首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
查明煤中矿物质在不同温度和CO2分压条件下溶解度变化规律,能为注入CO2过程中煤储层渗透率分析提供重要依据。借助水文地球化学模拟软件PHREEQC对在不同温度和CO2分压条件下煤中各矿物的溶解度进行了水化学模拟,得出不同温度和CO2分压条件下矿物质溶解度的变化规律。结果表明:在无CO2分压时,随着温度的升高各矿物的溶解度增加;当溶液中CO2分压增加到一定程度时,随着温度的升高各矿物的溶解度降低(石英除外);在温度相同时,随着CO2分压的增加,所有矿物(石英除外)溶解度均增加,方解石的溶解度随着CO2分压的升高呈现出迅速增加的趋势,其他矿物随着CO2分压的升高,溶解度增加的速率较为缓慢。  相似文献   

2.
To understand possible volcanogenic fluxes of CO2 to the Martian atmosphere, we investigated experimentally carbonate solubility in a synthetic melt based on the Adirondack-class Humphrey basalt at 1-2.5 GPa and 1400-1625 °C. Starting materials included both oxidized and reduced compositions, allowing a test of the effect of iron oxidation state on CO2 solubility. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and Fe3+/FeT was measured by Mössbauer spectroscopy. The CO2 contents of glasses show no dependence on Fe3+/FeT and range from 0.34 to 2.12 wt.%. For Humphrey basalt, analysis of glasses with gravimetrically-determined CO2 contents allowed calibration of an integrated molar absorptivity of 81,500 ± 1500 L mol−1 cm−2 for the integrated area under the carbonate doublet at 1430 and 1520 cm−1. The experimentally determined CO2 solubilities allow calibration of the thermodynamic parameters governing dissolution of CO2 vapor as carbonate in silicate melt, KII, (Stolper and Holloway, 1988) as follows: , ΔV0 = 20.85 ± 0.91 cm3 mol−1, and ΔH0 = −17.96 ± 10.2 kJ mol−1. This relation, combined with the known thermodynamics of graphite oxidation, facilitates calculation of the CO2 dissolved in magmas derived from graphite-saturated Martian basalt source regions as a function of P, T, and fO2. For the source region for Humphrey, constrained by phase equilibria to be near 1350 °C and 1.2 GPa, the resulting CO2 contents are 51 ppm at the iron-wüstite buffer (IW), and 510 ppm at one order of magnitude above IW (IW + 1). However, solubilities are expected to be greater for depolymerized partial melts similar to primitive shergottite Yamato 980459 (Y 980459). This, combined with hotter source temperatures (1540 °C and 1.2 GPa) could allow hot plume-like magmas similar to Y 980459 to dissolve 240 ppm CO2 at IW and 0.24 wt.% of CO2 at IW + 1. For expected magmatic fluxes over the last 4.5 Ga of Martian history, magmas similar to Humphrey would only produce 0.03 and 0.26 bars from sources at IW and IW + 1, respectively. On the other hand, more primitive magmas like Y 980459 could plausibly produce 0.12 and 1.2 bars at IW and IW + 1, respectively. Thus, if typical Martian volcanic activity was reduced and the melting conditions cool, then degassing of CO2 to the atmosphere may not be sufficient to create greenhouse conditions required by observations of liquid surface water. However, if a significant fraction of Martian magmas derive from hot and primitive sources, as may have been true during the formation of Tharsis in the late Noachian, that are also slightly oxidized (IW + 1.2), then significant contribution of volcanogenic CO2 to an early Martian greenhouse is plausible.  相似文献   

3.
玄武岩封存CO2为碳捕集与封存(CCS)提供了一种新的具有潜在意义的选择。当今世界上已有三个示范工程案例,即日本Nagaoka、美国Wallula和冰岛Carbfix,这些实例初步证实了CO2玄武岩封存的技术和经济可行性。玄武岩封存CO2相关技术研究进展包括:(1)Carbfix项目采用水溶液替代胺溶剂来捕集烟气中的CO2气体,以便同时对CO2和其他可溶于水的气体进行捕获,而在排放点源只需简单加装水洗塔等设备作为气体分离装置;(2)冰岛提出了适用于CO2饱和溶液注入与封存的Carbfix方法,设计出能分别注入气体和水溶液的专用系统;(3)Carbfix在注入与封存CO2过程中首次采用示踪元素监测方法,并通过质量平衡方法定量估算注入CO2发生碳酸盐化的百分比,发现往玄武岩里注入CO2不到2年就有95%被完全矿化。今后仍需进一步研究的技术问题包括:(1)CO2饱和溶液与超临界CO2两种注入形式如何选择;(2)能否用海水替代淡水溶解CO2;(3)如何提高地球化学模拟的准确性;(4)如何降低碳捕集、分离和运输环节成本。相关探讨对我国利用基性超基性岩进行CO2封存具有一定借鉴意义。  相似文献   

