首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence of gabbro and diorite, pillow and massive lavas, diabase and chert. Ages of 1840±2 Ma, 1783±2 Ma and 1784±2 Ma on three zircons from diabase, indicate an early Middle Proterozoic age. The diabases and basalts show light rare-earth element enrichment and have relatively high TiO2 contents, characteristic of ocean island basalts. All of the lavas have low MgO, Cr, Ni contents and Mg numbers indicating a more evolved character. They are believed to have been derived from a more mafic parental magma by fractionation of olivine, Cr-spinel and minor plagioclase. Based on the lava geochemistry and regional geology, the Aoyougou ophiolite was probably believed to have formed at a spreading centre in a small marginal basin. Subduction of the newly formed oceanic lithosphere in the Middle Proteroz  相似文献   

2.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (~160 Ma), I-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma).Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at ~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between ~160 Ma and ~115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qinling -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios,which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

3.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-SrⅠ-type granite emplaced in the early stage (~160 Ma),Ⅰ-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma). Geochemical characteristics of the high-Ba-SrⅠ-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between~160 Ma and~115 Ma. The genesis of the early- and middle-stageⅠ-type granites could be linked to delamination of subducted lithosphere of the Qiniing orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

4.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-SrⅠ-type granite emplaced in the early stage (~160 Ma),Ⅰ-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma). Geochemical characteristics of the high-Ba-SrⅠ-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between~160 Ma and~115 Ma. The genesis of the early- and middle-stageⅠ-type granites could be linked to delamination of subducted lithosphere of the Qiniing orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

5.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-SrⅠ-type granite emplaced in the early stage (~160 Ma),Ⅰ-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma). Geochemical characteristics of the high-Ba-SrⅠ-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between~160 Ma and~115 Ma. The genesis of the early- and middle-stageⅠ-type granites could be linked to delamination of subducted lithosphere of the Qiniing orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qiniing -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios, which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

6.
The Wurinitu molybdenum deposit, located in Honggor, Sonid Left Banner of Inner Mongolia, China, is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.?The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin’aobao Formation.?LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,?one were formed at 181.7±7.?4 Ma and?the other at 133.6±3.3 Ma. The latter age is believed to be the formation age of the fine-grained granite, while the former may reflect the age of inherited zircons, based on the morphological study of the zircon and regional geological setting. The Re-Os model age of molybdenite is 142.2±2.5?Ma, which is older than the diagenetic age of the fine-grained granite.?Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be?nearly 133.6±3.3 Ma or slightly later, i.e., Early Cretaceous.?Combined with regional geological background research, it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt, belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk?Sea.  相似文献   

7.
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt, southern Shaanxi Province, and consists chiefly of quartz diorite, granodiorite and monzogranite. A LA-ICP-MS zircon U-Pb isotopic dating, in conjunction with cathodoluminescence images, reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma, while the monzogranite was emplaced at ~210 Ma. In-situ zircon Hf isotopic analyses show that the εHf(t) values of the quartz diorite and granodiorite range from -8.1 to +1.3, and single-stage Hf model ages from 809 Ma to 1171 Ma, while the εHf(t) values of the monzogranite are -14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma. These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials, and there were two stages of continental crust growth during the Neoproterozoic (~800 Ma) and Indosinian (~210 Ma) eras, respectively, in the south Qinling tectonic domain of the Qinling orogrnic belt, Central China.  相似文献   

8.
Zircon SHRIMP ages of the Aolaoshan granite on the south margin of the Qilian Mts. range from 445±15.3 to 496±7.6 Ma (averaging 473 Ma), belonging to the Early Ordovician. Geochemically, the granite is similar to I-type granite and, tectonically, was formed in an island-arc environment based on relevant diagrams for structural discriminations. Considering also the regional geology, the authors suggest that the granite is part of an ultrahigh-pressure belt on the south margin of the Qilian Mts. and that its formation bears a close relationship to this belt.  相似文献   

9.
The Qinling orogenic belt is a collision zone between the North China andYangtze cratons.The Qinling Complex is a Precambrian metamorphic com-plex,developed in the inner zone of the orogenic belt,which records themetamorphic and deformational history and PTt path of the regional meta-morphism of the collision zone.The present paper studies the metamor-phic and deformational history and the PTt path of various tectono-metamorphic cycles in order to describe the geodynamic processes prevailing inthat part of the Qinling orogenic belt since Proterozoic.The tectonometamorphic history and evolution of the Qinling Complex isdivided into two stages:the stage of formation and the stage of modificationDuring the stage of formation dated as Proterozoic,three deformational se-quences are recognized.The amphibolite facies regional metamorphism is earlierthan or synchronous with the first or second phase of folding.Threemetamorphic zones,i.e.And-Ms,Sil-Ms,Sil-Kfs are delimited.During thestage of modification,the emp  相似文献   

