首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high resolution airborne geophysical survey across the Isle of Wight and Lymington area conducted in 2008 provided the first modern radiometric survey across the geological formations that characterise much of southern England. The basic radiometric data are presented and it is evident that bedrock geology exerts a controlling influence on the broad response characteristics of the naturally occurring radioelements. A GIS-based geological classification of the data provides a quantitative assessment and reveals that a relatively high percentage of the variability of the data is explained by the Cretaceous bedrock geology but this is much reduced in the Palaeogene. The three traditional Chalk units (Lower, Middle and Upper Chalk depicted on the currently available Geological Map) provide the lowest and most distinct behaviour within the Cretaceous sequence. Mineral content within the Chalk appears to increase with increasing age. A new method of representing the baseline radiometric information from the survey in terms of the mean values of the geological classification is presented. The variation of radioelement geochemistry within individual formations is examined in two case studies from the Cretaceous Lower Greensand Group and the Palaeogene Hamstead Member (Bouldnor Formation). The Cretaceous sequences provide the higher levels of discrimination of localised variations in radioelement distributions. A more detailed case study examines the potential influences from the degree of water saturation in the soil and superficial deposits.  相似文献   

2.
The Mendip Hills, located on the north-western margin of the Wessex Basin, clearly show the onlap of Upper Triassic to Middle Jurassic sediments onto folded Palaeozoic strata. Recent field mapping on the crest of the Beacon Hill pericline at Tadhill, near Frome, augmented by a suite of shallow boreholes, proved up to 6.2 m of glauconitic grey and green silty sand. These glauconitic sands rest unconformably on Silurian volcanic rocks and Devonian sandstone. Lithological and ipalaeontological analyses of these glauconitic sands indicate that they are part of the Lower Cretaceous Upper Greensand Formation. This provides the first evidence for the Albian transgression across the Mendip Hills. The implications for the Cretaceous overstep on the margins of the Wessex Basin, and the analogies with the Upper Greensand succession in Devon are discussed.  相似文献   

3.
Ventnor No. 2 Borehole, located near Ventnor, Isle of Wight, penetrated the basal part of the Chalk Group and the Selborne Group before terminating in the upper part of the Lower Greensand Group (Sandrock Formation). The borehole was examined for Foraminifera, and although they were not seen in the Sandrock Formation and Monks Bay Sandstone Formation, the remainder of the borehole yielded moderately low diversity assemblages dominated by agglutinated species. Foraminiferal zones 3-6 (H dentatus to M. fallax/M. rostratum macrofaunal zones) were identified in the Gault Formation and zones 6 (lower) to 6a (M. fallax/M. rostratum to A. briacensis macrofaunal zones) were identified in the Upper Greensand Formation. Assemblages from the overlying West Melbury Marly Chalk Formation were used to identify foraminiferal zones BGS1-BGS3 (M. mantelli and M. dixoni macrofaunal zones).  相似文献   

4.
A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.  相似文献   

5.
An almost continuous layer of Upper Cretaceous deposits up to 1000 m thick was probably deposited across much of SW England. Phases of uplift in the late Cretaceous and early Cenozoic, each of which was followed by extensive erosion and dissolution, resulted in the removal of all except a few outliers of Chalk Group that crop out in east Devon and south Somerset. Those on the Devon coast between Sidmouth and Lyme Regis are some of the best exposed Cenomanian to early Coniacian successions in NW Europe and include the most westerly chalks preserved onshore in England. They form an integral part of the Dorset and East Devon World Heritage Site. In contrast to the Chalk of much of southern England, the older formations in Devon, the Beer Head Limestone, Holywell Nodular Chalk and New Pit Chalk, show marked lateral lithological variations that result from a combination of penecontemporaneous movements on local faults and relatively shallow-water environments close to the western edge of the Chalk depositional basin. The younger parts of the succession, the Lewes Nodular Chalk and Seaford Chalk Formations, comprise chalks that do not appear to have been greatly affected by penecontemporaneous fault movements. These formations include lithological marker beds that have been correlated with marker beds in the Sussex type area. The principal sedimentary breaks in the Devon succession cannot be correlated with confidence with eustatic changes in sea level.  相似文献   

