首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I. Romeo  D.L. Turcotte 《Icarus》2009,203(1):13-19
The areas of volcanic units on Venus have been measured on the 1:5000000 geological maps published by NASA/USGS. These data were used to obtain a frequency-area distribution. The cumulative frequency-area distribution of 1544 specific occurrence of units cover six orders of magnitude from the largest unit (30 × 106 km2) to the smallest (20 km2). The probability distribution function has been calculated. The medium and large volcanic units correlate well with a power-law (fractal) relation for the dependence of frequency on area with a slope of −1.83. There are fewer small units than the expected values provided by the power-law relation. Our measurements cover 21.02% of the planetary surface, 3.59% of the study area was found to be tessera terrain and is excluded from this study of volcanism. The measurements were restricted to areas where geological maps have been published. The analysis was performed on two independent areas of the planet, with a complete coverage of published maps. In both areas the largest volcanic unit covers a significant portion of the surface (58.75% and 63.64%, respectively). For the total measured volcanic units (excluding tessera), these two largest units (that could correspond to the same unit or not) cover the 61.18% and they are stratigraphically superimposed on older volcanic units which cover 3.37% of the area. The remaining area (35.45%) is occupied by younger volcanic units stratigraphically superimposed on the large volcanic unit(s). These results are based on the independent mapping of a large number of geologists with different ideas about the geodynamical evolution of Venus and different criteria for geological mapping. Despite this fact, the presence of these very large units is incompatible with the equilibrium resurfacing models, because their generation at different ages would destroy the crater randomness. Our frequency-area distribution of the mapped volcanic units supports a catastrophic resurfacing due to the emplacement of the largest unit(s) followed by a decay of volcanism. Our data for the frequency-area distribution of volcanic units provide new support for catastrophic resurfacing models. It is difficult to make our observations compatible with equilibrium, steady-state resurfacing models.  相似文献   

2.
I. López  J. Lillo 《Icarus》2008,195(2):523-536
Magellan data show that the surface of Venus is dominated by volcanic landforms including large flow fields and a wide range of volcanic edifices that occur in different magmatic and tectonic environments. This study presents the results from a comprehensive survey of volcano-rift interaction in the BAT region and its surroundings. We carried out structural mapping of examples where interaction between volcanoes and regional fractures results in a deflection of the fractures around the volcanic features and discuss the nature of the local volcano-related stress fields that might be responsible for the observed variations of the regional fracture systems. We propose that the deflection of the regional fractures around these venusian volcanoes might be related to volcanic spreading, a process recognized as of great importance in the tectonic evolution of volcanoes on Earth and Mars, but not previously described on Venus.  相似文献   

3.
Geophysical data have led to the interpretation that Beta Regio, a 2000×25000 km wide topographic rise with associated rifting and volcanism, formed due to the rise of a hot mantle diapir interpreted to be caused by a mantle plume. We have tested this hypothesis through detailed geologic mapping of the V-17 quadrangle, which includes a significant part of the Beta Regio rise, and reconnaissance mapping of the remaining parts of this region. Our analysis documents signatures of an early stage of uplift in the formation of the Agrona Linea fracture belts before the emplacement of regional plains and their deformation by wrinkle ridging. We see evidence that the Theia rift-associated volcanism occurred during the first part of post-regional-plains time and cannot exclude that it continued into later time. We also see evidence that Devana Chasma rifting was active during the first and the second parts of post-regional-plains time. These data are consistent with uplift, rifting and volcanism associated with a mantle diapir. Geophysical modeling shows that diapiric upwelling may continue at the present time. Together these data suggest that the duration of mantle diapir activity was as long as several hundred million years. The regional plains north of Beta rise and the area east and west of it were little affected by the Beta-forming plume, but the broader area (at least 4000 km across), whose center-northern part includes Beta Regio, could have experienced earlier uplift as morphologically recorded in formation of tessera transitional terrain.  相似文献   

