首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe and evaluate the so-called shadow method. This method can be used to estimate the optical depth of the Martian atmosphere from the differences in brightness between shadowed and sunlit regions observed from an orbiter. We present elaborate and simplified versions of the method and analyze the capabilities and the sources of errors. It proves essential to choose shadowed and sunlit comparison regions with similar surface properties. Accurate knowledge of the observing geometry, including the slopes of the observed region, is important as well, since the procedure should be corrected for the non-horizontal surface. Moreover, the elaborate version of the shadow method can be sensitive to (i) the optical model of aerosols and (ii) the assumed bi-directional reflectance function of the surface. To obtain reliable estimates, the analyzed images must have a high spatial resolution, which the HiRISE camera onboard the MRO provides. We tested the shadow method on two HiRISE images of Victoria crater (TRA_0873_1780 and PSP_001414_1780) that were taken while this crater was the exploration site of the Opportunity rover. While the rover measured optical depth τ approximately in the ranges from 0.43 to 0.53 and from 0.53 to 0.59 by imaging the sun, our shadow procedure yielded τ about 0.50 and 0.575, respectively (from the HiRISE's red images). Thus, the agreement is quite good. The obtained estimates of the surface albedo are about 0.20 and 0.17, respectively.  相似文献   

2.
The Mawrth Vallis region contains an extensive (at least 300 km × 400 km) and thick (?300 m), finely layered (at meter scale), clay-rich unit detected by OMEGA. We use OMEGA, HRSC DTMs derived from stereoscopic imagery, HRSC color imagery and high resolution imagery such as MOC, CTX and HiRISE to characterize the geometry and the composition of the clay-rich unit at the regional scale. Our results show that the clay-bearing unit can be divided into sub-units on the basis of differences in color and composition. In false-color visible imagery, alternating white/bluish and orange/red colored units correspond to a compositional succession of, respectively, Al- and Fe- or Mg-phyllosilicate rich material. Geological cross-sections are presented along the principal outcrops of the region in order to define the stratigraphy of these sub-units. This method shows that the dips of the sub-units are frequently close to the slopes of the present topography, except for scarps visible at the dichotomy boundary, inside impact craters walls, and outcrops inside Mawrth Vallis. In addition to the Al- and Fe- or Mg-phyllosilicate rich sub-units, an altered surface is identified as the lower basement unit. We propose two possible end-member scenarios to explain the derived stratigraphy: (1) alteration of volcaniclastic, aeolian or aqueous layered deposits of various compositions by groundwater, resulting in distinct altered rocks; or (2) Alteration coeval with the deposition of sediments under varying chemical conditions, in wet pedodiagenetic environment.  相似文献   

3.
We used Mars Express HRSC and OMEGA data to investigate mesospheric cloud features observed in the equatorial belt of Mars from December 2007 until early March 2008. This period corresponds to early northern spring of Martian year 29. The reflection peak at 4.26 μm in OMEGA data identifies the clouds as CO2 ice clouds. HRSC observed the clouds together with OMEGA in five orbits. Cloud features are most prominent in the shortwave HRSC colour channels with wavelength centers at 440 and 530 nm, but rarely visible in all other channels. In the period of Ls 0-36°, OMEGA and HRSC together detected mesospheric CO2 ice clouds in 40 orbits. They occur in a latitude belt of ±20° around the equator and at longitudes between 240°E (Tharsis) in the West and 30°E (Sinus Meridiani) in the East. The clouds were observed between 3 and 5 p.m. local time with mainly ripple-like to filamentary cloud forms. The viewing angles of the HRSC blue and green colour channels differ by 6.6° and the resulting parallax can be used to directly measure cloud heights by means of ray intersection. 17 HRSC data takes were found to exhibit clouds with heights from 66 to 83 km with an accuracy of 1-2 km. The pushbroom imaging technique also yields a time delay for the two observations in the order of 5-15 s close to periapsis, and therefore time-related cloud movements can be detected. A method was developed to determine the across-track cloud displacements, which can directly be translated to wind velocities. Zonal cloud movements could be measured in 13 cases and were oriented from East to West. Related wind speeds range between 60 and 93 m/s with an accuracy of 10-13 m/s.  相似文献   