6.
The Upper Greensand Formation, in part mainly underlain by the Gault Formation and overlain by the Chalk Group, has extensive cliff outcrops in the Dorset and East Devon Coast World Heritage Site (WHS). The argillaceous Gault, up to 20 m thick in the Isle of Purbeck, is poorly exposed due to its involvement in extensive landslides, but the exposures of Upper Greensand are the most complete in England. The Gault (Middle Albian) rests unconformably on progressively older Jurassic and Triassic strata when traced westwards and becomes more arenaceous in the same direction. On the east Devon coast, the Upper Greensand comprises up to 55 m of sandstones and calcarenites that were deposited in fully marine, shallow-water environments. The formation is divided into three members there (Foxmould, Whitecliff Chert and Bindon Sandstone) each bounded by a prominent erosion surface. The full thickness of the Upper Greensand, up to 60 m, was formerly exposed in cliffs in the Isle of Purbeck in and adjacent to the steeply dipping limb of the Purbeck Monocline. The lower (Foxmould) part of the succession is similar to that in east Devon, but the upper part (White Nothe Member) is lithologically different and probably the correlative of only the Bindon Sandstone. Much of the fauna of the Gault and Upper Greensand of the WHS is not age-diagnostic with the result that the ages of parts of the succession are still poorly known. However, diverse ammonite assemblages recorded from a few thin beds in the lower and highest parts of the succession show that all except one of the Albian ammonite zones is present.  相似文献   

7.
A re-examination of fossil material from the Late Cretaceous Cambridge Greensand Member (CGM) of the West Melbury Marly Chalk Formation revealed a number of new specimens of edentulous pterosaur jaw fragments previously identified as shark fin spines and fish jaws and accessioned under the epithet ‘cestraciontid finray’ and ‘jaws of fish’. These are now recognised as pterosaurian jaw tips and referred to Ornithostoma sedgwicki Seeley, 1891 and Azhdarchoidea indet. This material increases the diversity of edentulous pterosaurs from the CGM.The edentulous pterosaur Ornithostoma sedgwicki Seeley, 1891 from the Cretaceous Cambridge Greensand of eastern England is reviewed. The holotype specimen is confirmed as a fragment of a premaxilla/maxilla of a non-tapejarid azhdarchoid on account of the conspicuous curvature of the dorsal and occlusal margins posteriorly and the presence of small neural foramina on the lateral margins. Neural foramina are not seen on jaws of members of the Pteranodontia, a group to which O. sedgwicki was included previously. The referral of O. sedgwicki to Azhdarchoidea eliminates the single known Lower Cretaceous occurrence of Pteranodontidae, restricting the temporal range of this taxon to the Upper Cretaceous. Postcranial material referred to O. sedgwicki from the type horizon is regarded as indeterminate Pterosauria.  相似文献   