4.
This work shows the results of a detailed structural analysis of the deformation belts of Lavinia Planitia. Ridge belts and graben and groove belts can be observed at the studied area, while wrinkle ridges and large individual grooves predominate in the smooth plains. Transcurrent components of displacement are commonly observed, and transpression and transtension zones are the rule rather than the exception at most of the studied belts. Along-strike azimuth changes of deformation belts are accommodated by internal variations in the predominance of contractional, transcurrent or extensional structures. The material of the surrounding plains embays most of these deformation belts. The kinematic analysis of this complex network of tectonic structures suggests a broadly synchronous activity of contractional, transcurrent and extensional structures. The maximum horizontal shortening axis determined in this work describes a steady, semi-circular pattern centered at Alpha Regio. This deformation continued, although with subdued activity, after embayment of the deformation belts by the material of the plains. Future study of the tectonic evolution of the lowland plains should take into account the importance of the coeval history of neighboring uplands and lowlands.  相似文献   

5.
Baltis Vallis is a 6800-km long canali-type channel on Venus. Canali have a unique combination of morphological characteristics: extraordinary length, a single main conduit, and a degree of similarity to terrestrial rivers. These characteristics have given rise to intensive discussions on whether the origin of canali is erosional or constructional. Cross-sectional profiles of such channels reveal the detailed morphology of the structure and enable us to distinguish between these two possible origins; however, canali are just several kilometers wide and are therefore too small for the construction of cross-sectional profiles from Magellan altimetry data. Instead, we propose a new method for reconstructing short-wavelength topography using brightness data from Synthetic Aperture Radar images. We apply Muhleman's backscattering function to the backscatter intensity calculated from the brightness of Magellan Full-Resolution SAR Map images. The estimated vertical error of this new method is less than 5 m for a distance of 1 km across the channel. We studied 120 sites along an approximately 6000 km extent of Baltis Vallis. The channel profiles reveal that in nearly 90% of these sites, the bottom surface of the channel is lower than the surrounding plains by 20-100 m. Clear levee structures and intra-channel ridges are recognized in about 30 and 25%, respectively, of the sites analyzed within Baltis Vallis. Most of the levees occur in the upper segment of Baltis Vallis, while intra-channel ridges are mostly confined to the region between 1500 and 3000 km downstream from the probable source. The average depth and width of the channel are 46 m (standard deviation: 16 m) and 2.2 km (standard deviation: 0.4 km), respectively, and the depth profile along the channel is highly undulatory. The groove-like morphology and paucity of levee structures indicates an erosional origin. Furthermore, the observed undulations in depth along the channel indicate that Baltis Vallis most likely formed by mechanical erosion. The observed morphological transition from levees to intra-channel ridges suggests that the channel-forming processes changed across an area located approximately 1500 km from the source. Carbonatite is the most likely candidate material for the low-viscosity fluid that formed Baltis Vallis.  相似文献   

6.
We have quantitatively assessed the resurfacing sources and styles in eighteen mapped venusian quadrangles, about 30% of the venusian surface. Each quadrangle was split into 0.5° by 0.5° boxes, which were then identified as corona materials, large volcano materials (>100 km diameter), intermediate volcano materials (10-100 km), small edifice materials (<10 km), flow materials from rifts or fractures, plains without an identifiable source, impact crater materials and highly deformed materials, or data gaps. We find that coronae resurface approximately 21%, small edifices 22% and large volcanoes about 6% of the surfaces analyzed. Plains with no identifiable source account for an average of 35% of the surface assessed. Small edifices resurface on a scale of 10-100 s of km2; large edifices resurface areas of 104-105 km2. Coronae have greatly varying amounts of associated volcanism, with some coronae producing negligible flow deposits and others producing deposits of 104-106 km2. The areas identified as plains with no visible source occur on small scales (102 km2) to large scales (> 105 km2). Our results indicate that the majority of plains resurfacing by volcanism can be tied to an identifiable source, that fields of small edifices contribute more to resurfacing than we had anticipated, and that resurfacing styles do not appear to have evolved over the time period represented by the surface geology in the mapped quadrangles. All of the units that we quantified occur throughout the histories of the regions mapped. We favor plains resurfacing to have occurred over at least 100 myr, which implies terrestrially reasonable resurfacing rates.  相似文献   

