共查询到20条相似文献,搜索用时 15 毫秒
1.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources. 相似文献
2.
We present results from CCD observations of Comet 2P/Encke acquired at Steward Observatory's 2.3 m Bok Telescope on Kitt Peak. The observations were carried out in October 2002 when the comet was near aphelion. Rotational lightcurves in B-, V-, and R-filters were acquired over two nights of observations, and analysed to study the physical and color properties of the nucleus. The average apparent R-filter magnitude across both nights corresponds to a mean effective radius of 3.95±0.06 km, and this value is similar to that found for the V- and B-filters. Taking the observed brightness range, we obtain a/b?1.44±0.06 for the semi-axial ratio of Encke's nucleus. Applying the axial ratio to the R-filter photometry gives nucleus semi-axes of [3.60±0.09]×[5.20±0.13] km, using the empirically-derived albedo and phase coefficient. No coma or tail was seen despite deep imaging of the comet, and flux limits from potential unresolved coma do not exceed a few percent of the total measured flux, for standard coma models. This is consistent with many other published data sets taken when the comet was near aphelion. Our data includes the first detailed time series multi-color measurements of a cometary nucleus, and significant color variations were seen on October 3, though not repeated on October 4. The average color indices across both nights are: (V−R)=0.39±0.06 and (B−V)=0.73±0.06 (). We analysed the R-filter time-series photometry using the method of Harris et al. [Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, H., Zeigler, K.W., 1989. Icarus 77, 171-186] to constrain the rotation period of the comet's nucleus, and find that a period of ∼11.45 h will satisfy the data, however the errors bars are large. We have successfully linked our data with the September 2002 data from Fernández et al. [Fernández, Y.R., Lowry, S.C., Weissman, P.R., Mueller, B.E.A., Samarasinha, N.H., Belton, M.J.S., Meech, K.J., 2005. Icarus 175, 194-214]—taken just 2-3 weeks before the current data set—and we show that a rotation period of just over 11 h works extremely well for the combined data set. The resulting best-fit period is 11.083±0.003 h, consistent with the Fernández et al. value. 相似文献
3.
The nucleus of Comet 2P/Encke was detected with the Arecibo radar during the close approach of November, 2003, making this the first comet to yield radar detections at two different apparitions. Although the measured radar cross section of 1.0 km2 was close to that obtained in 1980, the Doppler bandwidth was nearly four times larger. Most of this bandwidth difference can simply be attributed to a different observing aspect relative to the spin axis proposed by Sekanina [1988, Astron. J. 95, 911] and Festou and Barale [2000, Astron. J. 119, 3119]. Comparison of the 2003 Doppler bandwidth with infrared-based size estimates supports an 11-h dominant rotation period and excludes slower 15- and 22-h periods that have also been suggested. If one assumes a short-axis-mode rotation with an 11-h period, then the Doppler bandwidth indicates that the nucleus is an oblong object with a long-axis dimension of 9 km. The estimated radar albedo of 0.05 is similar to that measured for C/IRAS-Araki-Alcock, providing further evidence that comet nuclei have relatively low surface densities of ∼0.5-1.0 g cm−3. No broadband echo component was detected from large coma grains despite predictions, based on optical/infrared models, that such a component might be detectable. 相似文献
4.
We present new, near-aphelion, time series of photometry of Comet 2P/Encke in Cousins-R band. With these light curves we find that the dominant, synodic rotational periodicity is either P0=11.079±0.009 h or 2P0=22.158±0.012 h. This is in contrast to data from the 1980s published by others that are consistent with 15.08- and 22.6-h periods. Those periods do not satisfy our phased light curves, and also the 1980s data are not easily reconciled with our periods. This could be due to P/Encke having non-principal axis rotation or due to a drift in the rotation period caused by outgassing torques. We observed the comet at five epochs: July, August, September, and October 2001, and September 2002, and the comet was at times intrinsically brighter than expected for a bare nucleus, due to an apparent contribution from an unresolved coma. Three-quarters of the data were obtained in the second and fifth epochs, and we analyzed these two time series using both the phase-dispersion minimization and “WindowCLEAN” techniques. At both epochs and with both techniques strong periodicities were found near frequencies and . By then using visual inspection of the phased light curves to corroborate these frequencies, and by using the data from the other three epochs to properly align light curve features, we were able to derive P0 and 2P0 as the only solutions that satisfy all our observations. The periodicity due to f1 is clearly seen in our data, but we cannot tell from our data alone whether it is a manifestation of the nucleus's shape, non-principal axis rotation, or both. 相似文献
5.