10.
1. IntroductionThe Mianlue (Mianxian-Lueyang) suture zone is one of the components of the Qinling orogenic belt and the latest major suture zone between North and South China. The data available suggest that it is a complicated ophiolitic tectonic melange zone including many tectonic slabs of different origins (Zhang et al., 1995; Lai et al., 1996; Lai et al.,1997; Lai et al.,1998; Xu et al.,1996). Up to now, however, there is not definite evidence of volcanic rock assemblage and geochemi…  相似文献   

11.
南秦岭花岗岩锆石U-Pb定年及其地质意义   总被引:78,自引:0,他引:78  
锆石U-Pb定年结果表明,南秦岭勉、略构造带以北迷坝、光头山和东江口等花岗岩体形成于三叠纪(206 ̄220Ma),与南秦岭勉-略构造带洋盆的闭合时代及大别山超高压变质时代基本一致显示了它们的形成与勉-略古生代洋盆闭合后及华南陆块与华北陆块碰撞之间的内在联系。它支持华南和华北两大陆块最终在印支期碰撞的观点。  相似文献   

12.
对青藏高原西北部班公湖缝合带开展了野外地质调查,初步查明区内缝合带至少包含日土和狮泉河-改则两条蛇绿岩带。在两条蛇绿岩带北侧发现各有两期岛弧型岩浆岩发育,且形成时间严格对应。岩石地球化学分析表明,班公湖缝合带岛弧型岩浆岩的共同特征是富集大离子不相容元素Rb、Th、K和Pb;强烈亏损高场强元素Nb、Ta和Ti;Ba在微量元素蛛网图中总是相对亏损,这些特征说明班公湖地区存在两条俯冲带。从演化序列看,俯冲初期岩石属中钾钙碱性系列,之后岛弧岩浆作用向高钾钙碱性系列演变。锆石U—PbLA—ICPMS定年结果表明,北面的日土俯冲带洋壳俯冲从辉长岩墙开始,时代为(165.5±1.9)Ma(MSWD=1.16),在159Ma时岛弧岩浆作用规模增大,形成小型的花岗岩基;南面的狮泉河-改则俯冲带一开始俯冲((166.4±2.0)Ma,MSWD=3.0)就有较大规模的石英闪长岩体侵入,之后岩浆作用减弱,到159.4Ma时只有一些小体积的花岗斑岩和闪长玢岩侵入。根据岛弧岩浆作用规模,认为班公湖中特提斯洋盆的俯冲一开始是以狮泉河俯冲带为主,之后狮泉河俯冲带的俯冲作用逐渐减弱。到晚侏罗世初(159Ma)北面的日土俯冲带成为洋壳俯冲的主体。鉴于两条岛弧火成岩带在空间配置上都位于由基性-超基性岩构成的蛇绿岩带北侧,地球化学上显示陆缘弧特征,因此,认为班公湖中特提斯洋盆应该是在中侏罗世晚期(约166Ma)沿日土和狮泉河两条俯冲带同时向北俯冲,构造属性上可能不是一个统一的大洋,而是包含了多个局限性洋盆。  相似文献   

13.
《Tectonophysics》1999,301(1-2):145-158
The Mersin ophiolite is located on the southern flank of the E–W-trending central Tauride belt in Turkey. It is one of the Late Cretaceous Neotethyan oceanic lithospheric remnants. The Mersin ophiolite formed in a suprasubduction zone tectonic setting in southern Turkey at the beginning of the Late Cretaceous. The Mersin ophiolite is one of the best examples in Turkey in order to study reconstruction of ophiolite emplacement along the Alpine–Himalayan orogenic belt. 40Ar/39Ar incremental-heating measurements were performed on seven obduction-related subophiolitic metamorphic rocks. Hornblende separates yielded isochron ages ranging from 96.0±0.7 Ma to 91.6±0.3 Ma (all errors ±1σ). Five of the seven hornblende age determinations are indistinguishable at the 95% confidence level and have a weighted mean age of 92.6±0.2 (2σ) Ma. We interpret these ages as the date of cooling below 500°C. Intraoceanic thrusting occurred (∼4 Ma) soon after formation of oceanic crust. The sole was crosscut by microgabbro–diabase dikes less than 3 m.y. later. The final obduction onto the Tauride platform occurred during the Late Cretaceous–Early Paleocene. Our new high-precision ages constrain intraoceanic thrusting for a single ophiolite (Mersin) in the Tauride belt.  相似文献   