7.
In order to assess the age relations between astra/novae (features with extensive radial fracture-graben systems) and their surroundings, and to determine the duration of their activity, we undertook a photogeologic analysis of Magellan images of 78 astra, 49 dark-parabola craters and 114 clear-halo craters. For seven of these 78 astra it was found that the astrum-forming faulting started before or close to the time of emplacement of regional plains and extended into the second part of post-regional-plains time. Because the mean age of the regional plains is close to the mean surface age of Venus (which is estimated to be ∼750 m.y), this means that the duration of activity of these seven astra was several hundred millions of years. This is longer than the duration of activity of ongoing mantle plumes on Earth, but shorter than the duration of activity of the plume feeding the martian volcano Olympus Mons. The basic morphologic characteristics of these seven astra, as well as their age relations with other geologic units, are similar to those of the majority of other astra; therefore, such a long duration could also be typical of some other astra. We confirm the two-phase (pre- and post-regional-plains) evolution of astrum-forming faulting suggested in previous studies. For the first phase we show evidence for purely tectonic faulting caused by the diapiric rise of a mantle plume. For the second phase we find evidence supporting the interpretation of other studies that the observed faults resulted from subsurface dike intrusions produced by magmatism associated with the plume. We also found that faulting during the second phase was not instantaneous but distributed over a long period of time.  相似文献   

8.
In this study we examine a set of lunar mare domes located in the Hortensius/Milichius/T. Mayer region and in northern Mare Tranquillitatis with respect to their formation along crustal fractures, their rheologic properties, the dimensions of their feeder dikes, and the importance of magma evolution processes during dome formation. Many of these domes display elongated summit vents oriented radially with respect to major impact basins, and several dome locations are also aligned in these preferential directions. Analysis of Clementine UV/VIS and Lunar Prospector gamma ray spectrometer data reveals that the examined mare domes formed from low-Si basaltic lavas of high FeO and low to moderate TiO2 content. Based on their morphometric properties (diameter, height, volume) obtained by photoclinometric and shape from shading analysis of telescopic CCD images, we derive rheologic quantities (lava viscosity during eruption, effusion rate, duration of the effusion process, magma rise speed) and the dimensions of the feeder dikes. We establish three rheologic groups characterised by specific combinations of rheologic properties and dike dimensions, where the most relevant discriminative parameter is the lava viscosity η. The first group is characterised by and contains the domes with elongated vents in the Milichius/T. Mayer region and two similar domes in northern Mare Tranquillitatis. The second group with comprises the very low aligned domes in northern Mare Tranquillitatis, and the third group with the relatively steep domes near Hortensius and in the T. Mayer region. The inferred dike dimensions in comparison to lunar crustal thickness data indicate that the source regions of the feeder dikes are situated within the upper crust for six of the domes in northern Mare Tranquillitatis, while they are likely to be located in the lower crust and in the upper mantle for the other examined domes. By comparing the time scale of magma ascent with the time scale on which heat is conducted from the magma into the host rock, we find evidence that the importance of magma evolution processes during ascent such as cooling and crystallisation increases with lava viscosity. We conclude that different degrees of evolution of initially fluid basaltic magma are able to explain the broad range of lava viscosities inferred for the examined mare domes. The spectral data reveal that differences in TiO2 content may additionally account for the systematic difference in lava viscosity between the two examined lunar regions. We show that the described mechanisms are likely to be valid also for other lunar mare domes situated near Cauchy and Arago, regarded for comparison. On the other hand, we find for the Gruithuisen and Mairan highland domes that despite their inferred high lava viscosities of , no significant magma cooling in the dike occurred during ascent, supporting previous findings that the highland domes were formed during a specific phase of non-mare volcanism by highly silicic viscous lavas.  相似文献   

9.
The origin of the martian chaotic terrains is still uncertain; and a variety of geologic scenarios have been proposed. We provide topographic profiles of different chaos landscapes, notably Aureum and Hydraotes Chaos, showing that an initial shallow ground subsidence occurred at the first step of the chaos formation. We infer that the subsidence was caused by intrusion of a volcanic sill; which could have produced consequent melting as well as release of ground water from disrupted aquifer. Signs of a volcanic activity are observed on the floor of Hydraotes Chaos, a complex and deep depression located at the junction of three channels. The volcanic activity is represented by small, 0.5 to 1.5 km diameter, rounded cones with summit pits. The cone's size and morphology, as well as the presence of possible surrounding lava flows, suggest that they are primary volcanic cones similar to terrestrial cinder cones. The identification of volcanic activity on the deepest chaos, where the lower crustal thickness and the faults/fractures system contributed to the magma rising, reveals that magmatic activity, proved by the cones, and possibly help by structural activity, has been a major factor in the formation of chaotic terrains.  相似文献   

