首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New impacts in the martian mid-latitudes have exposed near-surface ice. This ice is observed to slowly fade over timescales of months. In the present martian climate, exposed surface ice is unstable during summer months in the mid-latitudes and will sublimate. We model the sublimation of ice at five new impact sites and examine the implications of its persistence. Even with generally conservative assumptions, for most reasonable choices of parameters it is likely that over a millimeter of sublimation occurred in the period during which the ice was observed to fade. The persistence of visible ice through such sublimation suggests that the ice is relatively pure rather than pore-filling. Such ice could be analogous to the nearly pure ice observed by the Phoenix Lander in the “Dodo-Goldilocks” trench and suggests that the high ice contents reported by the Mars Odyssey Gamma Ray Spectrometer at high latitudes extend to the mid-latitudes. Our observations are consistent with a model of the martian ice table in which a layer with high volumetric ice content overlies pore-filling ice, although other structures are possible.  相似文献   

2.
Laboratory experiments on the impact disruption of ice-silicate mixtures were conducted to clarify the accretion process of small icy bodies. Since the icy bodies are composed of ice and silicates with various porosities, we investigated the effect of porosity on the impact disruption of mixtures. We tested the mixture target with the mass ratio of ice to silicate, 0.5 and with 5 different porosities (0, 12.5, 25, 32, 37%) at the impact velocities of 150 to 670 m/s. The silicate mass ratio was changed from 0 to 0.5 in steps of 0.1 at a porosity of 12.5% and a constant impact velocity of about 300 m/s. The impact strength of the mixture was found to decrease with increasing porosity and the silicate mass ratio between 0.1 and 0.5 could enhance the strength of the icy target. The observed dependence of the impact strength on the porosity is opposite to that observed for pure ice. This difference could play an important role in ice-silicate fractionation during the accretion process. Because, ice rich bodies are easily broken as the porosity decreases in their evolution, the collisional growth could be prohibited. On the other hand, among the silicate rich bodies the collisional growth could be enhanced.  相似文献   

3.
The synthesis of organic molecules via chemical reactions within impact vapor plumes has been proposed as a mechanism to supply organics on a planet. However, the kinetics of chemical reactions within a rapidly expanding vapor plume or quenching process of the reactions has not been studied extensively. In this study, we constructed a new numerical model that calculates kinetics of the entire chemical reactions within an impact vapor plume. Numerical results revealed that the semi-analytical models proposed so far, in which the final amount of a chemical species was given by the equilibrium abundance at the quenching temperature of the fastest reaction path involving the species, underestimates the yield of organic molecules, such as HCN, by up to a factor of 10. This is because the previously used assumption that a species can achieve equilibrium with the rest of the reaction system via the fastest reaction path involving the species is not necessarily valid. Our analysis of the high-temperature H/C/N/O reaction system suggests that the quenching of slow reactions divides the reaction network into smaller reaction sub-systems isolated from the rest of the reaction system. Then, the fastest reaction path cannot equilibrate an isolated reaction sub-system with the rest of the reaction system. Simulation of this actual disequilibrium mechanism requires a simultaneous numerical calculation of the entire reaction network, which is equivalent to conducting a full kinetic model calculation, such as our model. Our numerical code makes it possible to discuss quantitatively the impact chemistry for various situations, such as the Galilean satellites. In this study, our numerical model is applied to the delivery of organic molecules via cometary impact on the Galilean satellites. Our numerical results indicate that small-particle impacts would produce HCN efficiently. Resulting HCN may freeze out immediately and be deposited on satellite surfaces, where it may be eventually converted into complex organics via irradiation of charged particle. On the other hand, large-size impacts may form transient CH4-N2 atmospheres, in which complex organics (tholin) may be formed via energy deposition of UV and/or charged particle. Resulting complex organics may subsequently precipitate on the satellite surfaces without clear correlation with the locations of impact craters. Such distribution of complex organics created by chemical reactions within vapor plumes due to cometary impacts may explain an absorption (4.57 μm) on Galilean satellites nonassociated with observable (moderate- and large-size) impact craters.  相似文献   