Ways to rationalize the different periods (e.g., 15.08 h, Luu and Jewitt, 1990, Icarus 86, 69-81; 11.01 h, Fernández et al., 2004, Icarus, in this issue; Lowry et al., 2003, Lunar Planet. Sci. XXXIV, Abstract 2056) seen in near aphelion R-band light curves of Comet 2P/Encke are explored. We show that the comet is usually active at aphelion and it's observed light curves contain signal from both the nucleus and an unresolved coma. The coma contribution to the observed brightness is generally found to dominate with the nucleus providing from 28 to 87% of the total brightness. The amplitude of the observed variations cannot be explained by the nucleus alone and are due to coma activity. We show that some seven periodicities exist in the observed light curves at various times and that this is likely the result of an active nucleus spinning in an excited spin state. The changing periodicities are probably due to changes in the relative strengths of the active areas. We work out possible excited states based on experience with model light curves and by using an analogy to light curve observations of Comet 1P/Halley for which the spin state has been separately determined from spacecraft observations. There is a possibility of a fully relaxed principal axis spin state (0.538 d−1; P=44.6 h) but, because it provides a poorer fit to the observed periodicities than the best fit excited state together with the absence of a peak near 1.08 d−1 (2fφ) in the frequency spectrum of the Fernández et al. (2000, Icarus 147, 145-160) thermal IR lightcurve, we consider it unlikely. Both SAM and LAM excited states are allowed by the underlying periodicities and additional information is needed to choose between these. Our choice of a low excitation SAM state, i.e., one in which the instantaneous spin axis nutates around the total angular momentum vector in a motion that is characterized by limited angular oscillations around the long axis, is based on Sekanina's (1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475) interpretation of the fan coma that this comet often displays. We argue that possible LAM states are excluded either because they are too difficult to excite or because they would be inconsistent with the formation of the observed fan morphology. Two possible SAM states emerge that provide good fits to the observed periodicities, one with a precessional frequency for the long axis about the total angular momentum vector of 1.614 d−1 (P?=14.9 h) and an oscillation frequency around the long axis of 0.539 d−1 (Pψ=44.5 h) and a second with a precessional frequency of 2.162 d−1 (P?=11.1 h) combined with an oscillation around the long axis of 0.502 d−1 (Pψ=47.8 h). While either solution is possible, the latter is, in a least squares sense, more likely to be the actual spin state. In both cases the direction of the total angular momentum vector (αM,δM[J2000]=198.6, −0.3 deg) is assumed to be defined by the evolving geometry and morphology of the coma (Sekanina, 1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475; Festou and Barale, 2000, Astron J. 119, 3119-3132). We discuss the possible locations of the primary active areas found by Sekanina (1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475) and, while they are at high cometographic latitudes, they do not have to be physically located close the region were the axis of maximum moment of inertia pierces the surface (i.e., at high cometocentric latitude). We offer a new interpretation of the 10.7 μm data by Fernández et al. (2000, Icarus 147, 145-160) which yields an axial ratio a/b=2.04. This, with the two SAM states that we have found, requires that b/c>1.18 or >1.09 implying a significant asymmetry in the shape of the elongated nucleus. For the observed fan morphology to be maintained, the true axial ratio b/c cannot be much larger than these limiting values otherwise the amplitude of the oscillation about the long axis becomes too large and the fan morphology would be destroyed. The precise phasing of the spin modes, i.e., the value of the Euler angles at a particular time, is not determinable from the current data set, but a set of well sampled thermal infrared observations of the nucleus covering many periods and a wide range of observing geometries could provide this information in the future as well as clearly distinguishing between the two excited spin states. 相似文献
6.