10.
The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be determined with the available data sets) involved intense deformation and building of regions of thicker crust (tessera). This was followed by the Guineverian Period. Distributed deformed plains, mountain belts, and regional interconnected groove belts characterize the first part and the vast majority of coronae began to form during this time. The second part of the Guineverian Period involved global emplacement of vast and mildly deformed plains of volcanic origin. A period of global wrinkle ridge formation largely followed the emplacement of these plains. The third phase (Atlian Period) involved the formation of prominent rift zones and fields of lava flows unmodified by wrinkle ridges that are often associated with large shield volcanoes and, in places, with earlier-formed coronae. Atlian volcanism may continue to the present. About 70% of the exposed surface of Venus was resurfaced during the Guineverian Period and only about 16% during the Atlian Period. Estimates of model absolute ages suggest that the Atlian Period was about twice as long as the Guineverian and, thus, characterized by significantly reduced rates of volcanism and tectonism. The three major phases of activity documented in the global stratigraphy and geological map, and their interpreted temporal relations, provide a basis for assessing the geodynamical processes operating earlier in Venus history that led to the preserved record.  相似文献   

11.
The composition and detailed morphology of dome-shaped features located in western Arcadia Planitia and just west of Utopia Planitia were examined in this study utilizing data from Mars Reconnaissance Orbiter and Mars Odyssey sensors. The domes have diameters averaging 1.5 km and heights averaging 160 m, and are generally dark-toned, although some are lighter toned or have split dark and light-toned surfaces. The domes are surrounded by annular deposits comprising, with increasing distance from the domes, dark-toned aprons, light-toned aureoles, and dark-toned aureoles. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data over several areas in the western Arcadia region show that spectra from the flanks of several domes have 1 and 2 μm absorption features consistent with the presence of olivine and a high-Ca pyroxene, nominally augite. Modified Gaussian Model (MGM) analysis of these spectra indicates Fe-rich olivine compositions. The tops of domes and the aprons surrounding many domes have negative sloping flat spectra in the near infrared, which is consistent with tachylite-rich, glassy compositions. High Resolution Imaging Science Experiment (HiRISE) images over several domes indicate that relatively high thermal inertia values associated with the tops of domes can be attributed to boulder strewn surfaces. HiRISE images also reveal that light-toned aureoles around domes consist of crenulated ground resembling “brain terrain” textures previously described for ice-rich concentric crater fill elsewhere on the northern plains. The plains surrounding the domes also display lineations that are interpreted to be lava channels or tubes. The combination of volcanic and ice-related features are consistent with the domes having formed as cryptodomes in the near sub-surface. We suggest that the domes could be basaltic in composition if the magmas were degassed and/or highly crystallized, and thus more viscous than typical basaltic magmas. The intrusion of these magmas into an ice-rich horizon would have produced a pervasively jointed chilled margin on the domes, which, once the domes were exposed, would have mechanically weathered to form the dark aprons. The domes could have served as local centers for ice accumulation during periods of high orbital obliquity, which ultimately would have led to the formation of the “brain terrain” surrounding the features. The domes represent late stage volcanic products on the northern plains of Mars and associated features provide more evidence for the role that ice accumulation and modification has played in recent martian history.  相似文献   

12.
D. Studd  C. Samson 《Icarus》2011,215(1):279-291
Radiating graben-fissure systems are common on Venus. Most are thought to be underlain by mafic dykes, fed by centrally-located magmatic centres. From previous work it has been shown that these magmatic plumbing systems can extend out up to 2000 km or more and that interaction between neighbouring systems can provide insight into the relative chronology of their magmatic centres. Systematic mapping of graben-fissure systems has potential as a tool for regional magmatic chronology and correlation on Venus.This methodology is applied to the Ulfrun Regio area (200-240°E, 0-25°N) where we mapped 47,000 graben and fissures. From these, 66 radiating systems comprised of 13,000 individual graben and fissures, and having radii of up to 2000 km have been identified, and are interpreted to be underlain by dyke swarms focussed on magmatic centres. Cross-cutting relationships among these systems and with the Hecate Chasma rift zone have been examined to provide a relative chronology for the magmatic centres. Two trends emerged: (a) an apparent younging from the southwest to northeast of the study area and (b) a cluster of older ages in the southwest, linked to the Atla Regio mantle plume.  相似文献   