4.
煤层CO2地质封存可实现CO2减排和增产煤层气双重目标,是一种极具发展前景的碳封存技术。相对于其他封存地质体而言,煤的微孔极其发育,煤层CO2封存机制与煤中气、水微观作用关系密切,其内在影响机理尚不清楚。以2个烟煤样品的系统煤岩学分析测试为基础,构建了煤的大分子结构及板状孔隙空间模型,进一步采用分子动力学方法模拟了不同温、压条件下、不同煤基质类型表面的CO2和水的润湿行为,揭示煤层CO2注入后引起的水润湿性变化规律,初步阐明煤层CO2封存的可注性、封存潜力、封存有效性等影响因素及微观作用机理。结果表明:(1)影响煤润湿性的主要因素是煤中极性含氧官能团,其含量越高煤的润湿性越强;(2)煤中注入CO2后,CO2通过溶解作用穿透水分子层与水分子发生竞争吸附,从而减小水在煤表面润湿性;(3)随注入压力增大和温度降低,煤表面CO2吸附量增多,对氢键破坏作用增强,润湿性减弱越明显;(4)亲水性煤层CO<...  相似文献   

5.
Crushed rock from two caprock samples, a carbonate-rich shale and a clay-rich shale, were reacted with a mixture of brine and supercritical CO2 (CO2–brine) in a laboratory batch reactor, at different temperature and pressure conditions. The samples were cored from a proposed underground CO2 storage site near the town of Longyearbyen in Svalbard. The reacting fluid was a mixture of 1 M NaCl solution and CO2 (110 bar) and the water/rock ratio was 20:1. Carbon dioxide was injected into the reactors after the solution had been bubbled with N2, in order to mimic O2-depleted natural storage conditions. A control reaction was also run on the clay-rich shale sample, where the crushed rock was reacted with brine (CO2-free brine) at the same experimental conditions. A total of 8 batch reaction experiments were run at temperatures ranging from 80 to 250 °C and total pressures of 110 bar (∼40 bar for the control experiment). The experiments lasted 1–5 weeks.Fluid analysis showed that the aqueous concentration of major elements (i.e. Ca, Mg, Fe, K, Al) and SiO2 increased in all experiments. Release rates of Fe and SiO2 were more pronounced in solutions reacted with CO2–brine as compared to those reacted with CO2-free brine. For samples reacted with the CO2–brine, lower temperature reactions (80 °C) released much more Fe and SiO2 than higher temperature reactions (150–250 °C). Analysis by SEM and XRD of reacted solids also revealed changes in mineralogical compositions. The carbonate-rich shale was more reactive at 250 °C, as revealed by the dissolution of plagioclase and clay minerals (illite and chlorite), dissolution and re-precipitation of carbonates, and the formation of smectite. Carbon dioxide was also permanently sequestered as calcite in the same sample. The clay-rich shale reacted with CO2–brine did not show major mineralogical alteration. However, a significant amount of analcime was formed in the clay-rich shale reacted with CO2-free brine; while no trace of analcime was observed in either of the samples reacted with CO2–brine.  相似文献   

6.
地下盐岩溶腔是CO2封存的有效地质体,CO2沿盐岩软弱夹层和盐层-夹层交界面泄漏是制约地下盐岩溶腔CO2安全封存的关键。以苏北盆地金坛地区CO2盐穴储气库为研究对象,建立了层状盐穴储气库CO2封存的流-固耦合数学模型,分析了盐岩及泥岩夹层中CO2运移泄漏规律及其对CO2安全封存的影响,并探讨了盐岩及泥岩夹层渗透率的动态响应特征。结果表明:渗透率是决定盐岩层中CO2运移速率和泄漏范围的关键,在其影响下,相同封存时间内泥岩夹层中CO2运移速率和影响范围远大于盐岩,但随封存时间延长,盐岩和泥岩夹层中CO2运移速率和压力增幅均呈降低趋势,并随着CO2压力传播至模拟边界而趋于稳定。渗透率动态变化是上覆地层压力负效应与盐岩层中CO2压力正效应共同作用的结果,并受盐岩和泥岩夹层力学性质的影响。CO2封存时间<3 ...  相似文献   