8.
Re-examination of the classic exposures of the Eggardon Grit (topmost Upper Greensand Formation) at Eggardon Hill, Dorset shows that the upper part of this unit has a more complex stratigraphy than has been previously recognised. The Eggardon Grit Member, as described herein, is capped by a hardground and associated conglomerate, and is entirely of Late Albian age. The hardground is probably the lateral equivalent of the Small Cove Hardground, which marks the top of the Upper Greensand succession in southeast Devon. The conglomerate is overlain by a thin sandy limestone containing Early Cenomanian ammonites. This limestone is almost certainly the horizon of the Early Cenomanian ammonite fauna that has previously been attributed to the top of the Eggardon Grit. The limestone is regarded as a thin lateral equivalent of the Beer Head Limestone Formation (formerly Cenomanian Limestone) exposed on the southeast Devon coast. The fauna of the limestone at Eggardon suggests that it is probably the age equivalent to the two lowest subdivisions of the Beer Head Limestone in southeast Devon, with a remanié fauna of the Pounds Pool Sandy Limestone Member combined with indigenous macrofossils of the Hooken Nodular Limestone Member. The next highest subdivision of the Beer Head Limestone in southeast Devon (Little Beach Bioclastic Limestone Member), equates with the ammonite-rich phosphatic conglomerate of the ‘Chalk Basement Bed’, which caps the Beer Head Limestone at Eggardon, and which was previously regarded as the base of the Chalk Group on Eggardon Hill.Petrographic analysis of the Eggardon Grit shows that lithologically it should more correctly be described as a sandy limestone rather than sandstone. The original stratigraphical definition of the unit should probably be modified to exclude the softer, nodular calcareous sandstones that have traditionally been included in the lower part of the member.Without the apparently clear evidence of unbroken sedimentation across the Albian-Cenomanian boundary, suggested by the previous interpretation of the Eggardon succession, it is harder to argue for this being a prevalent feature of Upper Greensand stratigraphy in southwest England. Correlation of the Eggardon succession with successions in Dorset and southeast Devon reveals a widespread regional break in sedimentation at the Albian-Cenomanian boundary. The sand-rich facies above this unconformity represent the true base of the Chalk Group, rather than the ‘Chalk Basement Bed’ of previous interpretations.Selected elements of regionally important Upper Greensand ammonite faunas previously reported from Shapwick Quarry, near Lyme Regis, and Babcombe Copse, near Newton Abbot, are newly figured herein.  相似文献   

9.
The distribution, relationships, and stratigraphical significance of the microfaunas (mainly foraminifera) in the Upper Cretaceous deposits of Western Australia are discussed, and palaeogeography and palaeoecology considered.Formations deposited during the Cenomanian-Turonian are the Gearle Siltstone and Alinga Greensand and perhaps the Molecap Greensand. Among the foraminifera recorded are the stratigraphically restricted planktonic formsGlobotruncana (Praeglobotruncana)stephani subspp. andG. helvetica.The Gingin Chalk and the lower part of the Toolonga Calcilutite were deposited during the Santonian. These formations contain the crinoid generaMarsupites andUintacrinus, several species ofGlobotruncana andNeoflabellina, andBolivinoides strigillata. Santonian beds are known in sub-surface sections as far north as the area of the Warroora Anticline.The Toolonga Calcilutite extends up into the lower Campanian, andGlobotruncana arca appears in the fauna. The occurrence of Campanian beds in the Perth Basin cannot be proved; most of the Poison Hill Greensand may be of this age. On foraminiferal evidence, deposition of the Korojon Calcarenite began during the Campanian. Important species identified areGlobotruncana arca,Cibicides voltziana andBolivina incrassata.The upper beds of the Korojon Calcarenite and the Miria Marl are of Maestrichtian age. The Miria Marl contains the speciesGlobotruncana stuarti,G. citae andG. contusa. The upper beds of the Poison Hill Greensand may range into the Maestrichtian.Published by permission of the Director, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia.  相似文献   

10.
The Austin Chalk and Eagle Ford Shale are Upper Cretaceous deposits that extend across Texas from the northeast to southwest. These formations contain organic carbon enriched mudstones and chalks that were deposited during transgressions of the Cretaceous epeiric sea in North America. Recent workers in petroleum geochemistry have demonstrated that these organic enriched rocks possessed attributes common to oil source rocks. The present study of these Austin Chalk and Eagle Ford Shale rocks is from the perspective of organic petrology, and it augments the earlier geochemical work that documented source variability within units of these formations. As with the earlier work, the results of this study show that both formations contain intervals that are, when mature, capable of generating commercial quantities of liquid hydrocarbons. However, this work further revealed that Eagle Ford rocks not only exhibit greater or ganic carbon contents, but also have greater quantities of oil-prone kerogen (fluorescent amorphinite and exinite) when compared with rocks from the Austin Chalk. These source rock differences relate to levels or degrees of organic preservation. Dysaerobic to oxic depositional settings seem to be more characteristic of the Austin Chalk than of the Eagle Ford Shale. Such oxic environments do not consistently favor the preservation of organic matter. Usually, well-preserved kerogen forms under more anoxic conditions, such as those that occurred during deposition of some Eagle Ford units. These anoxic conditions suggest that the geographically more extensive Eagle Ford Shale is a more important source for oil than is the Austin Chalk.  相似文献   