14.
江南造山带湖南段中早古生代花岗质岩石对于研究早古生代构造演化以及金成矿作用具有重要的意义。位于该区中段的金鸡金矿床钻孔中新发现有两类花岗质岩石,分别为花岗岩和花岗闪长岩。对两类岩体样品进行了锆石LA-ICP-MS U-Pb测年,获得的年龄分别为(425.2±1.5)Ma和(430.6±1.5)Ma。岩石地球化学数据表明,花岗岩属I型花岗岩,其来源于地壳中变泥质岩石的部分融熔;花岗闪长岩属埃达克岩,其起源于地壳中变砂质岩石的部分融熔。Sr-Nd同位素分析显示,金鸡花岗闪长岩具有较高的(87Sr/86Sr)i(0.722369~0.722488)、较低的(143Nd/144Nd)i(0.511941~0.511990)以及εNd(t)值较低(–8.2~–7.2),并且金鸡花岗闪长岩的二阶段Nd模式年龄值为1.75~1.84 Ga,与江南造山带变质基底的二阶段模式年龄(1.65~2.14 Ga)一致。金鸡金矿床花岗岩和花岗闪长岩的岩石地球化学、年代学以及Sr-Nd同位素特征表明二者是华南早古生代陆内造山事件的产物,岩体成因及地球动力学背景的研究将有助于揭示湘东北地区金矿形成的地球动力学机制。  相似文献   

15.
苏蔷薇  张静  王文博 《现代地质》2016,30(5):994-1003
三叠纪花岗岩在秦岭造山带广泛发育,直接记录了秦岭造山带演化过程中的重要信息。秦岭梁岩体位于秦岭造山带商丹缝合带北侧,岩性主要为石英二长斑岩,斑晶为钾长石,部分斑晶具有白色斜长石环边;基质主要由石英(25%)、斜长石(45%)、钾长石(10%)、黑云母(15%)、角闪石(5%)组成。秦岭梁岩体中的锆石自形程度好,具环带结构,显示岩浆锆石的特征,两个样品的LA ICP MS锆石U Pb同位素年龄分别为(2165±21) Ma和(2194±26) Ma,二者在误差范围内一致,表明该岩体的岩浆结晶年龄为晚三叠纪。秦岭梁岩体的岩浆结晶年龄与勉略洋壳向北俯冲的时间(248~200 Ma)一致,表明岩体的形成与勉略洋壳向北俯冲有密切联系;同时秦岭梁石英二长斑岩的地球化学特征显示其是洋壳俯冲时弧岩浆活动的产物。因此北秦岭地区勉略洋闭合时间和陆陆碰撞拼合时间应不早于216~219 Ma。  相似文献   

16.
桃岭-段莘带是位于江南造山带东段的一条东西向展布的燕山期花岗岩带,由7个岩体构成。通过锆石LA-ICPMS定年方法得到该带6个岩石样品的年龄分别为131.2Ma±1.9Ma,131.3Ma±1.9Ma,132.0Ma±1.8Ma,129.7Ma±1.6Ma,149.1Ma±1.8Ma和152.4Ma±2.6Ma。定年结果表明,该带花岗岩存在早、晚两期岩浆活动。早期花岗岩形成时代为晚侏罗世(152.4Ma^149.1Ma),岩性以黑云母二长花岗岩和二云母二长花岗岩为主;晚期花岗岩形成时代为早白垩世(132.0Ma^129.7Ma),岩性以二云母花岗岩和二云母二长花岗岩为主。江南造山带东段燕山期岩浆活动可划分为早、晚两个期次(155Ma^137Ma和137Ma^121Ma),早期岩浆作用和W,Mo多金属成矿密切相关,而晚期岩浆作用成矿作用不显著。桃岭-段莘带燕山早、晚期花岗岩年代学上分别与江南造山带东段燕山早、晚期岩浆岩相对应,这些花岗岩可能是在伸展构造背景下形成。  相似文献   

17.
隆务峡蛇绿岩位于青海省同仁县,大地构造位置处于西秦岭和南祁连造山带的结合部位。蛇绿岩年代学对于研究造山带构造演化和恢复古洋-陆板块构造格局至关重要。对隆务峡蛇绿岩中的辉长岩进行了LA-ICP-MS锆石U-Pb定年,206Pb/238U加权平均年龄为250.1Ma±2.2Ma(MSWD=0.7),代表了辉长岩的结晶年龄,表明隆务峡蛇绿岩是晚二叠世—早三叠世西秦岭与南祁连之间古洋盆扩张过程中岩浆活动的产物。而呈岩株侵入到蛇绿岩中的花岗闪长岩的年龄(244Ma±1.4Ma)晚于蛇绿岩中辉长岩的年龄,但早于区域上大量存在的印支期花岗岩,可能记录了蛇绿岩的侵位时代。  相似文献   