4.
G Strazzulla  G Leto  M.A Satorre 《Icarus》2003,164(1):163-169
Solid surfaces of atmosphereless objects in the Solar System are continuously irradiated by energetic ions (from solar wind and flares, planetary magnetospheres, and cosmic rays). Reactive ions (e.g., H, C, N, O, S) induce all of the effects of any other ion including the synthesis of molecular species originally not present in the target. In addition, these ions have a chance, by implantation in the target, of forming new species containing the projectile. An ongoing research program performed at our laboratory aims at investigating the implantation of reactive ions in many relevant ices (and mixtures) by using IR spectroscopy. Here we present new results obtained by implanting carbon and nitrogen ions in water ice at 16 and 77 K. Carbon implantation produces carbon dioxide and the production yield has been measured. Nitrogen implantation does not produce any N-bearing species detectable by IR spectroscopy. Both ions are also capable of synthesizing hydrogen peroxide at the two investigated temperatures. We show that, although a relevant quantity of CO2 can be formed by C implantation in the icy jovian moons, this is not the dominant formation mechanism of carbon dioxide.  相似文献   

5.
The spectra of water ice on the surfaces of icy satellites and Kuiper Belt Objects (KBOs) indicate that the surface ice on these bodies is in a crystalline state. This conflicts with theoretical models, which predict that radiation (galactic cosmic rays and solar ultraviolet) should damage the crystalline structure of ice on geologically short timescales. Temperatures are too low in the outer Solar System for the ice to anneal, and reflectance spectra of these bodies should match those of amorphous solid water (ASW). We assess whether the kinetic energy deposited as heat by micrometeorite impacts on outer Solar System bodies is sufficient to anneal their surface ice down to a near-infrared optical depth . We calculate the kinetic energy flux from interplanetary micrometeorite impacts, including gravitational focusing. We also calculate the thermal diffusion of impact heat in various surfaces and the rate of annealing of ice. We conclude that the rate of annealing from micrometeorite impacts is sufficient to explain the crystallinity of ice on nearly all the surfaces of the saturnian, uranian and neptunian satellites. We discuss how the model can be used in conjunction with spectra of KBOs to probe dust fluxes in the Kuiper Belt.  相似文献   

6.
We study radiation-induced amorphization of crystalline ice, analyzing the results of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the ‘thermal spike’ model. We then discuss the common use of the 1.65 μm infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared reflectance absorption spectra measured between 1.4 and 2.2 μm for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 1015 protons cm−2, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.  相似文献   

7.
Iapetus, one of the saturnian moons, has an extreme albedo contrast between the leading and trailing hemispheres. The origin of this albedo dichotomy has led to several hypotheses, however it remains controversial. To clarify the origin of the dichotomy, the key approach is to investigate the detailed distribution of the dark material. Recent studies of impact craters and surface temperature from Cassini spacecraft data implied that sublimation of H2O ice can occur on Iapetus’ surface. This ice sublimation can change the albedo distribution on the moon with time.In this study, we evaluate the effect of ice sublimation and simulate the temporal change of surface albedo. We assume the dark material and the bright ice on the surface to be uniformly mixed with a certain volume fraction, and the initial albedo distribution to incorporate the dark material deposits on the surface. That is, the albedo at the apex is lowest and concentrically increases in a sinusoidal pattern. This situation simulates that dark materials existed around the Iapetus’ orbit billions of years ago, and the synchronously rotating Iapetus swept the material and then deposited it on its surface. The evolution of the surface albedo during 4.0 Gyr is simulated by estimating the surface temperature from the insolation energy on Iapetus including the effect of Saturn’s eccentricity and Iapetus’ obliquity precession, and evaluating the sublimation rate of H2O ice from the Iapetus’ surface.As a result, we found that the distribution of the surface albedo changed dramatically after 4.0 Gyr of evolution. The sublimation has three important effects on the resultant surface albedo. First, the albedo in the leading hemisphere has significantly decreased to approach the minimum value. Second, the albedo distribution has been elongated along the equator. Third, the edge of the low albedo region has become clear. Considering the effect of ice sublimation, the current albedo distribution can be reconstructed from the sinusoidal albedo distribution, suggesting the apex-antapex cratering asymmetry as a candidate for the origin of the albedo dichotomy. From the model analysis, we obtained an important aspect that the depth of the turn-over layer where the darkening process proceeded for 4 Gyr should be an order of 10 cm, which is consistent with evaluation from the Cassini radar observations.  相似文献   

8.
We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn’s moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion.We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s−1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan’s surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results.Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/Mi ∼ 1-2 were found in the simulations.  相似文献   