4.
This study presents the latest results on the mesospheric CO2 clouds in the martian atmosphere based on observations by OMEGA and HRSC onboard Mars Express. We have mapped the mesospheric CO2 clouds during nearly three martian years of OMEGA data yielding a cloud dataset of ∼60 occurrences. The global mapping shows that the equatorial clouds are mainly observed in a distinct longitudinal corridor, at seasons Ls = 0-60° and again at and after Ls = 90°. A recent observation shows that the equatorial CO2 cloud season may start as early as at Ls = 330°. Three cases of mesospheric midlatitude autumn clouds have been observed. Two cloud shadow observations enabled the mapping of the cloud optical depth (τ = 0.01-0.6 with median values of 0.13-0.2 at λ = 1 μm) and the effective radii (mainly 1-3 μm with median values of 2.0-2.3 μm) of the cloud crystals. The HRSC dataset of 28 high-altitude cloud observations shows that the observed clouds reside mainly in the altitude range ∼60-85 km and their east-west speeds range from 15 to 107 m/s. Two clouds at southern midlatitudes were observed at an altitude range of 53-62 km. The speed of one of these southern midlatitude clouds was measured, and it exhibited west-east oriented speeds between 5 and 42 m/s. The seasonal and geographical distribution as well as the observed altitudes are mostly in line with previous work. The LMD Mars Global Climate Model shows that at the cloud altitude range (65-85 km) the temperatures exhibit significant daily variability (caused by the thermal tides) with the coldest temperatures towards the end of the afternoon. The GCM predicts the coldest temperatures of this altitude range and the season Ls = 0-30° in the longitudinal corridor where most of the cloud observations have been made. However, the model does not predict supersaturation, but the GCM-predicted winds are in fair agreement with the HRSC-measured cloud speeds. The clouds exhibit variable morphologies, but mainly cirrus-type, filamented clouds are observed (nearly all HRSC observations and most of OMEGA observations). In ∼15% of OMEGA observations, clumpy, round cloud structures are observed, but very few clouds in the HRSC dataset show similar morphology. These observations of clumpy, cumuliform-type clouds raise questions on the possibility of mesospheric convection on Mars, and we discuss this hypothesis based on Convective Available Potential Energy calculations.  相似文献   

5.
Neutron currents measured using the Mars Odyssey Neutron Spectrometer, seasonally varying temperatures measured using the Thermal Emission Spectrometer, and visible images measured using the High Resolution Imaging Science Experiment (HiRISE) are studied to determine the water content and stratigraphy of Olympia Undae. Both the neutron and thermal infrared data are best represented by a two-layered model having a water-ice equivalent hydrogen content of 30±5% in a lower semi-infinite layer, buried beneath a relatively desiccated upper layer that is 9±6 g/cm2 thick (about 6 cm depth at a density of 1.5 g/cm3). A model that is consistent with all three data sets is that the dunes contain a top layer that is relatively mobile, which overlays a niveo-aeolian lower layer. The geomorphology shown by the HiRISE images suggests that the bottom layer may be cemented in place and therefore relatively immobile.  相似文献   

6.
The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ∼0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions.  相似文献   

7.
Scattering and absorption of sunlight by aerosols are integral to understanding the radiative balance of any planetary atmosphere covered in a haze, such as Titan and possibly the early Earth. One key optical parameter of an aerosol is its refractive index. We have simulated both Titan and early Earth organic haze aerosols in the laboratory and measured the real and imaginary portion of their refractive index at λ = 532 nm using cavity ringdown aerosol extinction spectroscopy. This novel technique allows analysis on freely-floating particles minutes after formation. For our Titan analog particles, we find a real refractive index of n = 1.35 ± 0.01 and an imaginary refractive index k = 0.023 ± 0.007, and for the early Earth analog particles we find n = 1.81 ± 0.02 and k = 0.055 ± 0.020. The Titan analog refractive index has a smaller real and similar imaginary refractive index compared to most previous laboratory measurements of Titan analog films, including values from Khare et al. (Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W. [1984]. Icarus 60, 127-137). These newly measured Titan analog values have implications for spacecraft retrievals of aerosol properties on Titan. The early Earth analog has a significantly higher real and imaginary refractive index than Titan analogs reported in the literature. These differences suggest that, for a given amount of aerosol, the early Earth analog would act as a stronger anti-greenhouse agent than the Titan analog.  相似文献   

