首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remapping the Chalk of the Central Chalk Mass of the Isle of Wight between Carisbrooke (Newport), Calbourne and Shalcombe, including the Bowcombe Valley, has identified a complex series of tectonic ‘rolls’ and ‘flats’ in a region that has been interpreted to be a relay ramp between the Needles and the Sandown faults. A major new WNW trending fault at Cheverton throws the Chalk down by >50 m to the SW in a 80-100 m wide zone of faulting within which some chalk blocks have near vertical dips. The fault location and trend closely follows the edge of the Cranbourne-Fordingbridge High and could also reflect, for the first time, the surface expression of part of the Needles Fault, a major inversion reverse fault. Located along this fault zone deep Quaternary weathering of the Chalk and Quaternary gravel deposits are present. The trend of the Cheverton Fault brings it towards Gotten Leaze where a groundwater pumping station is located and groundwater springs regularly cause flooding on the Brighstone-Calbourne Road. Analyses of the jointing in the Chalk show that stratabound fracture patterns typical of the Chalk formations elsewhere in Southern England are present in the Central Mass. In addition, there are numerous small faults along which valleys have formed. Tectonic structure and lithology have had a profound influence on the geomorphology and groundwater flow in the Chalk in the Central Mass.  相似文献   

2.
3.
The Chalk Group of the Central Downs of the Isle of Wight forms a relay ramp between two major inverted extensional faults. Mortimore (2011) presented a structural model of this key area based on a geological map constructed from detailed logging of a limited set of exposed sections. The area has been recently mapped at 1:10,000 scale by the British Geological Survey. Our interpretation of the geological structure differs significantly from that proposed by Mortimore, and suggests that Chalk has relatively uniform dips that progressively steepen towards the hanging wall of the E-W oriented basement faults. However, a suite of mapped extensional faults indicates an element of differential movement or transpression along the main basement structures.  相似文献   

4.
Large NE–SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline–syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.  相似文献   

5.
乌鲁木齐山前坳陷逆断裂-褶皱带及其形成机制   总被引:66,自引:9,他引:57  
乌鲁木齐山前坳陷位于天山新生代再生造山带北侧,南以准噶尔南缘断裂与天山相隔,内部发育了几排逆断裂 背斜带,每一排构造带又由多个逆断裂 背斜组成。最南的齐古逆断裂 背斜带形成于中生代末,其北的玛纳斯逆断裂背斜带包含霍尔果斯、玛纳斯和吐谷鲁逆断裂背斜,形成于上新世末、早更新世初,受上、下2 个滑脱面和断坡的控制,形成上、下2 个背斜。再向北的独山子逆断裂背斜带由独山子、哈拉安德和安集海逆断裂背斜组成,形成于早、中更新世之间,主逆断裂向下在8 ~9 km 深处的侏罗系中变为近水平滑脱面。此外,在独山子和吐谷鲁背斜的西北和东北还分别发育有正在形成之中的西湖和呼图壁隆起。研究了这些逆断裂 背斜带的地表和深部的构造特征、二维和三维几何学及运动学后指出,它们是在天山向准噶尔盆地扩展过程中发育于近水平滑脱面和不同断坡上的断展褶皱,独山子和安集海逆断裂 背斜的水平缩短量分别为2 900 ,1 350 m ,缩短速率分别为397 ,187 m m/ a。霍尔果斯、玛纳斯、吐谷鲁逆断裂 背斜的水平缩短量分别为5 900 ,6 500 ,6 000 m ,相应的缩短速率分别为202,223 ,206 m m/a,准噶尔南缘断裂和乌鲁木齐山前坳陷第四纪?  相似文献   