13.
We produced the first geologic map of the Amirani-Gish Bar region of Io, the last of four regional maps generated from Galileo mission data. The Amirani-Gish Bar region has five primary types of geologic materials: plains, mountains, patera floors, flows, and diffuse deposits. The flows and patera floors are thought to be compositionally similar, but are subdivided based on interpretations regarding their emplacement environments and mechanisms. Our mapping shows that volcanic activity in the Amirani-Gish Bar region is dominated by the Amirani Eruptive Center (AEC), now recognized to be part of an extensive, combined Amirani-Maui flow field. A mappable flow connects Amirani and Maui, suggesting that Maui is fed from Amirani, such that the post-Voyager designation “Maui Eruptive Center” should be revised. Amirani contains at least four hot spots detected by Galileo, and is the source of widespread bright (sulfur?) flows and active dark (silicate?) flows being emplaced in the Promethean style (slowly emplaced, compound flow fields). The floor of Gish Bar Patera has been partially resurfaced by dark lava flows, although other parts of its floor are bright and appeared unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a lava lake as proposed for other ionian paterae. There are several other hot spots in the region that are the sources of both active dark flows (confined within paterae), and SO2- and S2-rich diffuse deposits. Mapped diffuse deposits around fractures on mountains and in the plains appear to serve as the source for gas venting without the release of magma, an association previously unrecognized in this region. The six mountains mapped in this region exhibit various states of degradation. In addition to gaining insight into this region of Io, all four maps are studied to assess the best methodology to use to produce a new global geologic map of Io based on the newly released, combined Galileo-Voyager global mosaics. To convey the complexity of ionian surface geology, we find that a new global geologic map of Io should include a map sheet displaying the global abundances and types of surface features as well as a complementary GIS database as a means to catalog the record of surface changes observed since the Voyager flybys and during the Galileo mission.  相似文献   

14.
More than 200 venusian channels and valleys have been mapped based on analyses of Magellan SAR images. Sinuous rilles are the most abundant channels among six types of venusian channels, and they are widely distributed on Venus. Morphological characteristics of venusian sinuous rilles include sinuous narrowing reaches, source depressions, and length of several 10s to a few 100s of km. This type of channels is known to exist on the Moon and possibly on Mars. Valley networks on Venus often occur in the vicinity of or in connection to sinuous rilles. Cross-sectional morphologies of sinuous rilles and valley networks are of special importance in discussing their formation processes both qualitatively and quantitatively. We reconstructed cross-sectional profiles of 6 sinuous rilles and 2 valley networks using a new radar clinometric method. Reconstructed cross-sections revealed that floors of the channels and valleys are clearly lower than the surrounding plains. This finding implies that the sinuous rilles and the valley networks have erosional origins. Longitudinal depth profiles of the sinuous rilles show distinct decreasing trends toward the termini. Such decreasing trends of depths are qualitatively in agreement with theoretical models and laboratory experiments of thermal erosion. In order to verify this assertion quantitatively, we conduct simple 1-dimensional model calculations under the assumption that both channel-forming lavas and ground substrate are tholeiitic basalt. For initial lava thicknesses in the range 2-6 m, the model calculations yield good matches to the depth profiles. Estimated duration of lava effusion ranges from several months to a few years. These numerical results support thermal erosion of the sinuous rilles but do not necessarily exclude contributions from mechanical erosion processes. Valley networks seem to have formed under a strong structural control in comparison to sinuous rilles. The valleys vary widely in characteristics of the depth profile and flow directions relative to surface slopes. Therefore valley networks appear to have originated from diverse formation mechanisms.  相似文献   

15.
The Medusae Fossae Formation (MFF) has long been thought to be of Amazonian age, but recent studies propose that a significant part of its emplacement occurred in the Hesperian and that many of the Amazonian ages represent modification (erosional and redepositional) ages. On the basis of the new formational age, we assess the hypothesis that explosive eruptions from Apollinaris Patera might have been the source of the Medusae Fossae Formation. In order to assess the likelihood of this hypothesis, we examine stratigraphic relationships between Apollinaris Patera and the MFF and analyze the relief of the MFF using topographic data. We predict the areal distribution of tephra erupted from Apollinaris Patera using a Mars Global Circulation Model (GCM) combined with a semi-analytical explosive eruption model for Mars, and compare this with the distribution of the MFF. We conclude that Apollinaris Patera could have been responsible for the emplacement of the Medusae Fossae Formation.  相似文献   