The European Space Agency (ESA) Rosetta spacecraft (Schulz, R., Alexander, C., Boehnhardt, H., Glassmeier, K.H. (Eds.) [2009]. “ROSETTA - ESA”) will encounter Comet 67P/Churyumov-Gerasimenko in 2014 and spend the next 18 months in the vicinity of the comet, permitting very high spatial and spectral resolution observations of the coma and nucleus. During this time, the heliocentric distance of the comet will change from ∼3.5 AU to ∼1.3 AU, accompanied by an increasing temperature of the nucleus and the development of the coma. The Microwave Instrument for the Rosetta Orbiter (MIRO) will observe the ground-state rotational transition (110-101) of H216O at 556.936 GHz, the two isotopologues H217O and H218O and other molecular transitions in the coma during this time (Gulkis, S. et al., [2007]. MIRO: Microwave Instrument for Rosetta Orbiter. Space Sci. Rev. 128, 561-597).The aim of this study is to simulate the water line spectra that could be obtained with the MIRO instrument and to understand how the observed line spectra with various viewing geometries can be used to study the physical conditions of the coma and the water excitation processes throughout the coma. We applied an accelerated Monte Carlo method to compute the excitations of the seven lowest rotational levels (101, 110, 212, 221, 303, 312, and 321) of ortho-water using a comet model with spherically symmetric water outgassing, density, temperature and expansion velocity at three different heliocentric distances 1.3 AU, 2.5 AU, and 3.5 AU. Mechanisms for the water excitation include water-water collisions, water-electron collisions, and infrared pumping by solar radiation.Synthetic line spectra are calculated at various observational locations and directions using the MIRO instrument parameters. We show that observations at varying viewing distances from the nucleus and directions have the potential to give diagnostic information on the continuum temperature and water outgassing rates at the surface of the nucleus, and the gas density, expansion velocity, and temperature of the coma as a function of distance from the nucleus. The gas expansion velocity and temperature affect the spectral line width and frequency shift of the line from the rest frequency, while the gas density (which is directly related to the outgassing rate) and the line excitation temperature determine the antenna temperature of the absorption and emission signal in the line profile. 相似文献
7.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage. 相似文献
8.
We present results and analysis of imaging polarimetric observations of Comet 2P/Encke. The observations were carried out at the 2-m RCC telescope of the Bulgarian National Astronomical Observatory on December 13, 1993 and on January 14, 1994, at phase angles 51.1° and 80.5°, respectively. A wide-band red filter 6940/790 Å was used. This filter is transparent for the continuum and the weak emission bands of NH2 and H2O+. There is a sunward dust fan with well-defined polarization, which peaks at≈13% in the image obtained on January 14, 1994. Along the sunward fan the degree of polarization decreases progressively. Outside of the fan the coma displays a low polarization of ≈3%. We suggest that this low polarization is caused by the NH2 emission in the pass-band of the red wide-band filter. Assuming a spherically symmetric NH2 coma we are able to correct the observed polarization for this effect. The correction leads to an increase of the observed polarization by 1 to 4% at distances 10,000 and 1500 km from the nucleus. A rough estimate shows that the polarization in the near nucleus region of Comet Encke is similar to that for the dusty comets. Even after correction the polarization of Comet Encke's dust fan is significantly less that the polarization observed in dusty comets. The reasons influencing the distribution of dust polarization in the coma are discussed. More polarimetric and colorimetric observations of the dust in Comet Encke on its return in 2003 are needed. 相似文献
9.