9.
We investigate impact basin relaxation on Iapetus by combining a 3D thermal evolution model (Robuchon, G., Choblet, G., Tobie, G., Cadek, O., Sotin, C., Grasset, O. [2010]. Icarus 207, 959-971) with a spherical axisymmetric viscoelastic relaxation code (Zhong, S., Paulson, A., Wahr, J. [2003]. Geophys. J. Int. 155, 679-695). Due to the progressive cooling of Iapetus, younger basins relax less than older basins. For an ice reference viscosity of 1014 Pa s, an 800 km diameter basin relaxes by 30% if it formed in the first 50 Myr but by 10% if it formed at 1.2 Gyr. Bigger basins relax more rapidly than smaller ones, because the inferred thickness of the ice shell exceeds the diameter of all but the largest basins considered. Stereo topography shows that all basins 600 km in diameter or smaller are relaxed by 25% or less. Our model can match the relaxation of all the basins considered, within error, by assuming a single basin formation age (4.36 Ga for our nominal viscosity). This result is consistent with crater counts, which show no detectable age variation between the basins examined.  相似文献   

10.
Yuichi Fujii 《Icarus》2009,201(2):795-801
We performed low-velocity impact experiments of gypsum spheres with porosity ranging from 0 to 61% and diameter ranging from 25 to 83 mm. The impact velocity was from 0.2 to 22 m/s. The target was an iron plate. The outcome of gypsum spheres with porosity 31-61% was different from those of non-porous ice [Higa M., Arakawa, M., Maeno, N., 1996. Planet. Space Sci. 44, 917-925; Higa M., Arakawa, M., Maeno, N., 1998. Icarus 133, 310-320] and non-porous gypsum. In between the intact and fragmentation modes, the outcome of the non-porous ice and gypsum was crack growth at the impact point. However, the outcome of the porous gypsum was compaction. We found that the restitution coefficients of the porous gypsum spheres were all in a similar range, in spite of the difference of the porosity and size at impact velocities up to about 10 m/s where they begin to be fragmented in pieces. Moreover, there is not a large difference between the restitution coefficient of porous and non-porous gypsum. These results collectively indicate that restitution coefficient of gypsum spheres of cm-size is not strongly dependent upon the porosity and compaction process.  相似文献   

11.
Saturn’s satellite Dione is becoming an increasingly important object in the outer Solar System, as evidence for its current activity accumulates. Infrared observations of the surface can provide clues to the history of the body and currently active processes. Using data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS), we perform three sets of analyses that are sensitive to the ice state, temperature, thermal history, grain size and composition of surface ice. These are calculation of a “crystallinity factor”, spectral ratios and water ice band depths. In our analysis, we focus on the dichotomy between the wispy and dark terrain on Dione’s trailing hemisphere, to better understand the source of the different materials and their current properties. Our results suggest two different scenarios: (1) the ice from the wispy region has a higher crystallinity and water ice content than the dark region or (2) the wispy region contains larger grains. Both of these models imply recent geologic activity on Dione.  相似文献   

12.
Studies of impacts (impactor velocity about 5 km s−1) on icy targets were performed. The prime goal was to study the response of solid CO2 targets to impacts and to find the differences between the results of impacts on CO2 targets with those on H2O ice targets. The crater dimensions in CO2 ice were found to scale with impact energy, with little dependence on projectile density (which ranged from nylon to copper, i.e., 1150-8930 kg m−3). At equal temperatures, craters in CO2 ice were the same diameter as those in water ice, but were shallower and smaller in volume. In addition, the shape of the radial profiles of the craters was found to depend strongly on the type of ice and to change with impact energy. The impact speed of the data is comparable to that for impacts on many types of icy bodies in the outer Solar System (e.g., the satellites of the giant planets, the cometary nuclei and the Kuiper Belt objects), but the size and thus energy of the impactors is lower. Scaling with impact energy is demonstrated for the impacts on CO2 ice. The issue of impact disruption (rather than cratering) is discussed by analogy with that on water ice. Expressions for the critical energy density for the onset of disruption rather than cratering are established for water ice as a function of porosity and silicate content. Although the critical energy density for disruption of CO2 ice is not established, it is argued that the critical energy to disrupt a CO2 ice body will be greater than that for a (non-porous) water ice body of the similar mass.  相似文献   