8.
Scalloped depressions are a unique martian surface morphology found in the northern and southern hemisphere latitude-dependent dust and ice-rich surface mantles. These features exhibit a distinct asymmetric north-south slope profile, characterized by steep pole-facing scarps, flat floors and gentle equator-facing slopes. We examined High Resolution Stereo Camera (HRSC) images of the southern hemisphere to determine their longitudinal distribution, which revealed that a majority of scalloped terrain is located in the region of the southern wall of the Hellas Basin and northern Malea Planum. A detailed map of this area was produced where scallops were found to contour the southern wall of the basin, and where the ice-rich mantle was seen to be thickest. Scalloped terrain is concentrated along the topographic highs near the Amphitrites and Peneus Paterae and areal extent and depth decreases with increasing depth into the basin. We also examined existing hypothesis for the formation and evolution of scalloped depressions using High Resolution Imaging Science Experiment (HiRISE) images and data from the Thermal Emission Imaging System-Infrared (THEMIS-IR) and the Thermal Emission Spectrometer (TES). Our approach provides regional context for the development of scalloped terrains within the southern hemisphere, and offers detailed evidence of scallop depressions forming around small cracks, presumably caused by thermal contraction. Morphometric measurements show that scalloped depressions can be as much as 40 m deep, with typical depths of between 10 and 20 m. Our observations of scallop formation and development in the southern hemisphere support a solar-insolation model proposed by previous researchers (e.g. [Morgenstern, A., Hauber, E., Reiss, D., van Gasselt, S., Grosse, G., Schirrmeister, L., 2007. J. Geophys. Res. 112, CiteID E06010; Lefort, A., Russell, P.S., Thomas, N., McEwen, A.S., Dundas, C.M., Kirk, R.L., 2009a. J. Geophys. Res. 114, E04005; Lefort, A., Russell, P.S., Thomas, N., 2009b. Icarus, in press]). Observations made using HiRISE images suggest that scalloped depressions most likely form from small cracks in the mantle, which become larger and deeper through sublimation of interstitial ice from within the mantle. Sublimation is likely enhanced on equator-facing slopes because of increased solar insolation, which accounts for the asymmetric slope profile and hemispherical orientation and is demonstrated by THEMIS-IR images. We suggest that sublimation lag deposits can possibly be removed by dust devils or strong slope winds related to the Hellas Basin, offering an explanation as to why scalloped terrain is so abundant only in this area of the southern hemisphere. Daytime maximum summer temperatures suggest that sublimation in the study area of Malea Planum is possible under current conditions if the sublimation lag is removed. While it cannot be ruled out that scalloped terrain in Malea Planum is presently evolving, we attribute the extensive distribution to geologically recent obliquity excursions when conditions were more conducive to mesoscale modification of the ice-rich mantle.  相似文献   

9.
The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca. >10 m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10 m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100 m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity.  相似文献   

10.
Recently, a particular statistical method - spatial point pattern analysis (SPPA) - has been introduced as an effective means by which qualitative, observable variations in polygonal terrain network arrangements on Earth and Mars can be quantified. A number of ground- and aerial-based techniques are available from which to derive the required input data: the spatial (x-y) coordinates of all polygon trough intersections within the site. However, each of the data collection methods may contain some level of error. Thus, the overarching question addressed by this research is: “how are the results of SPPA affected by the method by which the input data were generated?” At two polygonal terrain sites in the Canadian High Arctic, we performed ground-based surveys using differential and non-differential Global Positioning Systems (GPS) as well as photogrammetric analysis of aerial and satellite images of varying resolution to determine the trough intersection coordinates. It was found that the most robust statistical results were produced when using data from a combination of differential GPS surveys and high-resolution (∼0.25 m/pixel) aerial images. Images of pixel size ≥1 m were found to be unsuitable for this type of analysis. With respect to the investigation of similar Martian landforms, HiRISE and MOC images of polygonal terrain sites in southwestern Utopia Planitia were analyzed. Our results show that it is strongly preferable to perform SPPA using HiRISE images, though an empirical model is outlined that could be used to correct for errors arising from the reduced resolution inherent to MOC images.  相似文献   

