and the Datong station. Results indicated no evident influence of the Gezhouba Dam on streamflow changes. Distinct differences in scaling behaviour, long‐range correlation and clustering of streamflow at the Datong station when compared with those at the Cuntan and Yichang stations undoubtedly showed the influence of water storage and the buffering effect of the lake systems between the Datong station and other two hydrological stations on streamflow in the lower Yangtze River basin. Decreased regularity, enhanced long‐range correlation and increased clustering of streamflow in the lower Yangtze River basin due to the effect of water storage of the lake systems were corroborated. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments 下载免费PDF全文
Soil water storage and stable isotopes dynamics were investigated in dominant soil–vegetation assemblages of a wet northern headwater catchment (3.2 km2) with limited seasonality in precipitation. We determined the relative influence of soil and vegetation cover on storage and transmission processes. Forested and non‐forested sites were compared, on poorly drained histosols in riparian zones and freely draining podzols on steeper hillslopes. Results showed that soil properties exert a much stronger influence than vegetation on water storage dynamics and fluxes, both at the plot and catchment scale. This is mainly linked to the overall energy‐limited climate, restricting evaporation, in conjunction with high soil water storage capacities. Threshold behaviour in runoff responses at the catchment scale was associated with differences in soil water storage and transmission dynamics of different hydropedological units. Linear input–output relationships occurred when runoff was generated predominantly from the permanently wet riparian histosols, which show only small dynamic storage changes. In contrast, nonlinear runoff generation was related to transient periods of high soil wetness on the hillslopes. During drier conditions, more marked differences in soil water dynamics related to vegetation properties emerged, in terms of evaporation and impacts on temporarily increasing dynamic storage potential. Overall, our results suggest that soil type and their influence on runoff generation are dominant over vegetation effects in wet, northern headwater catchments with low seasonality in precipitation. Potential increase of subsurface storage by tree cover (e.g. for flood management) will therefore be spatially distributed throughout the landscape and limited to rare and extreme dry conditions. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
A series of stress relaxation experiments have been carried out on faulted and intact Tennessee sandstone to explore the influence of pore water on strength at different strain rates. Temperatures employed were 20, 300 and 400°C, effective confining pressure was 1.5 kb and strain rates as low as 10–10 sec–1 were achieved. Most samples were prefaulted at 2.5 kb confining pressure and room temperature. This is thought to have secured a reproducible initial microstructure.The strength of the dry rock was almost totally insensitive to strain rate in the range 10–4 to 10–10 sec–1. In contrast, the strength of the wet rock decreased rapidly with strain rate at rates less than 10–6 sec–1. Brittle fracture of the quartz grains which constitute this rock is the most characteristic mode of failure under the test conditions used.The experimental data are discussed in terms of the possible deformation rate controlling processes, and it is suggested that in the wet experiments at intermediate to high strain rates (10–7 to 10–4 sec–1) the observed deformation rate is controlled by the kinetics of water assisted stress corrosion, whilst deformation at low strain rates (ca. 10–9 sec–1) is controlled by a pressure solution process.The results have implications for the rheology of fault rocks at depths of perhaps 10 to 15 km in sialic crust. 相似文献
18.
The cycle of instability: stress release and fissure flow as controls on gully head retreat 总被引:1,自引:0,他引:1
A. J. C. Collison 《水文研究》2001,15(1):3-12
Gully head and wall retreat has commonly been attributed to fluvial scour and head collapse as a result of soil saturation, sapping or piping. The empirical evidence to substantiate these conceptual models is sparse, however, and often contradictory. This paper explores the hydrological and mechanical controls on gully head and wall stability by modelling the hydrology, stability and elastic deformation of a marl gully complex in Granada Province, south‐east Spain. The hydrological and slope‐stability simulations show that saturated conditions can be reached only where preferential fissure flow channels water from tension cracks into the base of the gully head, and that vertical or subvertical heads will be stable unless saturation is achieved. Owing to the high unsaturated strengths of marl measured in this research, failure in unsaturated conditions is possible only where the gully head wall is significantly undercut. Head retreat thus requires the formation of either a tension crack or an undercut hollow. Finite‐element stress analysis of eroding slopes reveals a build up of shear stress at the gully head base, and a second stress anomaly just upslope of the head wall. Although tension cracks on gully heads have often been attributed to slope unloading, this research provides strong evidence that the so called ‘sapping hollow’ commonly found in the gully headwall base is also a function of stress release. Although further research is needed, it seems possible that ‘pop out’ failures in river channels may be caused by the same process. The hydrological analysis shows that, once a tension crack has developed, throughflow velocity in the gully headwall will increase by an order of magnitude, promoting piping and enlargement of this weakened area. It is, therefore, possible to envisage a cycle of gully expansion in which erosion, channel incision or human action unloads the slope below a gully head, leading to stress patterns that account for the tension crack and a stress‐release hollow. The tension crack promotes faster throughflow, encouraging hollow enlargement and piping, which undercut the gully head. The tension crack permits the development of positive pore‐water pressures behind the gully head, leading either to failure or contributing to toppling. Finally the debris may be eroded by fluvial action, unloading a new section of slope and completing the cycle of gully head retreat. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
19.
Morales-Nin B Geffen AJ Cardona F Kruber C Saborido-Rey F 《Marine pollution bulletin》2007,54(11):1732-1741
Juvenile turbot (Scophthalmus maximus) were kept in captivity and were fed a prepared food contaminated with five different concentrations of seawater-accommodated fuel oil from 2.4+/-0.35 to 48.2+/-2.2 mg g(-1) food, with a control group receiving uncontaminated food. The growth and survival of individually tagged fish (N=202) were measured after a six-week treatment period. The otolith growth rate was measured and otolith composition was determined before and after the treatments using LA-ICPMS. Fish and otolith growth were negatively affected by the fuel oil treatment, and the response decreased with the level of contamination. Otolith growth and element incorporation peaked at mid level exposures and decreased at the highest level. The otolith elemental composition reflected the presence of some elements in the Prestige fuel that may have been incorporated through the diet into the otolith. 相似文献
20.
The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso 总被引:3,自引:0,他引:3
Gil Mahe Jean-Emmanuel Paturel Eric Servat Declan Conway Alain Dezetter 《Journal of Hydrology》2005,300(1-4):33-43
The annual hydrological regime of the Nakambe River shows substantial changes during the period 1955–1998 with a shift occurring around 1970. From 1970 to the mid-1990s, despite a reduction in rainfall and an increase in the number of dams in the basin, average runoff and maximum daily discharges increased. This paper reviews the hydrological behaviour of the Nakambe River from 1955 to 1998 and examines the potential role of land use change on soil water holding capacity (WHC) in producing the counter-intuitive change in runoff observed after 1970. We compare the results of two monthly hydrological models using different rainfall, potential evapotranspiration and WHC data sets. Model simulations with soil WHC values modified over time based upon historical maps of land use, are compared against simulations with a constant value for WHC. The extent of natural vegetation declined from 43 to 13% of the total basin area between 1965 and 1995, whilst the cultivated areas increased from 53 to 76% and the area of bare soil nearly tripled from 4 to 11%. The total reduction in WHC is estimated to range from 33 to 62% depending on the method used, either considering that the WHC values given by the FAO stand for the environmental situation in 1965 or before. There is a marked improvement in river flow simulation using the time-varying values of soil WHC. The paper ends with a discussion of the role of other factors such as surface runoff processes and groundwater trends in explaining the hydrological behaviour of the Nakambe River. 相似文献