11.
Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for ‘safe separation’ between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale–aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.  相似文献   

12.
The geophysical characterization of a previously unstudied endorheic karstic system is presented. The studied area, known as the Esta?a Lakes, is located in the Pyrenean Marginal Sierras, northern Spain. The Esta?a Lakes are a set of natural water ponds on a bedrock of Triassic evaporites, lutites and carbonates. This wetland is included in the Natura 2000 European network of nature protection areas as a “Site of Community Importance”. Two geophysical techniques were used, magnetic resonance sounding (MRS) and electrical resistivity tomography (ERT), to map the subsurface geology and characterize the aquifer layers and the hydraulic links between the aquifers and lakes. The geophysical data were integrated with the surface geology and data from six boreholes. Ten electrical profiles were performed to identify the thickness of the units and lithological changes, whereas the MRS was used to determine the top of the saturated zone. As result, the aquifer in the Esta?a Lakes system and surrounding area has been identified as Middle Triassic carbonates, which does not correspond with the regional aquifer in the area (Upper Cretaceous and Eocene). This work shows the power of geophysical methods in poorly understood and tectonically complex areas in addition to the standard aquifer tests to evaluate hydraulic properties.  相似文献   

13.
Re-examination of the classic exposures of the Eggardon Grit (topmost Upper Greensand Formation) at Eggardon Hill, Dorset shows that the upper part of this unit has a more complex stratigraphy than has been previously recognised. The Eggardon Grit Member, as described herein, is capped by a hardground and associated conglomerate, and is entirely of Late Albian age. The hardground is probably the lateral equivalent of the Small Cove Hardground, which marks the top of the Upper Greensand succession in southeast Devon. The conglomerate is overlain by a thin sandy limestone containing Early Cenomanian ammonites. This limestone is almost certainly the horizon of the Early Cenomanian ammonite fauna that has previously been attributed to the top of the Eggardon Grit. The limestone is regarded as a thin lateral equivalent of the Beer Head Limestone Formation (formerly Cenomanian Limestone) exposed on the southeast Devon coast. The fauna of the limestone at Eggardon suggests that it is probably the age equivalent to the two lowest subdivisions of the Beer Head Limestone in southeast Devon, with a remanié fauna of the Pounds Pool Sandy Limestone Member combined with indigenous macrofossils of the Hooken Nodular Limestone Member. The next highest subdivision of the Beer Head Limestone in southeast Devon (Little Beach Bioclastic Limestone Member), equates with the ammonite-rich phosphatic conglomerate of the ‘Chalk Basement Bed’, which caps the Beer Head Limestone at Eggardon, and which was previously regarded as the base of the Chalk Group on Eggardon Hill.Petrographic analysis of the Eggardon Grit shows that lithologically it should more correctly be described as a sandy limestone rather than sandstone. The original stratigraphical definition of the unit should probably be modified to exclude the softer, nodular calcareous sandstones that have traditionally been included in the lower part of the member.Without the apparently clear evidence of unbroken sedimentation across the Albian–Cenomanian boundary, suggested by the previous interpretation of the Eggardon succession, it is harder to argue for this being a prevalent feature of Upper Greensand stratigraphy in southwest England. Correlation of the Eggardon succession with successions in Dorset and southeast Devon reveals a widespread regional break in sedimentation at the Albian–Cenomanian boundary. The sand-rich facies above this unconformity represent the true base of the Chalk Group, rather than the ‘Chalk Basement Bed’ of previous interpretations.Selected elements of regionally important Upper Greensand ammonite faunas previously reported from Shapwick Quarry, near Lyme Regis, and Babcombe Copse, near Newton Abbot, are newly figured herein.  相似文献   