11.
The atmospheres of Mars and Titan are loaded with aerosols that impact remote sensing observations of their surface. Here we present the algorithm and the first applications of a radiative transfer model in spherical geometry designed for planetary data analysis. We first describe a fast Monte-Carlo code that takes advantage of symmetries and geometric redundancies. We then apply this model to observations of the surface of Mars and Titan at the terminator as acquired by OMEGA/Mars Express and VIMS/Cassini. These observations are used to probe the vertical distribution of aerosols down to the surface. On Mars, we find the scale height of dust particles to vary between 6 km and 12 km depending on season. Temporal variations in the vertical size distribution of aerosols are also highlighted. On Titan, an aerosols scale height of 80 ± 10 km is inferred, and the total optical depth is found to decrease with wavelength as a power-law with an exponent of −2.0 ± 0.4 from a value of 2.3 ± 0.5 at 1.08 μm. Once the aerosols properties have been constrained, the model is used to retrieve surface reflectance properties at high solar zenith angles and just after sunset.  相似文献   

12.
We analyzed a data cube of Neptune acquired with the Hubble STIS spectrograph on August 3, 2003. The data covered the full afternoon hemisphere at 0.1 arcsec spatial resolution between 300 and 1000 nm wavelength at 1 nm resolution. Navigation was accurate to 0.004 arcsec and 0.05 nm. We constrained the vertical aerosol structure with radiative transfer calculations. Ultraviolet data confirmed the presence of a stratospheric haze of optical depth 0.04 at 370 nm wavelength. Bright, discrete clouds, most abundant near latitudes −40° and 30°, had their top near the tropopause. They covered 1.7% of the observed disk if they were optically thick. The methane abundance above the cloud tops was 0.0026 and 0.0017 km-am for southern and northern clouds, respectively, identical to earlier observations by Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Dowling, T.E., Baines, K.H., Limaye, S.S., [2001b]. Icarus 149, 459-488). Aside from these clouds, the upper troposphere was essentially clear. Below the 1.4-bar layer, a vertically uniform haze extended at least down to 10 bars with optical depth of 0.10-0.16/bar, depending on the latitude. Haze particles were bright at wavelengths above 600 nm, but darkened toward the ultraviolet, at the equator more so than at mid and high latitudes. A dark band near −60° latitude was caused by a 0.01 decrease of the single scattering albedo in the visible, which was close to unity. A comparison of methane and hydrogen absorptions contradicted the current view that methane is uniformly mixed in latitude and altitude below the ∼1.5-bar layer. The 0.04 ± 0.01 methane mixing ratio is only uniform at low latitudes. At high southern latitudes, it is depressed roughly between the 1.2 and 3.3-bar layers compared to low-latitude values. The maximum depression factor is ∼2.7 at 1.8 bars. We present models with 2° latitude sampling across the full sunlit globe that fit the observed reflectivities to 2.8% rms.  相似文献   

13.
Koch  A.  Küveler  G.  Schröter  E. H. 《Solar physics》1979,64(1):13-25
We report on results from photographic observations of photospheric oscillations as a function of depth. Using rms-values and power-spectra from shifts of entire line-profiles, we find qualitatively an increase of the velocity-amplitude with increasing height. We get more quantitative informations by comparing measured asymmetries of line-profiles with calculated ones derived from Voigt-functions containing a depth dependent velocity-field.We find the scale-height H 0 of photospheric velocity oscillations to be 930±100 km. This result is to be compared with H 0 = 1100±200 km obtained by Canfield (1976), who used velocity weighting functions of the line centres.Further, we show that a general observed line asymmetry of medium strong lines (c-shape) does not depend on the phase of oscillations.Mitt. aus dem Kiepenheuer-Institut Nr. 178.  相似文献   