7.
Geological sequestration of anthropogenic CO2 appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO2 in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO2 (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO2 per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO2-dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO2 degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.  相似文献   

8.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

9.
Aqueous solutions equilibrated with supercritical CO2 (150 °C and total pressure of 150 bar) were investigated in order to characterize their respective conditions of carbonation. Dissolution of olivine and subsequent precipitation of magnesite with a net consumption of CO2 were expected. A quantified pure mineral phase (powders with different olivine grain diameter [20–80 μm], [80–125 μm], [125–200 μm] and [>200 μm]), and CO2 (as dried ice) were placed in closed-batch reactors (soft Au tubes) in the presence of solutions. Different salinities (from 0 to 3400 mM) and different ratios of solution/solid (mineral phase) (from 0.1 to 10) were investigated. Experiments were performed over periods from 2 to 8 weeks. Final solid products were quantified by the Rock-Eval 6 technique, and identified using X-ray diffraction, Raman spectroscopy, electron microprobe and scanning electron microscopy. Gaseous compounds were quantified by a vacuum line equipped with a Toepler pump and identified and measured by gas chromatography (GC). Carbon mass balances were calculated.  相似文献   

10.
二元气驱技术(CO2/N2-ECBM)已成为煤层气增产的重要手段,明确CO2/N2在煤层中的竞争吸附规律以及对煤层物性的影响具有重大意义。利用分子模拟软件Materials Studio建立延川南煤层气实际区块温度、压力条件下的煤分子模型。基于巨正则蒙特卡洛(GCMC)方法研究CO2/N2交替驱替煤层气技术中各注入阶段对CH4吸附的影响,明确CO2、N2对煤层孔渗物性的影响规律。结果表明:在CO2注入阶段,煤层中甲烷迅速解吸;煤中气体吸附总量上升,煤基质膨胀效应增强,导致煤的孔隙体积降低。而转N2注入后,由于N2分压作用使得CH4、CO2吸附量呈现出不同程度的降低;当ωN2CO2≤0.6时煤分子中气体总吸附量迅速降低,而当N2饱和吸附后气体总吸附量保持稳定。煤层孔渗物性随着气体吸附总量呈现出迅速增大后趋于平缓的趋势。此外,ωN2CO2>0.6后N2吸附率迅速降低,这会使得产出气中CH4纯度较低,导致后期提纯成本大大增加。因此,当ωN2CO2=0.6左右时,CH4解吸量为最大值,煤孔隙率较高,最有利于煤层气的开发。   相似文献   

11.
Steady-state silica release rates (rSi) from basaltic glass and crystalline basalt of similar chemical composition as well as dunitic peridotite have been determined in far-from-equilibrium dissolution experiments at 25 °C and pH 3.6 in (a) artificial seawater solutions under 4 bar pCO2, (b) varying ionic strength solutions, including acidified natural seawater, (c) acidified natural seawater of varying fluoride concentrations, and (d) acidified natural seawater of varying dissolved organic carbon concentrations. Glassy and crystalline basalts exhibit similar rSi in solutions of varying ionic strength and cation concentrations. Rates of all solids are found to increase by 0.3-0.5 log units in the presence of a pCO2 of 4 bar compared to CO2 pressure of the atmosphere. At atmospheric CO2 pressure, basaltic glass dissolution rates were most increased by the addition of fluoride to solution whereas crystalline basalt rates were most enhanced by the addition of organic ligands. In contrast, peridotite does not display any significant ligand-promoting effect, either in the presence of fluoride or organic acids. Most significantly, Si release rates from the basalts are found to be not more than 0.6 log units slower than corresponding rates of the peridotite at all conditions considered in this study. This difference becomes negligible in seawater suggesting that for the purposes of in-situ mineral sequestration, CO2-charged seawater injected into basalt might be nearly as efficient as injection into peridotite.  相似文献   