6.
高密度电法在和田隐伏断层探测中的应用   总被引:1,自引:0,他引:1  
西昆仑山前一系列的新生代背斜的翼部往往伴生向南斜倾的逆断裂,这些断裂隐伏于早更新世或中更新世洪积砂砾石层,构成了和田隐伏断裂带。该断裂带由2条陡坎状断层组成,宽约10.6km,深度20~300m,落差110~270m。根据卫星影像和地质工作成果,和田隐伏断裂的一支从和田市南部穿过,但南郊飞机场附近没有露头,为探查断层在该区域的位置及深度,沿垂直于推测的断层走向布设2条测线,采用温纳(WN)测量系统对其进行探测。探测结果表明:2条测线皆发现了逆断层,均上切错断了上覆晚更新世地层,其中测线1存在2处断层,一处断层倾向南,倾角50°左右,另一处断层倾向北,倾角约55°;测线2存在一处断层,倾向北,倾角近80°。通过比对高密度电法资料和地质出露点剖面,推断和田断层在第四系以来有过两次明显的活动,导致晚更新世砂砾石土层被断错。  相似文献   

7.
济阳盆地中生代构造特征与油气   总被引:62,自引:6,他引:56  
宗国洪  王秉海 《地质论评》1998,44(3):289-294
济阳盆地中生代构造主要包括:印支期NW向压性构造(褶皱及逆断层)、消亡的NW向负反转半地垒及半地堑、燕山期ENE向压性构造(褶皱或逆断层)、SN向地垒。印支期NW向压性构造是华北板块同扬子板块的聚敛运动的产物,而NW向负反转地垒和地堑、ENE向压性构造及SN向地垒导源于郯庐断裂的左旋剪切作用,新生代郯庐断裂右旋剪切运动导致上述构造消亡并成为隐伏构造。中生代隐伏构造为济阳盆地深层勘探提供了潜山圈闭(  相似文献   

8.
Interpretation and 2‐D forward modelling of aeromagnetic datasets from the Olary Domain to the north of the outcropping Kalabity Inlier, South Australia, is consistent with a buried structural architecture characterised by isolated anticlines (also referred to as growth anticlines) bounded by steeply dipping reverse faults. The isolated anticlines are interpreted to have formed by half‐graben inversion during crustal shortening associated with the ca 1600–1580 Ma Olarian Orogeny. We interpret the bounding reverse faults as reactivated high‐angle normal faults, originating from a listric extensional fault architecture. As shortening increased, ‘break‐back bypass’ and ‘short‐cut‘ thrusts developed because of buttressing of the hangingwall successions against the footwall. The resulting architecture resembles a combination of a thrust‐related imbricate fan and an accumulation of inverted basins. Using this structural architecture, synrift sediments proximal to interpreted normal faults were identified as prospective for sediment‐hosted massive sulfide Pb–Zn–Ag mineralisation.  相似文献   

9.
The Vidigueira–Moura fault (VMF) is a 65 km long, E–W trending, N dipping reverse left-lateral late Variscan structure located in SE Portugal (W Iberia), which has been reactivated during the Cenozoic with reverse right-lateral slip. It is intersected by, and interferes with the NE–SW trending Alentejo–Plasencia fault. East of this intersection, for a length of 40 km the VMF borders an intracratonic tectonic basin on its northern side, thrusting Paleozoic schists, meta-volcanics and granites, on the north, over Cenozoic continental sediments preserved in the basin, on the south. West of the faults intersection, evidence of Cenozoic reactivation is scarce. In the eastern sector, Plio-Quaternary VMF reactivation is indicated by geomorphologic, stratigraphic, and structural data, showing reverse movement with a right-lateral strike-slip component, in response to a NW–SE trending compressive stress. An average vertical displacement rate of 0.06 to 0.08 mm/yr since late Pliocene (roughly the last 2.5 Ma) is estimated. The Alqueva fault (AF) is a subparallel, northward dipping, 7.5 km long anastomosing fault zone that affects Palaeozoic basement rocks, and is located 2.5 km north and on the hanging block of the VMF. The AF is also a reverse left-lateral late Variscan structure, which has been reactivated during the Tertiary with reverse right-lateral slip; however, Plio-Quaternary reactivation was normal left-lateral, as shown by abundant kinematical criteria (slickensides) and geomorphic evidence. It shows an average displacement rate of 0.02 mm/yr for the vertical component of movement in the approximately last 2.5 Ma. It is proposed that the normal displacements on the AF result from tangential longitudinal strain on the upthrown block of the VMF above a convex ramp of this main reverse structure. According to this model of faults interaction, the AF is interpreted to work as a bending-moment fault sited above the VMF thrust ramp. Consequently, it is expected that the displacements on the AF increase towards the topographic surface with the increase in the imposed extension, declining downwards until they vanish above or at the VMF ramp. In order to constrain the proposed scheme, numerical modeling was performed, aiming at the reproduction of the present topography across the faults using different geodynamic models and fault geometries and displacements.  相似文献   