Ignacio Ferrín 《Icarus》2008,197(1):169-182
We present the secular light curve of Comet 2P/Encke in two phase spaces, the log plot, and the time plot. The main conclusions of this work are: (a) The comet shows activity at perihelion and aphelion, caused by two different active areas: Source 1, close to the south pole, active at perihelion, and Source 2, at the north pole, centered at aphelion. (b) More than 18 physical parameters are measured from the secular light curves, many of them new, and are listed in the individual plots of the comet. Specifically we find for Source 1 the location of the turn on and turn off points of activity, RON=−1.63±0.03 AU, ROFF=+1.49±0.20 AU, TON=−87±5 d, TOFF=+94±15 d, the time lag, LAG(q)=6±1 d, the total active time, TACTIVITY=181±16 d, and the amplitude of the secular light curve, ASEC(1,1)=4.8±0.1 mag. (c) From this information the photometric age and the time-age defined in Ferrín [2005a. Icarus 178, 493-516; 2006. Icarus 185, 523-543], can be calculated, and we find P-AGE = 97 ± 8 comet years and T-AGE = 103 ± 9 comet years (cy). Thus Comet 2P/Encke is an old comet entering the methuselah stage (100 cy < age). (d) The activity at aphelion (Source 2), extends for TACTIVITY=815±30 d and the amplitude of the secular light curve is ASEC(1,Q)=3.0±0.2 mag. (e) From a new phase diagram an absolute magnitude and phase coefficient for the nucleus are determined, and we find RNUC(1,1,0)=15.05±0.14, and β=0.066±0.003. From this data we find a nucleus effective diameter DEFFE=5.12(+2.5;−1.7) km. These values are not much different from previous determinations but exhibit smaller errors. (f) The activity of Source 1 is due to H2O sublimation because it shows curvature. The activity of Source 2 might also be due to H2O due to the circumstantial situation that the poles point to the Sun at perihelion and aphelion. (g) We found a photometric anomaly at aphelion, with minimum brightness between +393 and +413 days after perihelion that may be an indication of topography. (h) We have re-reduced the 1858 secular light curve of Kamel [1991. Icarus 93, 226-245]. There are secular changes in 7 physical parameters, and we achieve for the first time, an absolute age calibration. We find that the comet entered the inner Solar System and began sublimating in 1645±40 AD. (i) It is concluded that the secular light curve can place constraints on the pole orientation of the nucleus of some comets, and we measure the ecliptic longitude of the south pole of 2P/Encke equal to 213.2±4.5°, in excellent agreement with other determinations of this parameter, but with smaller error. (j) Using the observed absolute magnitude of 1858 and 2003 and a suitable theoretical model, the extinction date of the comet is determined. We obtain ED=2056±3 AD, implying that the comet's lifetime is 125±12 revolutions about the Sun after entering the inner Solar System. 相似文献
10.
Masateru Ishiguro Yuki Sarugaku Munetaka Ueno Fumihiko Usui Suk Minn Kwon 《Icarus》2007,189(1):169-183
We present observations of the extended dust structures near the orbits of three short-period comets: 2P/Encke, 22P/Kopff, and 65P/Gunn. The dust trails were originally discovered by the Infrared Astronomical Satellite (IRAS). Our observations were made using wide-field optical CCD cameras on the University of Hawaii 2.24-m telescope, the Canada-France-Hawaii 3.6-m telescope, and the Kiso 1.05-m Schmidt telescope. We compared the observed images with models and found that the extended structures seen around 2P/Encke and 22P/Kopff before perihelion passage were most likely “dust trails,” whereas images taken after perihelion passage show a high contamination by recently released particles (i.e., particles in Neck-Line structures are visible). We could not confirm the existence of a dust trail from 65P/Gunn within the field of view of the camera used. The effective sizes of the particles responsible for the scattered light were estimated at 1-100 mm (2P/Encke), 1-10 mm (22P/Kopff), and 100 μm-1 mm (65P/Gunn), respectively, which is consistent with previous studies of dust trails made with infrared space telescopes and optical telescopes. We evaluated the mass loss rates of these comets, averaged over their orbits, as reaching (2P/Encke), (22P/Kopff), and (65P/Gunn). These values are consistent with previous work. Therefore, the total amount of material ejected from these three comets is , which would contribute a considerable fraction of the lost within 1 AU that needs to be replaced if the zodiacal cloud is to be maintained in a steady state. We also found that the particles in the dust structures are significantly redder than the Sun and the zodiacal light, and might be redder than the average short-period comet nuclei. Specifically, the reflectivity gradients of 2P/Encke, 22P/Kopff, and 65P/Gunn are 13±7 (% 103 Å−1), 20±5 (% 103 Å−1), and 15±4 (% 103 Å−1), respectively. We examined the change in color with distance from the nucleus. No clear correlation was detected for 2P/Encke or 22P/Kopff to an accuracy of 3-11%, while the 65P/Gunn tail did show color variation, becoming redder with increasing distance from the nucleus. This dark red material, consisting of particles of sand-cobble size, has marginally escaped from the nuclei and will evolve into finer-grained interplanetary dust particles after subsequent collisions. 相似文献
11.