12.
To assess CO2 underground sequestration from a geochemical viewpoint, the anorthite dissolution rate, which is an important parameter of risk analysis, was measured in a CO2–water system. The authors sought to obtain precise dissolution rate data in a short time observing a crystal surface on a nanoscale. For this purpose, phase-shift interferometry was applied. Using this method, uncertainty of the reactive surface area that is imparted on calculation of the dissolution rate constant can also be avoided. The time-course profile of vertical retreat of the surface revealed that the anorthite dissolution process changes from the initial transient state to a later steady state, which is consistent with results of numerous precedent studies. The transient dissolution rate depends strongly on local features (e.g., density of defects, variation of chemical compositions) of the crystal surface, rather than on temperature. Therefore, it is very important to determine the original properties of the anorthite surface for the examination of subsequent dissolution process. Contrary to general expectations, the anorthite dissolution can alter the physical properties of reservoir rock immediately after CO2 injection. The simple estimation using the anorthite dissolution rate obtained in this study, which was done as a test case for the CO2 underground sequestration project conducted by RITE, revealed that porosity of reservoir rock increased about 2% (23–23.4%) of initial values during 60 a. That change in physical property in such a short time might enhance the diffusion of injected CO2 and formation water, and therefore accelerate further geochemical reactions. Results of this study demonstrate that the geochemical water–rock interaction, which is generally regarded as a longer-term phenomenon than various physical processes, can also affect the reservoir system from the initial stage.  相似文献   

13.
Correlations presented by Spycher et al. (2003) to compute the mutual solubilities of CO2 and H2O are extended to include the effect of chloride salts in the aqueous phase. This is accomplished by including, in the original formulation, activity coefficients for aqueous CO2 derived from several literature sources, primarily for NaCl solutions. Best results are obtained when combining the solubility correlations of Spycher et al. (2003) with the activity coefficient formulation of Rumpf et al. (1994) and Duan and Sun (2003), which can be extended to chloride solutions other than NaCl. This approach allows computing mutual solubilities in a noniterative manner with an accuracy typically within experimental uncertainty for solutions up to 6 molal NaCl and 4 molal CaCl2.  相似文献   

14.
为解决我国高瓦斯煤层渗透性差导致瓦斯抽采率低的难题,利用超临界二氧化碳强扩散和溶解增透等独特优点,采用自制三轴渗透实验装置,开展不同温度下超临界二氧化碳作用后煤的宏观增透实验,在宏观增透实验基础上进行煤微观扫描成像实验。结果表明:恒定体积应力和孔隙压力条件下,不同温度超临界二氧化碳作用后,煤的渗透率较增透前提高一个数量级,但在二氧化碳的超临界温度范围内,煤的渗透率随温度增加呈负指数变化规律。超临界二氧化碳作用后,煤微观孔隙率较增透前提高两个数量级,随着温度增加,煤微观孔裂隙的演化速率减慢,孔隙率随温度增加呈负指数变化规律。宏微观实验数据同时表明,煤宏观渗透率随微观孔隙率增加而增大。超临界二氧化碳增透过程中,孔隙压力对低渗透煤层的增透效果起主控作用。  相似文献   

15.
Evaluating the feasibility of CO2 geologic sequestration requires the use of pressure-temperature-composition (P-T-X) data for mixtures of CO2 and H2O at moderate pressures and temperatures (typically below 500 bar and below 100°C). For this purpose, published experimental P-T-X data in this temperature and pressure range are reviewed. These data cover the two-phase region where a CO2-rich phase (generally gas) and an H2O-rich liquid coexist and are reported as the mutual solubilities of H2O and CO2 in the two coexisting phases. For the most part, mutual solubilities reported from various sources are in good agreement. In this paper, a noniterative procedure is presented to calculate the composition of the compressed CO2 and liquid H2O phases at equilibrium, based on equating chemical potentials and using the Redlich-Kwong equation of state to express departure from ideal behavior. The procedure is an extension of that used by King et al. (1992), covering a broader range of temperatures and experimental data than those authors, and is readily expandable to a nonideal liquid phase. The calculation method and formulation are kept as simple as possible to avoid degrading the performance of numerical models of water-CO2 flows for which they are intended. The method is implemented in a computer routine, and inverse modeling is used to determine, simultaneously, (1) new Redlich-Kwong parameters for the CO2-H2O mixture, and (2) aqueous solubility constants for gaseous and liquid CO2 as a function of temperature. In doing so, mutual solubilities of H2O from 15 to 100°C and CO2 from 12 to 110°C and up to 600 bar are generally reproduced within a few percent of experimental values. Fugacity coefficients of pure CO2 are reproduced mostly within one percent of published reference data.  相似文献   