13.
To investigate the evolution of any processes on planetary surfaces in the outer Solar System, the rheological properties of non-water ices were studied by means of a sound velocity measurement system and a uniaxial deformation apparatus. A pulse transmission method was used to obtain longitudinal (Vp) and transverse (Vs) wave velocities through solid nitrogen and methane at temperatures ranging from 5 to 64 K and from 5 to 90 K, respectively. The measured velocities confirmed that the solid methane and solid nitrogen samples were non-porous polycrystalline samples without any cracks and bubbles inside. Compression tests at constant strain-rate were performed for solid nitrogen and methane at temperatures of 5-56 K and 5-77 K, respectively, at strain-rates of 10−4-10−2 s−1. Both brittle and ductile behavior was observed for solid nitrogen and methane under these conditions. The maximum strength of solid nitrogen was observed to be 9 MPa in the brittle failure mode, and that of solid methane was 10 MPa. These low strengths cannot support cantaloupe structures with the topographic undulation larger than several kilometers found on Triton’s surface, suggesting that other materials such as H2O ice could underlay solid methane and nitrogen and support these structures.  相似文献   

14.
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ∼800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is ∼90 km; its floor diameter is ∼60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21° and 122° east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk “bench.” Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk’s ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest.  相似文献   

15.
Disrupted terrains that form as a consequence of giant impacts may help constrain the internal structures of planets, asteroids, comets and satellites. As shock waves and powerful seismic stress waves propagate through a body, they interact with the internal structure in ways that may leave a characteristic impression upon the surface. Variations in peak surface velocity and tensile stress, related to landform degradation and surface rupture, may be controlled by variations in core size, shape and density. Caloris Basin on Mercury and Imbrium Basin on the Moon have disturbed terrain at their antipodes, where focusing is most intense for an approximately symmetric spheroid. Although, the icy saturnian satellites Tethys, Mimas, and Rhea possess giant impact structures, it is not clear whether these structures have correlated disrupted terrains, antipodal or elsewhere. In anticipation of high-resolution imagery from Cassini, we investigate antipodal focusing during giant impacts using a 3D SPH impact model. We first investigate giant impacts into a fiducial 1000 km diameter icy satellite with a variety of core radii and compositions. We find that antipodal disruption depends more on core radius than on core density, suggesting that core geometry may express a surface signature in global impacts on partially differentiated targets. We model Tethys, Mimas, and Rhea according to their image-derived shapes (triaxial for Tethys and Mimas and spherical for Rhea), varying core radii and densities to give the proper bulk densities. Tethys shows greater antipodal values of peak surface velocity and peak surface tensile stress, indicating more surface damage, than either Mimas or Rhea. Results for antipodal and global fragmentation and terrain rupture are inconclusive, with the hydrocode itself producing global disruption at the limits of model resolution but with peak fracture stresses never exceeding the strength of laboratory ice.  相似文献   

16.
M.H. Moore  R.L. Hudson 《Icarus》2007,189(2):409-423
Spectra of Europa, Ganymede, and Callisto reveal surfaces dominated by frozen water, hydrated materials, and minor amounts of SO2, CO2, and H2O2. These icy moons undergo significant bombardment by jovian magnetospheric radiation (protons, electrons, and sulfur and oxygen ions) which alters their surface compositions. In order to understand radiation-induced changes on icy moons, we have measured the mid-infrared spectra of 0.8 MeV proton-irradiated SO2, H2S, and H2O-ice mixtures containing either SO2 or H2S. Samples with H2O/SO2 or H2O/H2S ratios in the 3-30 range have been irradiated at 86, 110, and 132 K, and the radiation half-lives of SO2 and H2S have been determined. New radiation products include the H2S2 molecule and HSO3, HSO4, and SO2−4 ions, all with spectral features that make them candidates for future laboratory work and, perhaps, astronomical observations. Spectra of both unirradiated and irradiated ices have been recorded as a function of temperature, to examine thermal stability and phase changes. The formation of hydrated sulfuric acid in irradiated ice mixtures has been observed, along with the thermal evolution of hydrates to form pure sulfuric acid. These laboratory studies provide fundamental information on likely processes affecting the outer icy shells of Europa, Ganymede, and Callisto.  相似文献   