T.A. Ellis 《Icarus》2008,194(1):357-367
Intensity profiles were obtained for the C2 and CN emission and blue continuum of Comet Bradfield (1987s), from observations obtained over a 10 week period starting shortly before perihelion. Model intensity profiles were produced and then fitted to the observed profiles, and used to put constraints on some of the dust and gas parameters. Most of these parameters, including the gas and dust outflow speeds from the cometary nucleus and the molecular lifetimes, were consistent with expected values. The best fitting models incorporate significant dust particle fragmentation and extended emission of CN from dust, both occurring in the inner coma. In addition, although there may have been enhancement of gas and dust emission on the sunward side of the cometary nucleus, it appears that the tailward side maintained a significant level of activity. 相似文献
12.
Ignacio Ferrín 《Icarus》2007,187(1):326-331
In support of the Deep Impact Mission, we have updated the secular light curve of 9P/Tempel 1 presented in Paper I [Ferrín, I., 2005. Icarus 178, 493-516], with new data sets. The secular light curves (SLC) of the comet are presented in the log and time plots (Figs. 1 and 2) and provide a clear profile of the overall shape of the envelope. We arrive at the following conclusions: (1) Improved values of 18 photometric parameters are derived including the turn on and turn off points, RON=−3.47±0.05 AU, ROFF=+4.20±0.05 AU, and TON=−410±25 d, TOFF=+555±25 d. (2) The improved SLC shows a most interesting and peculiar shape, with a linear power law of slope n=7.7±0.1 from RON=−3.47 AU to RBP=−2.08±0.05 AU, and then converts to a law with curvature. The break point of the power law at RBP=−2.08 AU, mV(1,R)=14.0±0.1 mag, is interpreted as a change in sublimating something more volatile than water ice (most probably CO2), to water ice sublimation. In other words, the comet's sublimation is controlled by two different substances. (3) The photometric-age (defined in Paper I) and the time-age of the comet [Ferrín, I., 2006. Icarus. In press] are recomputed, and results in a value P-AGE=21±2 and T-AGE=11±2 comet years. Thus 9P is a young comet. (4) The comet is active almost up to aphelion since the turn off point has been determined at ROFF=+4.20±0.05 AU while aphelion takes place at Q=+4.74 AU. (5) The comet exhibits activity post-aphelion which is not understood. Two hypothesis are advanced to explain this behavior. 相似文献
13.
Comet 2P/Encke was observed with the SOHO/LASCO C2 and C3 coronagraphs over a time interval of 11 days, starting 4 days before its September 2000 perihelion passage and through several broadband visible filters. The lightcurve reveals an outburst which started 4.9 days after perihelion, with the brightness of the coma increasing by 1.5 mag in just a few hours and progressively decreasing thereafter, probably going back to its original state in about 9 days. The color information indicates that an approximately solar color continuum was detected, implying that the observed signals were dominated by solar light scattered off submillimetric dust grains. We propose that the rapid migration of the subsolar point over the southern hemisphere during the perihelion passage activates one or several new active regions enriched in submillimetric grains, with the observed outburst corresponding to the initial blow-off of their mantle. This scenario is consistent with other observations and implies that the south polar region of the nucleus of 2P/Encke has very distinct properties. 相似文献
14.
