首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although diffusion is usually associated with equalizing of the chemical composition, the pressure and temperature gradients inside the Sun cause elemental diffusion segregation. While light hydrogen is flowing up to the solar envelope, helium and heavier elements are settling down to the core. The target of our simulation is an accurate estimation of the settling rate in solar plasma during the course of solar evolution. The rate of helium depletion in the envelope is a key parameter of the solar evolution and depends on position and conditions around the base of the convective mixing zone. The rate of heavy element settling is sensitive to the degree of ionization and interaction with the radiation flux. We estimate the effect of ion ionization on the settling rate for several heavy elements up to iron in the framework of the LTE assumption and the thermodynamic calculation according to SAHA-S EOS.  相似文献   

2.
3.
4.
The NASA Earth Observing System (EOS) is an advanced study of Earth's long-term global changes of solid Earth, its atmosphere, and oceans and includes a coordinated collection of satellites, data systems, and modeling. The EOS program was conceived in the 1980s as part of NASA's Earth System Enterprise (ESE). The Solar Radiation and Climate Experiment (SORCE) is one of about 20 missions planned for the EOS program, and the SORCE measurement objectives include the total solar irradiance (TSI) and solar spectral irradiance (SSI) that are two of the 24 key measurement parameters defined for the EOS program. The SORCE satellite was launched in January 2003, and its observations are improving the understanding and generating new inquiry regarding how and why solar variability occurs and how it affects Earth's energy balance, atmosphere, and long-term climate changes.  相似文献   

5.
6.
Fahr  Hans J. 《Solar physics》2002,208(2):335-344
It has been known for years now that pick-up ions (PUIs) are produced by ionization of interstellar neutral atoms in the heliosphere and are then convected outwards with the solar wind flow as a separate suprathermal ion fluid. Only poorly known is the thermal behaviour of these pick-ups while being convected outwards. On the one hand they drive waves since their distribution function is unstable with respect to wave growth, on the other hand they also experience Fermi-2 energizations by nonlinear wave-particle interactions with convected wave turbulences. Here we will show that this complicated network of interwoven processes can quantitatively be balanced when adequate use is made of transport-kinetic results according to which pick-up ions essentially behave isothermally at their convection to large solar distances. We derive the adequate heat source necessary to maintain this pick-up ion isothermy and use the negative of that source to formulate the enthalpy flow conservation for solar wind protons (SWPs). This takes care of a consistent PUI-induced heat source guaranteeing that the net energy balance in the SWP–PUI two-fluid plasma is satisfied. With this PUI-induced heat input to SWPs we not only obtain the well-observed SWP polytropy, but we can also derive an expression for the percentage of intitial pick-up energy fed into the thermal proton energy. By a first-order evaluation of this expression we then can estimate that, dependent on the actual PUI temperature, about 40 to 50% of the initial pick-up energy is globally passed to solar protons within the inner heliosphere.  相似文献   

7.
Abstract— The thermodynamic properties of SiO2 are approximated over a range of pressures and temperatures important under the extreme conditions achieved in impacts at typical solar system velocities from 5 to about 70 km/s. The liquid/vapor phase curve and critical point of SiO2 are computed using the equation of state (EOS) program ANEOS. To achieve this goal, two shortcomings of ANEOS are corrected. ANEOS, originally developed at Sandia National Laboratories to describe metals, treats the vapor phase as a monatomic mixture of atoms, rather than molecular clusters. It also assumes a Morse potential for the expanded solid state. Neither of these assumptions is accurate for geologic materials, such as SiO2, that contain molecular clusters in the vapor phase and are better described by a Mie‐type potential in the solid state. Using the updates described here, an EOS adequate for numerical hydrocode computations is constructed that agrees well with shock data at pressures up to at least 600 GPa and temperatures up to 50,000 K. This EOS also gives a good representation of the liquid/vapor transition at much lower pressures and temperatures. The estimated critical point parameters for SiO2 are Pc = 0.19 GPa, Tc = 5400K, ρc = 550 kg/m3.  相似文献   

8.
9.
10.
11.
Ionization and recombination processes are studied for a plasma of which the electrons follow a power-law energy distribution.The rates for collisional ionization, radiative and dielectronic recombination and for autoionization are evaluated.Numerical computations are performed for H-like, He-like and Li-like ions from neon to nickel as a function of the spectral index of the electron distribution. The ionization equilibrium is evaluated as well as the ratios of fluxes emitted in two lines pertaining to two successive ionization stages of the same element. A comparison with a few experimental data is made and the possibility of a non-thermal interpretation of X-ray line emission during solar flares is discussed.  相似文献   