16.
Emplacement of the youngest flood lava on Mars: A short, turbulent story   总被引:1,自引:0,他引:1  
Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision.  相似文献   

17.
J. Vaucher  N. Mangold  K. Kurita 《Icarus》2009,204(2):418-151
Central Elysium Planitia (CEP) is located south of Elysium Mons. Back to the era of the Viking orbiters, clues accumulated in favor of recent volcanism in relation with ground water release and the formation of long sub-parallel fissures. Four aqueous flood channel systems emanate from linear fissures. Recent eruptions of low viscosity lavas originate from these fissures and from low shield volcanoes. The objective of this paper is to constrain the volcanic history of this region, and to determine the chronological relationships with fluvial/erosional processes. New observations (e.g., new shield volcanoes and one new fluvial event) are summarized on a context map. Thirty-five surfaces have been dated from the count of about 15,000 impact craters. Ages have been cross-checked with relative stratigraphy when possible. A probabilistic approach has been introduced to compare similar ages and define periods of volcanic activity. Our results confirm that some volcanic features are extremely recent (∼2 My). Active periods are found at 2.5-3 My, 4.3 My, 13.5-16.2 My, 19 My, 21-32 My, 58 My, 71 My, 85-95 My, 134 My, 173 My and 234 My, not excluding the possibility that some of the gaps would be filled with additional crater counts. The volcanic activity thus extended for at least the last 250 My. The lava volumes have been estimated from the topographic modeling of the floor of depressions filled up by volcanic products, including the volumes of several large crater cavities buried under lavas (>20% of the total volume). Our new estimation of the total lava volume is 1.5 ± 0.2 × 105 km3. This value corresponds to an average thickness of one hundred meters of lavas for the young volcanic plain. As a consequence, the total eruption rate at CEP, defined as the total volume of lava divided by the time of emplacement 1.4 × 10−2-1.8 × 10−2 m3/s is lower than values typically estimated for terrestrial hot spots or large igneous provinces, suggesting longer inactive periods. The concept of mantle plumes responsible for terrestrial flood volcanism may not be applicable to the case of CEP and the mechanism proposed in Schumacher and Dreuer (2007) offers a plausible alternative to explain our observations.  相似文献   

18.
We describe a model for crater populations on planets and satellites with dense atmospheres, like those of Venus and Titan. The model takes into account ablation (or mass shedding), pancaking, and fragmentation. Fragmentation is assumed to occur due to the hydrodynamic instabilities promoted by the impactors’ deceleration in the atmosphere. Fragments that survive to hit the ground make craters or groups thereof. Crater sizes are estimated using standard laws in the gravity regime, modified to take into account impactor disruption. We use Monte Carlo methods to pick parameters from appropriate distributions of impactor mass, zenith angle, and velocity. Good fits to the Venus crater populations (including multiple crater fields) can be found with reasonable values of model parameters. An important aspect of the model is that it reproduces the dearth of small craters on Venus: this is due to a cutoff on crater formation we impose, when the expected crater would be smaller than the (dispersed) object that would make it. Hydrodynamic effects alone (ablation, pancaking, fragmentation) due to the passage of impactors through the atmosphere are insufficient to explain the lack of small craters. In our favored model, the observed number of craters (940) is produced by ∼5500 impactors with masses , yielding an age of (1-σ uncertainty) for the venusian surface. This figure does not take into account any uncertainties in crater scaling and impactor population characteristics, which probably increase the uncertainty to a factor of two in age.We apply the model with the same parameter values to Titan to predict crater populations under differing assumptions of impactor populations that reflect present conditions. We assume that the impactors (comets) are made of 50% porous ice. Predicted crater production rates are ≈190 craters . The smallest craters on Titan are predicted to be in diameter, and ≈5 crater fields are expected. If the impactors are composed of solid ice (density ), crater production rates increase by ≈70% and the smallest crater is predicted to be in diameter. We give cratering rates for denser comets and atmospheres 0.1 and 10 times as thick as Titan's current atmosphere. We also explicitly address leading-trailing hemisphere asymmetries that might be seen if Titan's rotation rate were strictly synchronous over astronomical timescales: if that is the case, the ratio of crater production on the leading hemisphere to that on the trailing hemisphere is ≈4:1.  相似文献   