Prior to the impact event, Deep Impact monitored the ambient inner coma of Comet 9P/Tempel 1 at high spatial resolution in July 2005. Gaseous H2O and CO2 are unambiguously detected in the infrared spectra collected with the HRI-IR spectrometer aboard Deep Impact. Detailed distribution maps of these volatiles in the inner coma, within 60 km from the nucleus, are produced from the integrated emission bands of H2O (2.66 μm) and CO2 (4.26 μm). Uncorrelated asymmetries are determined in the spatial distribution of both species indicating chemical heterogeneities within the nucleus. Although present at some abundance surrounding the entire nucleus, H2O has a pronounced enhancement in abundance in the sunward direction rotational phases, evidence that the dominant process of subliming water ice from the nucleus is solar heating. In contrast, CO2 is enhanced in the regions near the negative rotational pole of the nucleus, suggesting localized outgassing there. Both species show an increase in radiance above the limb of the nucleus toward Ecliptic North. The distribution maps also suggest that the process of dust removal from the nucleus is strongly connected to the outgassing of volatiles. Detailed study of these coma asymmetries gives insight to the relative abundances of the dominant molecular components of the inner coma, source regions of the native volatiles, anisotropic outgassing of the nucleus, and the formation and evolution of the nucleus. A quiescent water production rate for Tempel 1 on July 4, 2005, is estimated to be . 相似文献
15.
We present analysis and results from both narrowband photometry and CCD imaging of Comet 19P/Borrelly from multiple apparitions. Production rates for Borrelly a few days prior to the Deep Space 1 spacecraft encounter were Q(OH) = 2.1×1028 molecule s−1, Q(CN) = 5.1×1025 molecule s−1, and A(θ)fρ = 400-500 cm. The equivalent Q(water; vectorial) = 2.5×1028 molecule s−1. We also find that the radial fall-off of the dust is significantly steeper than the canonical 1/ρ for aperture sizes larger than ρ = 2×104 km. In the near-UV, a strong trend in dust colors with aperture size is present. Imaging of Borrelly revealed a strong radial jet in the near-sunward direction that turns off late in the apparition. For the jet to appear radial, it must originate at or very close to the nucleus’ pole. Modeling the measured position angle of this jet as a function of time during the 1994 and 2001 apparitions yields a nucleus in a simple, rather than complex, rotational state with a pole orientation having an obliquity of 102.7° ± 0.5° and an orbital longitude of the pole of 146° ± 1°, corresponding to an RA of 214.1° and a Declination of −5.7° (J2000). There is also evidence for a small (∼8°) precession of the pole over the past century, based on our preferred model solution for jet measurements obtained during the 1911-1932 apparitions. Our solution for the orientation of the rotation axis implies a very strong seasonal effect as the source region for the jet moves from summer to winter. This change in solar illumination quantitatively explains both the nearly level water production measured in the seven weeks preceding perihelion and the extremely large decrease in water production (25×) as Borrelly moved from perihelion to 1.9 AU. A much smaller fall-off in apparent dust production after perihelion can be explained by a population of old, very slowly moving large grains released near peak water production, and therefore not indicative of the actual ongoing release of dust grains late in the apparition. Based on the water vaporization rate, the source region has an area of approximately 3.5 km2 or 4% of the total surface area of the nucleus, and water ice having an effective depth of 3-10 m is released each apparition from this source region. 相似文献
16.