12.
It is argued that there is a terrestrial loss of hydrogen as ions which includes the polar wind but extends effectively down to a latitude in the range 45–50° invariant. In daytime and for much of the night-time the flux is close to the limiting value for H+ flow through the topside ionosphere. It is argued that the flux decreases rapidly with increasing solar activity, following the decrease in neutral hydrogen concentration. It has been found that as solar activity increases the Jeans escape flux increases, and the charge exchange escape flux increases until moderate solar activity levels are reached. As solar activity increases from moderate to high levels, the charge exchange escape may decrease again. A new budget for terrestrial hydrogen loss over the solar cycle is given. The global flux of hydrogen ions outward from the ionosphere is comparable with estimates of the plasma sheet loss rates, and this flux, together with some solar wind plasma, is an attractive source for the plasma sheet.The energetic neutrals produced from the charge exchange of ring current ions with thermal-energy neutrals in the exosphere produce the optical emission of the equatorial aurora, which can be related to ion production rates near and above the E-region. The ionization production is adequate to explain the enhancements in ion production observed during magnetic storms at Arecibo.  相似文献   

13.
14.
We have studied the ionization states of most ions in solar flares when a stochastic acceleration mechanism is present. Calculations using a computer code (ESCAPE) designed to find the charge states of heavy and light ions under stochastic acceleration have shown an energy dependence on the ionization states, stronger for heavy ions. Moreover the charge states depend on source parameters as density or temperature, but if an acceleration mechanism is taken into account in impulsive solar energetic particles events, the same source temperature may not be inferred for all the ions.  相似文献   

15.
16.
In this paper the ionization stage and the relationship connecting electronic pressure, gaseous pressure and temperature are studied in a H-deficient, extreme-He mixture which, also, has an overabundance of C (HdC mixture). For comparison purposes a similar analysis is made for a solar mixture and for a metal-deficient one. In our study we take account of the formation of negative ions and of molecules; the selected physical conditions roughly suit those in stellar atmospheres. The relation log (P g /P e) vs. log P eis examined and their properties are interpreted. It is also shown that for those temperatures and pressures in which the main source of opacity is the Thomsons cattering, the HdC mixture is less opaque than the solar one (or the pop. II one). For low temperatures, the low abundance of C will strongly limit the formation of C- in the HdC mixture, thus preventing it from reaching the absorbing importance of H- in the solar one. C in the HdC mixture mimics the behavior of H in the solar one: either as an electron donor, as a maker of molecules or as a source of opacity. The similarity is qualitative only. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
We discuss needs in dielectronic recombination data motivated by recent work directed at a quantitative understanding of ion charge states of various elements observed in situ in the solar wind and CMEs. The competing processes of ionization and recombination lead to departures from collision ionization equilibrium. The use of this as a diagnostic of acceleration and heating processes of the solar wind and CMEs is sensitive to the accuracy of the atomic rates in a way that steady state ionization equilibrium plasmas are not. The most pressing need is dielectronic recombination rates for ions Fe8+-12+. These are among the dominant species observed in various regions of the solar wind and CMEs, and in remotely sensed EUV spectra.  相似文献   

19.
20.
The Ultraviolet Coronagraph Spectrometer on the SOHO satellite covers the 940–1350 Å range as well as the 470–630 Å range in second order. It has detected coronal emission lines of H, N, O, Mg, Al, Si, S, Ar, Ca, Fe, and Ni, particularly in coronal streamers. Resonance scattering of emission lines from the solar disk dominates the intensities of a few lines, but electron collisional excitation produces most of the lines observed. Resonance, intercombination and forbidden lines are seen, and their relative line intensities are diagnostics for the ionization state and elemental abundances of the coronal gas. The elemental composition of the solar corona and solar wind vary, with the abundance of each element related to the ionization potential of its neutral atom (First Ionization Potential–FIP). It is often difficult to obtain absolute abundances, rather than abundances relative to O or Si. In this paper, we study the ionization state of the gas in two coronal streamers, and we determine the absolute abundances of oxygen and other elements in the streamers. The ionization state is close to that of a log T = 6.2 plasma. The abundances vary among, and even within, streamers. The helium abundance is lower than photospheric, and the FIP effect is present. In the core of a quiescent equatorial streamer, oxygen and other high-FIP elements are depleted by an order of magnitude compared with photospheric abundances, while they are depleted by only a factor of 3 along the edges of the streamer. The abundances along the edges of the streamer (‘legs’) resemble elemental abundances measured in the slow solar wind, supporting the identification of streamers as the source of that wind component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号