10.
田巍  何敏  杨亚娟  刘海伦  袁勋  吴森  朱定伟  梅廉夫 《地球科学》2015,40(12):2037-2051
边界断裂控制断陷盆地的形成和构造格局,不同边界断裂联接模式对不同类型盆地演化具有差异性.基于井控高精度3D地震资料,通过对边界断裂几何学特征描述和“四级小层”刻画,结合裂陷Ⅰ幕边界断裂不同区段的活动差异性以及与沉积中心迁移的空间匹配关系,剖析珠江口盆地惠州凹陷北部边界断裂的形成和演化.惠州凹陷北部边界断裂始新世早期分段孤立发育,逐渐以纵向和横向双向联接的模式发展.纵向联接为断层软联接和硬联接复合联接和转换,形成转换斜坡和横向背斜,控制凹(洼)陷的结构与演化,制约沉积中心及层序的迁移.横向联接表现为转换斜坡内横向断层的多阶段联接,联接过程可划分为孤立正断层、同向叠置及硬联接3个阶段,控制转换斜坡带内沉积体系的发育和展布.研究给出了一个裂陷盆地边界断裂时空演化、复合联接和转换模式的独特案例,对丰富裂陷盆地边界断裂及其与沉积层序、凹陷演化和区域动力学机制的响应关系的研究具有积极的意义和价值.   相似文献   

11.
陈发景  陈昭年 《现代地质》2021,35(6):1789-1796
纵向伸展断背斜是伸展断陷中重要的油气勘探领域。按照断背斜的几何形态将纵向伸展断背斜划分为双断型断背斜、单断型断背斜和叠合y型断背斜。根据渤海湾盆地新生代地质资料,讨论这3类纵向伸展断背斜的成因:(1)双断型断背斜发育于裂谷期,受对向双断断陷控制,主要是由于早期伸展过程中岩层局部缩短作用、晚期差异沉降和断块翘倾作用形成,其形成机制不同于前陆盆地的区域挤压作用产生的背斜;(2)单断型断背斜(或称逆牵引背斜)发育于裂谷期,受单断断陷控制,是由于控陷断层下降盘岩层下滑过程中岩层以逆牵引方式回倾、差异沉降和岩层弹性挠曲作用造成的,但岩层长度局部缩短作用仍是一个重要因素;(3)叠合y型断背斜发育于裂谷期后,受对称断陷和其中y形断洼控制,其形成与以纯剪切方式伸展运动和多期次断裂活动有关。它与走滑-伸展断背斜成因存在根本性差别,后者实质上不属于纵向伸展断背斜的范畴。  相似文献   

12.
NORMAL-SLIP ALONG THE NORTHERN ALTYN TAGH FAULT, NORTH TIBET   总被引:1,自引:0,他引:1  
NORMAL-SLIP ALONG THE NORTHERN ALTYN TAGH FAULT, NORTH TIBET  相似文献   

13.
在地层倾角较大地区,尤其是通过钻孔见煤深度推断的地层倾角变化较大地区,钻孔之间的地层及构造变化情况,若仅依靠钻孔资料,可能会得出与事实相反的结论。大倾角地层地区的地震勘探,须解决的地质问题主要有:受构造运动影响,煤系地层被风化剥蚀后,与新生界呈不不整合接触关系的煤层露头点:背斜轴部发育的褶曲、断层以及煤层赋存形态的变化;受大断层的牵引作用,其附近地层倾角变化及小断层的发育情况。在地震资料处理时,对干涉波应采用炮炮计算切除量及去线性干扰模块进行切除:并认为偏移处理中的层速度,做沿层平滑较均方根速度平滑更加合理。在进行解释时,应注意分辨不同的波形特征及断点识别标志。实例表明:地震勘探可以准确地控制单斜地层因断层导致的背斜构造及地层倾角变化情况。  相似文献   