We present analyses and results from both narrowband photometry and CCD imaging of Comet 81P/Wild 2 from multiple apparitions, obtained in support of the Stardust mission. These data include photometric measurements from 12 days before the encounter and imaging from 3 days after. Using narrowband photometry from the different apparitions, we analyzed the dust and gas production rates as a function of heliocentric distance, finding a substantial seasonal effect where the production of OH, NH, and dust peaks 11-12 weeks before perihelion. The CN, C2, and C3 production show no such asymmetry, suggesting that there may be heterogeneities among different sources on the nucleus. The water production peaked at a level of approximately in 1997. A comparison of the relative abundances of minor gas species places Wild 2 in the “depleted” category in the A'Hearn et al. (1995, Icarus 118, 223) taxonomic classifications. Continuum measurements at multiple wavelengths indicate that the comet has a low dust-to-gas ratio, with moderately reddened dust. In our images we see a dust tail, an anti-tail and two well-defined jets. The primary jet, which persists for several months and is roughly aligned with the spin axis, has a source latitude >+75°, while the secondary jet is located on the opposite hemisphere between −37° and −62°. We used the apparent position angle of the primary jet to determine the pole orientation, α=281±5°, δ=+13±7°, and surmise that the nucleus is likely in a state of simple rotation. The primary source is continuously illuminated when Wild 2 is inbound and turns away from the Sun at about the time that the comet reaches perihelion, explaining the seasonal effects in the production rates. We measured lightcurves on several observing runs but saw no significant modulation, so no constraints can be set on the rotation rate. Images at different wavelengths show that the jets have the same colors as the dust in other regions in the coma and tail, indicating that the grain properties are similar throughout the coma. Radial profiles of the coma were measured in various directions on a number of different observing runs, and we discuss the findings from these measurements. Finally, we compare our results with other published data and attempt to predict future times at which observations should be obtained to help constrain additional properties. 相似文献
17.
We present inner-coma dust imaging of Comet Hyakutake (1996 B2) obtained on 11 consecutive nights in late March 1996, an interval including a major outburst and the comet’s closest approach to Earth. The evolution of the outburst morphology is followed, along with the motion along the tail of several outburst fragments. Two spiral dust jets—a primary jet, along with a much weaker secondary jet—are visible throughout the interval and are produced by two source regions on a rotating nucleus. These are examined as a function of rotational phase and viewing geometry, with their appearance changing from a nearly face-on view on March 18 to side-on by March 28. The dust outflow velocity as a function of distance from the nucleus is derived, with the dust continuing to accelerate to a distance of 4000 km or more and reaching an average outflow velocity of 0.38 km s−1 between 3000 and 8000 km. We present details of our Monte Carlo modeling of the jets and our methodology of fitting the model to the images. The modeling yields the pole orientation of the nucleus, with an obliquity of approximately 108°, corresponding to an RA of 13h41m and a Dec of −1.1°. For an assumed spherical nucleus, the primary active region is centered at approximately −66° latitude, has a radius of about 56°, and therefore covers about 22% of the surface. The source of the secondary jet is at a latitude of −28°, has a radius of about 16°, and is located at a longitude nearly 180° away from the primary source. Estimated uncertainties for the pole orientation and the source locations and sizes are each about 3°. This solution for the nucleus orientation and source locations explains the strong asymmetry in measured production rates before and after perihelion in radio observations (Biver et al., 1999, Astron. J. 118, 1850-1872). The modeling also tightly constrains the sidereal rotation period as 0.2618 ± 0.0001 day, completely consistent with the expected +0.0003 day difference from the observed solar rotation period of 0.2614 ± 0.0004 day determined by Schleicher and Osip (2002, Icarus 159, 210-233), given the pole orientation and position of the comet in its orbit. 相似文献
18.
O. Groussin P. Lamy M. Kelley M. A'Hearn J. Licandro S. Lowry C. Snodgrass 《Icarus》2009,199(2):568-1670
We detected the nucleus of Comet 22P/Kopff at 4.87 AU from the Sun with the two IRS peak-up cameras of the Spitzer Space Telescope on April 19, 2007. Using the thermal model of [Groussin, O., and 15 colleagues, 2007. Icarus 187, 16-25], we derive a nucleus size of 1.89±0.16 km, in agreement with [Lamy, P., Toth, I., Jorda, L., Groussin, O., A'Hearn, M.F., Weaver, H.A., 2002. Icarus 156, 442-455], and a thermal inertia . 相似文献
19.