14.
The integration of geophysical data with direct hydrogeological measurements can provide a minimally invasive approach to characterize the subsurface at a variety of resolutions and over many spatial scales. The field of hydrogeophysics has attracted much attention during the last two decades. In this domain, the geophysical data inverted to geophysical models are interpreted in terms of the hydrogeology to serve as a basis for the definition of hydraulic models in the areas of interest. The hydraulic conductivity (K) value measured in a reference borehole has been combined with the electrical conductivity obtained from nearby geo-electromagnetic sounding data in the Cenomanian (Upper Cretaceous) aquifer, central Sinai, Egypt. The resulting relation was interpreted with Dar Zarrouk parameters to infer the transmissivity variations at other vertical electrical sounding locations, where K values are unknown. Coincident transient electromagnetic data have been adopted to increase accuracy while interpreting the aquifer geoelectrical properties. The results indicate that the transmissivity values in the aquifer of interest vary from 2,446 to 9,694 m2/day, and K varies from 12.9 to 57.0 m/day throughout the studied area.  相似文献   

15.
Field observation and numerical simulations were carried out to evaluate the hydraulic relationship between the shallow and deep aquifer of a High Plains Aquifer system, in which shallow and deep aquifers are separated by an aquitard. Pumping from the lower aquifer resulted in a small drawdown in the upper aquifer and a larger drawdown in the aquitard; pumping from the shallow aquifer caused a small drawdown in the aquitard and the deep aquifer. Analysis of pumping test data gives the values of the hydraulic conductivity of the aquitard and the deep aquifer. Long-term observation of groundwater levels in the shallow and deep aquifers showed that a strong downward hydraulic gradient was maintained during an irrigation season. Numerical simulations were used to calculate the induced leakage of water from the shallow to the deep aquifer. Water budget analyses suggested that after pumping continues for a couple of days, the leakage from the overlying layers begins to supply the majority of the withdrawal from the deep aquifer. However, the induced leakage from the upper shallow aquifer can travel only a few meters into the aquitard, and it can not reach the lower aquifer during a 90 day pumping period. The major portion of the induced leakage occurred during the pumping period, but a small leakage can continue as a residual effect after the pumping period. The vertical hydraulic conductivity of the aquitard plays a major role in partitioning the ratio of the induced leakage for the pumping and after-pumping periods.  相似文献   

16.
Geophysical and hydrochemical borehole-logging techniques were integrated to characterize hydraulic and hydrogeochemical properties of the Chalk aquifer at boreholes in Berkshire, UK. The down-hole measurements were made to locate fissures in the chalk, their spatial extent between boreholes, and to determine the groundwater chemical quality of the water-bearing layers. The geophysical borehole logging methods used were caliper, focused resistivity, induction resistivity, gamma ray, fluid temperature, fluid electrical conductivity, impeller and heat-pulse flowmeter, together with borehole wall optical-imaging. A multiparameter data transmitter was used to measure groundwater temperature, electrical conductivity, dissolved oxygen, pH, and redox potential of the borehole fluid down-hole. High permeability developed at the Chalk Rock by groundwater circulation provides the major flow horizon at the Banterwick Barn study site and represents a conduit system that serves as an effective local hydraulic connection between the boreholes. The Chalk Rock includes several lithified solution-ridden layers, hardgrounds, which imply a gap in sedimentation possibly representing an unconformity. Lower groundwater temperature, high dissolved-oxygen content, and flowmeter evidence of preferential groundwater flow in the Chalk Rock indicated rapid groundwater circulation along this horizon. By repeating the logging at different times of the year under changing hydraulic conditions, other water-inflow horizons within the Chalk aquifer were recognized. Electronic Publication  相似文献   