14.
The Isle of Wedmore covers an area of ~ 19 km2, rises up to ~ 65 m above the surrounding lowlands of the Somerset Levels, and was an island until the Middle Ages. The topography is interpreted as having been formed by a relay ramp between two right-stepping faults (the Weare Fault to the west and the Mudgley Fault to the east) which have tens of metres of downthrow to the south, and which are probably normal faults. The relay ramp has a dip of about 3° to the SW and is breached by the NW-striking Wedmore Fault, which has up to ~ 23 m downthrow to the NE. Several NE-trending faults occur in the relay ramp, which are interpreted as having formed when the relay ramp became a contractional step when the Weare and Mudgley faults underwent sinistral reactivation, or as N–S contraction occurred during the Cenozoic. Analogues for this behaviour are presented from the Liassic rocks on the coast between Lilstock and East Quantoxhead.  相似文献   

15.
High-quality three-dimensional (3D) seismic reflection and borehole data from the Egersund Basin, offshore Norway are used to characterise the structural style and determine the timing of growth of inversion-related anticlines adjacent to a segmented normal fault system. Two thick-skinned normal faults, which offset Permian clastics and evaporites, delineate the north-eastern margin of the basin. These faults strike NNW-SSE, have up to 1900 m of displacement and are separated by an ESE-dipping, c. 10 km wide relay ramp. Both of these faults display exclusively normal separation at all structural levels and tip out upwards into the upper part of the Lower Cretaceous succession. At relatively shallow structural levels in the hangingwalls of these faults, a series of open, low-amplitude, fault-parallel anticlines are developed. These anticlines, which are asymmetric and verge towards the footwalls of the adjacent faults, are interpreted to have formed in response to mild inversion of the Egersund Basin. The amplitude of and apparent shortening associated with the anticlines vary along strike, and these variations mimic the along-strike variations in throw observed on the adjacent fault segments. We suggest that this relationship can be explained by along-strike changes in the propensity of the normal faults to reactivate during shortening; wider damage zones and lower angles of internal friction, coupled with higher pore fluids pressures at the fault centre, mean that reactivation is easier at this location than at the fault tips or in the undeformed country rock. Seismic-stratigraphic analysis of growth strata indicate that the folds initiated in the latest Turonian-to-earliest Coniacian (c. 88.6 Ma) and Santonian (c. 82.6 Ma); the control on this c. 6 Myr diachroneity in the initiation of fold growth is not clear, but it may be related to strain partitioning during the early stages of shortening. Anticline growth ceased in the Maastrichtian and the inversion event is therefore interpreted to have lasted at least c. 20 Myr. This study indicates that 3D seismic reflection data is a key tool to investigate the role that normal fault segmentation can play in controlling the structural style and timing of inversion in sedimentary basins. Furthermore, our results highlight the impact that this structural style variability may have on the development of structural and stratigraphic hydrocarbon traps in weakly-inverted rifts.  相似文献   

16.
利用钻井、二维和三维地震资料,剖析了孟加拉湾若开海域晚新生代的构造变形特征,探讨了构造变形对油气的控制作用。区域深度地质剖面揭示,研究区南部仅发育底部滑脱层(深度10 km),而北部则发育底部滑脱层(深度12 km)和中部滑脱层(深度4 km);受滑脱层的控制,研究区南部仅发育一套构造层,而北部则发育变形不协调的上、下两套构造层;南部背斜的南北向延伸距离、波长及背斜间隔距离均明显大于北部。通过北部局部构造精细解析表明,研究区北部变形相对较复杂,上构造层主要发育近南北向的背斜和次级张扭性右旋走滑断层,二者形成时间分别为晚第四纪和晚第四纪末。若开海域晚新生代的构造变形对圈闭形成、油气运聚和保存条件具有重要的控制作用。指出研究区南部平缓褶皱带构造—岩性复合圈闭具备形成大油气田的条件,是下一步油气勘探的重要目标。  相似文献   