Michael A. DiSanti Geronimo L. Villanueva Stefanie N. Milam Boncho P. Bonev Michael J. Mumma William M. Anderson 《Icarus》2009,203(2):589-598
Volatile organic emissions were detected post-perihelion in the long-period Comet C/2006 M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity infrared observations using the Cryogenic Echelle Spectrometer (CSHELL) at the NASA-IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL (H2O, CO, CH3OH, CH4, and C2H6), and two additional species (HCN and CS) were measured with the ARO 12-m. These revealed highly depleted CO and somewhat enriched CH3OH compared with abundances observed in the dominant group of long-period (Oort cloud) comets in our sample and similar to those observed recently in Comet 8P/Tuttle. This may indicate highly efficient H-atom addition to CO at very low temperature (∼10-20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C/2006 M4 had nearly “normal” C2H6 and CH4, suggesting a processing history similar to that experienced by the dominant group. When compared with estimated water production at the time of the millimeter observations, HCN was slightly depleted compared with the normal abundance in comets based on IR observations but was consistent with the majority of values from the millimeter. The ratio CS/HCN in C/2006 M4 was within the range measured in ten comets at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared with most comets may indicate that the icy grains incorporated into C/2006 M4 were exposed to higher H-atom densities, or alternatively to similar densities but for a longer period of time. 相似文献
20.
An investigation of the activity of Comet C/1995 O1 (Hale-Bopp) with a thermophysical nucleus model that does not rely on the existence of amorphous ice is presented. Our approach incorporates recent observations allowing to constrain important parameters that control cometary activity. The model accounts for heat conduction, heat advection, gas diffusion, sublimation, and condensation in a porous ice-dust matrix with moving boundaries. Erosion due to surface sublimation of water ice leads to a moving boundary. The movement of the boundary is modeled by applying a temperature remapping technique which allows us to account for the loss in the internal energy of the eroded surface material. These kind of problems are commonly referred to as Stefan problems. The model takes into account the diurnal rotation of the nucleus and seasonal effects due to the strong obliquity of Hale-Bopp as reported by Jorda et al. (Jorda, L., Rembor, K., Lecacheux, J., Colom, P., Colas, F., Frappa, E., Lara, L.M. [1997]. Earth Moon Planets 77, 167-180). Only bulk sublimation of water and CO ice are considered without further assumptions such as amorphous ices with certain amount of occluded CO gas. Confined and localized activity patterns are investigated following the reports of Lederer and Campins (Lederer, S.M., Campins, H. [2002]. Earth Moon Planets 90, 381-389) about the chemical heterogeneity of Hale-Bopp and of Bockelée-Morvan et al. (Bockelée-Morvan, D., Henry, F., Biver, N., Boissier, J., Colom, P., Crovisier, J., Despois, D., Moreno, R., Wink, J. [2009]. Astron. Astrophys. 505, 825-843) about a strong CO source at a latitude of 20°. The best fit to the observations of Biver et al. (Biver, N. et al. [2002]. Earth Moon Planets 90, 5-14) is obtained with a low thermal conductivity of 0.01 W m−1 K−1. This is in agreement with recent results of the Deep Impact mission to 9P/Tempel 1 (Groussin, O., A’Hearn, M.F., Li, J.-Y., Thomas, P.C., Sunshine, J.M., Lisse, C.M., Meech, K.J., Farnham, T.L., Feaga, L.M., Delamere, W.A. [2007]. Icarus 187, 16-25) and with previous thermal simulations (Kührt, E. [1999]. Space Sci. Rev. 90, 75-82). The water production curve matches the production rates well from −4 AU pre-perihelion to the outgoing leg while the model does not reproduce so well the water production beyond 4 AU pre-perihelion. The CO production curve is a good fit to the measurements of Biver et al. (2002) over the whole measured heliocentric range from −7 AU pre- to 15 AU post-perihelion. 相似文献