17.
All of the large impact features of the middle-sized icy satellites of Saturn and Uranus that were clearly observed by the Voyager spacecraft are described. New image mosaics and stereo-and-photoclinometrically-derived digital elevation models are presented. Landforms related to large impact features, such as secondary craters and possible antipodal effects are examined and evaluated. Of the large impacts, Odysseus on Tethys appears to have had the most profound effect on its “target” satellite of any of the impact features we examined. Our modeling suggests that the Odysseus impact may have caused the prompt formation of Ithaca Chasma, a belt of tectonic troughs that roughly follow a great circle normal to the center of Odysseus, although other hypotheses remain viable. We identify probable secondary cratering from Tirawa on Rhea. We attribute a number of converging coalescing crater chains on Rhea to a putative, possibly relatively fresh, ∼350 km-diameter impact feature. We examine the antipodes of Odysseus, the putative ∼350 km-diameter Rhean impact feature, and Tirawa, and conclude that evidence from Voyager data for damage from seismic focusing is equivocal, although our modeling results indicate that such damage may have occurred. We propose a number of observations and tests for Cassini that offer the opportunity to differentiate among the various explanations and speculations reviewed and evaluated in this study.  相似文献   

18.
J. Freeman  L. Moresi 《Icarus》2006,180(1):251-264
We model stagnant-lid convection for water ice I using a multicomponent rheology, combining grain boundary sliding, dislocation and diffusion creep mechanisms. For the superplastic flow-dislocation creep rheology, dislocation creep (n=4) dominates the deformation within the actively convecting sublayer whilst superplastic flow (n=1.8) is the dominant process within the stagnant-lid whilst for the superplastic flow-diffusion creep rheology, superplastic flow is the dominant deformation mechanism within the convecting sublayer while diffusion creep (n=1) is the dominant deformation process in the stagnant-lid. These results suggest deformation in the actively convecting sublayer is likely to be dominated by the mechanism with the largest stress exponent. We also provide heat flux scaling relationships for the superplastic flow, basal slip, dislocation creep-superplastic flow and superplastic flow-diffusion creep rheologies and provide a simple parameterized convection model of an icy satellite thermal evolution.  相似文献   

19.
Europa's surface exhibits numerous small dome-like and lobate features, some of which have been attributed to fluid emplacement of ice or slush on the surface. We perform numerical simulations of non-Newtonian flows to assess the physical conditions required for these features to result from viscous flows. Our simulations indicate that the morphology of an ice flow on Europa will be, at least partially, influenced by pre-existing topography unless the thickness of the flow exceeds that of the underlying topography by at least an order of magnitude. Three classes of features can be identified on Europa. First, some (possibly most) putative flow-like features exhibit no influence from the pre-existing topography such as ridges, although their thicknesses are generally on the same order as those of ridges. Therefore, flow processes probably cannot explain the formation of these features. Second, some observed features show modest influence from the underlying topography. These might be explained by ice flows with wide ranges of parameters (ice temperatures >230 K, effusion rates >107 m3 year−1, and a wide range of grain sizes), although surface uplift (e.g., by diapirism) and in situ disaggregation provide an equally compelling explanation. Third, several observed features are completely confined by pre-existing topographic structures on at least one side; these are the best known candidates for flow features on Europa. If these features resulted from solid-ice flows, then temperatures >260 K and grain sizes <2 μm are required. Such small grain sizes seem unlikely; low-viscosity flows such as ice slurries or brines provide a better explanation for these features. Our results provide theoretical support for the view that many of Europa's lobate features have not resulted from solid-ice flows.  相似文献   

20.
We present a detailed study of an Iapetus mosaic of VIMS data with high spatial resolution (0.5 × 0.5° or ∼6.4 km/pixel). The spectra were taken in August 2007 and provide the highest VIMS spatial resolution data for this object during Cassini’s primary mission. We analyze this set of data using a statistical clustering approach to reduce the analysis of a large number of data (∼104 spectra from 0.35 to 5.10 μm) to the study of seven representative groups accounting for 99.6% of the surface covered by the original sample. We analyze the spectral absorption bands in the spectra of the different clusters indicative of different composition over the observed surface. We find coherence between the distribution of the clusters and the geographical features on the surface. We give special attention to the study of the water ice and CO2 bands. We find that CO2 is widespread over the entire surface being studied, including the bright and dark areas on Iapetus’ surface, and is probably trapped at the molecular level with other materials. The strength of the CO2 band in the areas where both, H2O- and carbon-bearing materials exist, gives support to the hypothesis that this volatile is formed on the surface of Iapetus as a product of irradiation of these two components. Finally, we also compare the Iapetus CO2 with that on other satellites confirming, that there are evident differences on the center, depth and width of the band on Iapetus and Phoebe, where CO2 has been suggested to be endogenous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号