14.
N. Thomas  C.J. Hansen 《Icarus》2010,205(1):296-310
The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the jet-like activity which may result from the process described by Kieffer (JGR, 112, E08005, doi:10.1029/2006JE002816, 2007) involving translucent CO2 ice. In this work, we mostly concentrate on observations of the Inca City (81°S, 296°E) and Manhattan (86°S, 99°E) regions in the southern spring of 2007. Two companion papers, [Hansen et al. this issue] and [Portyankina et al. this issue], discuss the surface features in these regions and specific models of the behaviour of CO2 slab ice, respectively. The observations indicate rapid on-set of activity in late winter initiating before HiRISE can obtain adequately illuminated images (Ls < 174° at Inca City). Most sources become active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., 2007. AGU (abstract P41A-0188)]. These deposits originate from araneiform structures (spiders), boulders on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans are observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that outgassing was in progress at the time of HiRISE image acquisition and estimate a total particulate emission rate of >30 g s−1 from a single typical jet feature. Brighter deposits at Inca City become increasingly hard to detect after Ls = 210°. In the Inca City region, the orientations of surficial deposits are topographically controlled. The deposition of dark material also appears to be influenced by local topography suggesting that the ejection from the vents is at low velocity (<10 m s−1) and that a ground-hugging flow process (a sort of “cryo-fumarole”) may be occurring. The failure up to this point to obtain a clear detection of outgassing though stereo imaging is consistent with low level transport. The downslope orientation of the deposits may result from the geometry of the vent or from catabatic winds. At many sites, more than one ejection event appears to have occurred suggesting re-charging of the sources. Around Ls = 230°, the brightness of the surface begins to drop rapidly on north-facing slopes and the contrast between the dark deposits and the surrounding surface reduces. This indicates that the CO2 ice slab is being lost completely in some areas at around this time. By Ls = 280°, at Inca City, the ice slab has effectively gone. CRISM band ratios and THEMIS brightness temperature measurements are consistent with this interpretation.  相似文献   

15.
We review the methods and data sets used to determine morphometric parameters related to the depth (e.g., rim height and cavity depth) and diameter of Martian craters over the past ~45 yr, and discuss the limitations of shadow length measurements, photoclinometry, Earth-based radar, and laser altimetry. We demonstrate that substantial errors are introduced into crater depth and diameter measurements that are inherent in the use of 128th-degree gridded Mars Orbiter Laser Altimeter (MOLA) topography. We also show that even the use of the raw MOLA Precision Engineering Data Record (PEDR) data can introduce errors in the measurement of craters a few kilometers in diameter. These errors are related to the longitudinal spacing of the MOLA profiles, the along-track spacing of the individual laser shots, and the MOLA spot size. Stereophotogrammetry provides an intrinsically more accurate method for measuring depth and diameter of craters on Mars when applied to high-resolution image pairs. Here, we use 20 stereo Context Camera (CTX) image pairs to create digital elevation models (DEMs) for 25 craters in the diameter range 1.5–25.6 km and cover the latitude range of 25° S to 42° N. These DEMs have a spatial scale of ~24 m per pixel. Six additional craters, 1.5–3.1 km in diameter, were studied using publically available DEMs produced from High-Resolution Imaging Science Experiment (HiRISE) image pairs. Depth/diameter and rim height were determined for each crater, as well as the azimuthal variation of crater rim height in 1-degree increments. These data indicate that morphologically fresh Martian craters at these diameters are significantly deeper for a given size than previously reported using Viking and MOLA data, most likely due to the improvement in spatial resolution provided by the CTX and HiRISE data.  相似文献   