17.
The NW-trending Bucaramanga fault links, at its southern termination, with the Soapaga and Boyacá faults, which by their NW trend define an ample horsetail structure. As a result of their Neogene reactivation as reverse faults, they bound fault-related anticlines that expose the sedimentary fill of two Early Jurassic rift basins. These sediments exhibit the wedge-like geometry of rift fills related to west-facing normal faults. Their structural setting was controlled further by segmentation of the bounding faults at approximately 10 km intervals, in which each segment is separated by a transverse basement high. Isopach contours and different facies associations suggest these transverse anticlines may have separated depocenters of their adjacent subbasins, which were shaped by a slightly different subsidence history and thereby decoupled. The basin fill of the relatively narrow basin associated with the Soapaga fault is dominated by fanglomeratic successions organized in two coarsening-upward cycles. In the larger basin linked to the Boyacá fault, the sedimentary fill consists of two coarsening-upward sequences that, when fully developed, vary from floodplain to alluvial fan deposits. These Early Jurassic rift fills temporally constrain the evolution of the Bucaramanga fault, which accommodated right-lateral displacement during the early Mesozoic rift event.  相似文献   

18.
This paper deals with the segmentation and inversion of the Hangjinqi fault zone (HFZ), which is the dominant structure in the northern part of the Ordos basin in North China. HFZ was reactivated during the Late Triassic and obliquely inverted during the Middle Jurassic shortening. Subsurface geological mapping and structural analysis were carried out to determine the segmentation and kinematic history of the deformation. The HFZ was a left-stepping fault zone and was made up of three segments: the Porjianghaizi fault (PF), Wulanjilinmiao fault (WF) and Sanyanjing fault (SF), which are separated by two relay ramps. Two distinct phases can be identified in its structural evolution: (1) during the Late Triassic compressional deformation, the HFZ was characterized by shortening and thrusting to the north; and (2) During the Middle Jurassic phase the HFZ was oblique to the extensional fault trends, the reverse faults were reactivated as dextral strike-slip faults as a result of transtensional inversion. The inversion ratio of the HFZ indicates an increase in deformational degree from east to west over the whole region. The first deformation stage resulted from the N–S compression between the South China and North China plates during the Late Triassic. The second deformation stage of compression was related to the west-northwestward subduction of the paleo-Pacific plate during the Middle Jurassic. In the Jurassic deformation framework, the HFZ may be interpreted as an accommodation structure parallel to the Yanshan–Yinshan orogenic belt developed in the northern Ordos area.  相似文献   

19.
NEE向阿尔金主断裂带的新构造运动以左旋压扭性活动为特征,仅西端发育张性构造,并可划分出两期变形,新构造运动强度在时间上自上新世晚期开始至第四纪断裂活动强度增大,在空间上自SWW向NEE方向断裂活动强度逐渐减弱;柴达木北缘的新构造运动可划分为两期,其主要构造特征表现为向柴达木盆地逆冲的前进式叠瓦道冲带,柴达木盆地第四纪时的北界相对于第三纪时的北界向南迁移了数十公里;河西走廊盆地的新构造运动主要表现为盆地边缘断裂的逆冲兼走滑,盆地接受新生代沉积、盆地内第三系的轴面南倾的褶皱;NEE向阿尔金主断裂带与其南侧的NWW向断裂带是在统一构造应力场作用下相互协调、同时活动的两组关系紧密的构造带,两者的共同活动构成了断块运动。  相似文献   

20.
Foraminiferal biostratigraphy has been used extensively in the re-survey of the Chalk Group of southern England since the 1990s and a biozonation based on 21 zones and numerous subzones has been developed. The scheme is closely related to, and extensively tested against, the new lithostratigraphy for the Chalk Group based on examination of well described key chalk exposures, from significant borehole cores, many additional short sequences in chalk exposures and a large number of field samples taken throughout southern England, including the Isle of Wight. The BGS zonal scheme is defined in its entirety for the first time herein and correlated with the existing United Kingdom benthonic foraminiferal scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号