16.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

17.
CO2 injected in the reservoir of McElroy Field, TX, for a CO2 flood was in the supercritical state. Supercritical CO2 fluid is capable of extracting light and intermediate hydrocarbons from rocks but is unable to extract heavy hydrocarbons and asphaltics. Therefore, plugging of asphaltics in reservoir rocks and a consequent reduction in injectivity and recovery may result when CO2 only is used in enhanced oil recovery. By adding common solvents as chemical modifiers, the flooding fluid shows marked improvement in solvency for heavy components of crudes due to its increased density and polarity. Numerous supercritical CO2 fluid extractions of dolomite rock from the Grayburg Formation containing known amount of spiked McElroy crude oil have been carried out to evaluate extraction efficiencies of CO2 and CO2 with chemical modifiers at various temperatures and pressures. All experiments show that extraction efficiency increases with increasing CO2 pressure but decreases with increasing temperature. Addition of chemical modifiers to CO2 also shows improved extraction efficiency and reduced asphaltic deposits. Under the pressure and temperature similar to McElroy reservoir conditions; chemically modified CO2 yielded almost 3 times as much oil extracts as those in extractions with CO2 only. It also reduced the asphaltics content in extracted rocks to nearly one half; indicating its potential for mitigating asphaltics plugging of formation rocks  相似文献   

18.
许雅琴  张可霓  王洋 《岩土力学》2012,33(12):3825-3832
咸水层CO2地质封存是减少大气中CO2排放量的有效途径。CO2注入率是衡量咸水层中CO2注入能力的有效因素,因此,研究注入速率的变化规律及提高的措施是很有工程价值的。在很多区域,地层的低渗透性限制了CO2的注入率。针对鄂尔多斯盆地的水文地质条件,通过数值模拟,探讨在低渗透性咸水层中提高CO2注入率的途径,包括改变储层中的盐度、采用水平井注入、增加注入井段的长度以及采取水力压裂等工程措施。其中改变储层中的盐度可通过在注入CO2前向储层中注入一定量的水来实现。模拟结果表明,这些方式可以有效地提高CO2注入率,其中水平井改造方式和水力压裂工程措施效果显著,盐度改造措施在地层初始含盐度较高时,会有更好的效果。研究结果可为鄂尔多斯盆地和类似地区的咸水层CO2地质封存项目提供参考。  相似文献   

19.
实施CO2地质封存是目前公认的减少温室气体排放的有效方法。在可能进行封存的场所中,咸水含水层封存潜力最大,机理也最为复杂。其中毛细残余封存机理在封存量和封存安全性方面均具有十分重要的意义。在评价毛细残余封存量时,残余气饱和度是一个十分重要的参数。文中提出了测定残余气饱和度的实验方法,并实际应用于中国塔里木盆地奥陶系礁灰...  相似文献   

20.
针对低渗透性煤层瓦斯抽采难度大、抽采效率低等问题,基于CO2-CH4多组分气体竞争吸附作用,开展了注CO2提高煤层瓦斯抽采率数值模拟与试验研究。首先,建立了考虑气-水两相流与Klinkenberg效应的煤层注CO2促抽瓦斯流-固耦合模型,利用COMSOL软件进行了煤层注CO2后煤层瓦斯压力、瓦斯含量和瓦斯抽采率等参数变化规律,并应用于工程试验。结果表明:构建的气-水两相流瓦斯抽采流-固耦合数学模型可靠、合理;注入CO2抽采煤层气瓦斯压力、瓦斯含量均比未注入CO2抽采下降速率快;现场试验后,注气抽采条件下瓦斯抽采浓度平均值是未注气条件下的2.02倍,瓦斯抽采纯量是后者的3倍。煤层注入CO2气体后,瓦斯抽采量增加,显著促进了煤层瓦斯抽采。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号