16.
We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.  相似文献   

17.
High-resolution Cassini stereo images of Saturn's moon Phoebe have been used to derive a regional digital terrain model (DTM) and an orthoimage mosaic of the surface. For DTM-control a network of 130 points measured in 14 images (70-390 m/pixel resolution) was established which was simultaneously used to determine the orientation of the spin-axis. The J2000 spin-axis was found at Dec=78.0°±0.1° and RA=356.6°±0.3°, substantially different from the former Voyager solution. The control points yield a mean figure radius of 107.2 km with RMS residuals of 6.2 km demonstrating the irregular shape of this body. The DTM was computed from densely spaced conjugate image points determined by methods of digital image correlation. It has a horizontal resolution of 1-2 km and vertical accuracies in the range 50-100 m. It is limited in coverage, but higher in resolution than the previously derived global shape model of Phoebe [Porco et al., 2005. Cassini imaging science: initial results on Phoebe and Iapetus. Science 307, 1237-1242] and allows us to study the morphology of the surface in more detail. There is evidence for unconsolidated material from a steep and smooth slope at the rim of a 100 km impact feature. There are several conically shaped craters on Phoebe, which may hint at highly porous and low compaction material on the surface.  相似文献   

18.
《Astroparticle Physics》2012,35(7):435-448
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma. Since autumn 2009 both telescopes have been working together in stereoscopic mode, providing a significant improvement with respect to the previous single-telescope observations. We use observations of the Crab Nebula taken at low zenith angles to assess the performance of the MAGIC stereo system. The trigger threshold of the MAGIC telescopes is 50 − 60 GeV. Advanced stereo analysis techniques allow MAGIC to achieve a sensitivity as good as (0.76 ± 0.03)% of the Crab Nebula flux in 50 h of observations above 290 GeV. The angular resolution at those energies is better than ∼0.07°. We also perform a detailed study of possible systematic effects which may influence the analysis of the data taken with the MAGIC telescopes.  相似文献   

19.
M.G. Tomasko  L.R. Doose  L.E. Dafoe  C. See 《Icarus》2009,204(1):271-283
The Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe into the atmosphere of Titan yielded information on the size, shape, optical properties, and vertical distribution of haze aerosols in the atmosphere of Titan [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., 2008. Planet. Space Sci. 56, 669-707] from photometric and spectroscopic measurements of sunlight in Titan’s atmosphere. This instrument also made measurements of the degree of linear polarization of sunlight in two spectral bands centered at 491 and 934 nm. Here we present the calibration and reduction of the polarization measurements and compare the polarization observations to models using fractal aggregate particles which have different sizes for the small dimension (monomer size) of which the aggregates are composed. We find that the Titan aerosols produce very large polarizations perpendicular to the scattering plane for scattering near 90° scattering angle. The size of the monomers is tightly constrained by the measurements to a radius of 0.04 ± 0.01 μm at altitudes from 150 km to the surface. The decrease in polarization with decreasing altitude observed in red and blue light is as expected by increasing dilution due to multiple scattering at decreasing altitudes. There is no indication of particles that produce small amounts of linear polarization at low altitudes.  相似文献   

20.
In order to investigate the formation of martian gullies and the stability of fluids on Mars, we examined about 120 gully images. Twelve HiRISE images contained a sufficient number of Transverse Aeolian Ridges (TARs) associated with the gullies to make the following measurements: overall gully length, length of the alcove, channel and apron, and we also measured the frequency of nearby TARs. Six of the 12 images examined showed a statistically significant negative correlation between overall gully length (alcove, channel and apron length) and TAR frequency. Previous experimental work from our group has shown that at temperatures below ∼200 K, evaporation rate increases by about an order of magnitude as wind speed increases from 0 to ∼15 m/s. Thus the negative correlations we observe between gully length and dune frequency can be explained by formation at temperatures below ∼200 K where wind speed/evaporation is a factor governing gully length. In these cases evaporation of the fluid carving the gully was a constraint on their dimensions. Cases where there is no correlation between gully length and TAR frequency, can be explained by formation at temperatures >200 K. The temperatures are consistent with Global Circulation Model and Thermal Emission Spectrometer (TES) data for these latitudes. The temperatures suggested by these trends are consistent with the fluid responsible for gully formation being a strong brine, such as Fe2(SO4)3 which has a eutectic temperature of ∼200 K. We also find that formation timescales for gullies are 105-106 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号