17.
In groundwater hydrology, aquitard heterogeneity is often less considered compared to aquifers, despite its significant impact on groundwater hydraulics and groundwater resources evaluation. A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity (K) and specific storage (Ss). The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or Ss. Two scenarios of analytical investigations are explored: one is the presence of aquitard interlayers with distinct K or Ss values, a common field-scale occurrence; another is an exponentially depth-decaying aquitard Ss, a regional-scale phenomenon supported by statistical analysis. Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion; a high-Ss interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion. Locations of low-K or high-Ss interlayers also significantly impact well hydraulics and groundwater budget. In the context of an exponentially depth-decaying aquitard Ss, a larger decay exponent can enhance aquifer drawdown. When using current models with a vertically homogeneous aquitard, half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard Ss should be used to calculate aquitard depletion and unconfined aquifer leakage.  相似文献   

18.
A recent airborne geophysical survey has provided high resolution estimates of the electrical resistivity of the near-surface and deeper (bedrock) formations found across Anglesey and a portion of the coastal area of North Wales. This single small survey provides new geophysical information on both the complex configuration of the Neoproterozoic and Cambrian bedrock units and the shallow near-surface geology and glacial features.  相似文献   

19.
Late Cretaceous Chalk sedimentation history across the British Isles included (i) fault controlled uplift and subsidence in Northern Ireland and the Inner Hebrides and (ii) uplift along the lines of en echelon folds in Southern Britain and northern France. Synsedimentary slump folds and downslope displacement structures are compared with penecontemporaneous interbed slides and later tectonic folds and faults. Compressional strike-slip tectonic processes at Flamborough Head, Yorkshire, illustrate intra-Chalk slump beds in a half-graben setting. Progressive ‘growth’ of structures characterises early downslope slump folding, interbed sliding and some listric faulting. Sheet-flints replacing slide shear planes and early fractures provide evidence for early movements. Availability of open-slopes or the depth of burial under which the range of structures developed is reflected in the degree of disruption and fragmentation of chalk and flint. Fragmentation provides clues to the timing of events and origin of the Late Campanian Altachuile Breccia (Northern Ireland) and the Coniacian Hope Gap slides (Sussex). Fragmentation and formation of sheet flints together help distinguish intra-Chalk tectonics from Quaternary glacitectonic structures.The role of marl seams, high porosity chalk beds and hardgrounds on bed-sliding, décollement zones and disruption of chalk blocks from bedrock in glacitectonics is discussed. Chalk formations with marl seams develop a special style of fracturing related to early interbed sliding and pore-fluid escape structures. Marl-seams are shown to be primary sedimentary features and not the products of post depositional pressure-solution. More than any other formation the Late Santonian – Early Campanian Newhaven Chalk contains extensive sheet-flints and shows great lateral variation in thickness and lithology across the fold belts of southern England and northern France.  相似文献   

20.
Field and laboratory methods have been used to determine the hydraulic properties in a multiple-layer aquifer–aquitard system that is hydrologically connected to a river. First, hypothetical pumping tests in aquifer–aquitard systems were performed to evaluate the feasibility of MODFLOW-PEST in determining these parameters. Sensitivity analyses showed that: the horizontal hydraulic conductivity in the aquifer has the highest composite sensitivity; the vertical hydraulic conductivity has higher composite sensitivity than the horizontal hydraulic conductivity in the aquitard; and a partial penetration pumping well in an aquifer layer can improve the quality of the estimated parameters. This inverse approach was then used to analyze a pumping-recovery test conducted near the Platte River in southeastern Nebraska, USA. The hydraulic conductivities and specific yield were calculated for the aquitard and aquifer. The direct-push technique was used to generate sediment columns; permeameter tests on these columns produced the vertical hydraulic conductivities that are compatible with those obtained from the pumping-recovery test. Thus, the combination of the direct-push technique with permeameter tests provides a new method for estimation of vertical hydraulic conductivity. The hydraulic conductivity, determined from grain-size analysis, is smaller than the horizontal one but larger than the vertical one determined by the pumping-recovery test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号