18.
作为中亚造山带南部的最终缝合界线,天山-索伦缝合带记录了古亚洲洋晚期的扩张消减历史。本文对新疆北天山混杂带中奎屯河蛇绿岩的斜长花岗岩进行了SIMS锆石年代学研究及地球化学研究。斜长花岗岩富Na2O,贫K2O(<1%)和Al2O3(<15%),微量元素含量整体低于标准N-MORB,稀土配分曲线平坦,无明显Eu异常,是典型的洋中脊斜长花岗岩,其结晶年龄代表准噶尔洋盆扩张时代。24组离子探针测年数据显示,斜长花岗岩加权平均年龄为343.1±2.7 Ma。结合区域地质研究,本文认为在晚古生代石炭纪,伴随着哈萨克斯坦山弯构造的逐渐形成,准噶尔洋盆持续扩张并向外俯冲于周缘地体之下,形成了东、西准噶尔洋内弧,以及天山和阿尔泰安第斯型陆缘弧。  相似文献   

19.
造山带内蛇绿混杂岩带结构与组成的精细研究可为古板块构造格局重建和古洋盆演化提供最直接证据。北山造山带内存在多条蛇绿混杂岩带,记录了古亚洲洋古生代以来的俯冲和闭合过程,然而其大地构造演化长期存在争议。红石山—百合山蛇绿混杂岩带位于北山造山带北部,主要由蛇绿(混杂)岩和增生杂岩组成,具典型的"块体裹夹于基质"的混杂岩结构特征,发育紧闭褶皱、无根褶皱、透入性面理和双重逆冲构造。蛇绿混杂岩带中岩块主要由超镁铁质-镁铁质岩(变质橄榄岩、辉石橄榄岩、异剥辉石岩、蛇纹岩)、辉长岩、玄武岩、斜长花岗岩、硅质岩等洋壳残块以及奥陶纪火山岩、灰岩等外来岩块组成,基质则主要为蛇纹岩、砂板岩及少量的绿帘绿泥片岩;在蛇绿混杂岩带北侧发育有台地相灰岩与深水浊积岩组成的沉积混杂块体,具滑塌堆积特征。蛇绿混杂岩带内发育三期构造变形,前两期为中深构造层次下形成的透入性变形,第三期为浅表层次的脆性变形,未形成区域性面理。空间上,由增生杂岩和蛇绿(混杂)岩组成的百合山蛇绿混杂岩带共同仰冲于绿条山组浊积岩之上,具有与红石山地区蛇绿混杂岩带相似的岩石组成、构造变形和时空结构特征。百合山蛇绿混杂岩带南侧发育同期的明水岩浆弧,由晚石炭世石英闪长岩-花岗闪长岩-二长花岗岩以及白山组岛弧火山岩组成,其与百合山蛇绿混杂岩带共同构成了北山造山带北部石炭—二叠纪的沟-弧体系,指示了红石山—百合山洋盆向南俯冲的极性。  相似文献   

20.
河南沙坡岭矿床位于华北克拉通南缘的熊耳地体,产在燕山期花岗岩与围岩太华超群的外接触带,为东秦岭最近发现的细脉浸染型钼矿床。矿体受断裂或围岩裂隙控制,呈细脉、网脉状产出,矿石类型包括细脉状、浸染状和块状。为确定沙坡岭钼矿床成矿时代,本文利用辉钼矿Re-Os同位素定年,研究表明:采集的6件辉钼矿样品Re-Os单样年龄为158.3±1.5~160.7±1.2 Ma,其加权平均值为160±1 Ma(2σ误差,MSWD=2.1),指示沙坡岭钼矿化发生于晚侏罗世,且早于花山岩基约30 Ma,指示与花岗岩基无关。另外,一件产于花山复式岩体的团块状辉钼矿样品Re-Os单样年龄为130.5±1.0 Ma,与赋矿的花山岩体成岩时代一致,同样与前人报道的辉钼矿年龄(125.4~129.4 Ma)基本一致,且不存在明显的单颗粒辉钼矿187Os迁移,表明部分钼矿化形成于早白垩世。因此,辉钼矿Re-Os同位素定年显示沙坡岭矿床存在晚侏罗世和早白垩世两期钼矿化。结合矿床地质特征、成矿构造演化,认为沙坡岭钼矿与熊耳地体的花山岩基、花岗斑岩以及相关热液矿床,均属于秦岭造山带陆陆碰撞过程中挤压向伸展转变体制的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号