19.
This study examines a set of lunar domes with very low flank slopes which differ in several respects from the frequently occurring lunar effusive domes. Some of these domes are exceptionally large, and most of them are associated with faults or linear rilles of presumably tensional origin. Accordingly, they might be interpreted as surface manifestations of laccolithic intrusions formed by flexure-induced vertical uplift of the lunar crust (or, alternatively, as low effusive edifices due to lava mantling of highland terrain, or kipukas, or structural features). All of them are situated near the borders of mare regions or in regions characterised by extensive effusive volcanic activity. Clementine multispectral UVVIS imagery indicates that they do not preferentially occur in specific types of mare basalt. Our determination of their morphometric properties, involving a combined photoclinometry and shape from shading technique applied to telescopic CCD images acquired at oblique illumination, reveals large dome diameters between 10 and more than 30 km, flank slopes below 0.9°, and volumes ranging from 0.5 to 50 km3. We establish three morphometric classes. The first class, In1, comprises large domes with diameters above 25 km and flank slopes of 0.2°-0.6°, class In2 is made up by smaller and slightly steeper domes with diameters of 10-15 km and flank slopes between 0.4° and 0.9°, and domes of class In3 have diameters of 13-20 km and flank slopes below 0.3°. While the morphometric properties of several candidate intrusive domes overlap with those of some classes of effusive domes, we show that a possible distinction criterion are the characteristic elongated outlines of the candidate intrusive domes. We examine how they differ from typical effusive domes of classes 5 and 6 defined by Head and Gifford [Head, J.W., Gifford, A., 1980. Lunar mare domes: classification and modes of origin. Moon Planets 22, 235-257], and show that they are likely no highland kipukas due to the absence of spectral contrast to their surrounding. These considerations serve as a motivation for an analysis of the candidate intrusive domes in terms of the laccolith model by Kerr and Pollard [Kerr, A.D., Pollard, D.D., 1998. Toward more realistic formulations for the analysis of laccoliths. J. Struct. Geol. 20(12), 1783-1793], to estimate the geophysical parameters, especially the intrusion depth and the magma pressure, which would result from the observed morphometric properties. Accordingly, domes of class In1 are characterised by intrusion depths of 2.3-3.5 km and magma pressures between 18 and 29 MPa. For the smaller and steeper domes of class In2 the magma intruded to shallow depths between 0.4 and 1.0 km while the inferred magma pressures range from 3 to 8 MPa. Class In3 domes are similar to those of class In1 with intrusion depths of 1.8-2.7 km and magma pressures of 15-23 MPa. As an extraordinary feature, we describe in some detail the concentric crater Archytas G associated with the intrusive dome Ar1 and discuss possible modes of origin. In comparison to the candidate intrusive domes, terrestrial laccoliths tend to be smaller, but it remains unclear if this observation is merely a selection effect due to the limited resolution of our telescopic CCD images. An elongated outline is common to many terrestrial laccoliths and the putative lunar laccoliths, while the thickness values measured for terrestrial laccoliths are typically higher than those inferred for lunar laccoliths, but the typical intrusion depths are comparable.  相似文献   

20.
We produced regional geologic maps of the Hi’iaka and Shamshu regions of Io’s antijovian hemisphere using Galileo mission data to assess the geologic processes that are involved in the formation of Io’s mountains and volcanic centers. Observations reveal that these regions are characterized by several types of volcanic activity and features whose orientation and texture indicate tectonic activity. Among the volcanic features are multiple hotspots and volcanic vents detected by Galileo, one at each of the major paterae: Hi’iaka, Shamshu, and Tawhaki. We mapped four primary types of geologic units: flows, paterae floors, plains, and mountains. The flows and patera floors are similar, but are subdivided based upon emplacement environments and mechanisms. The floors of Hi’iaka and Shamshu Paterae have been partially resurfaced by dark lava flows, although portions of the paterae floors appear bright and unchanged during the Galileo mission; this suggests that the floors did not undergo complete resurfacing as flooding lava lakes. However, the paterae do contain compound lava flow fields and show the greatest activity near the paterae walls, a characteristic of Pele type lava lakes. Mountain materials are tilted crustal blocks that exhibit varied degrees of degradation. Lineated mountains have characteristic en echelon grooves that likely formed as a result of gravitational sliding. Undivided mountains are partially grooved but exhibit evidence of slumping and are generally lower elevation than the lineated units. Debris lobes and aprons are representative of mottled mountain materials. We have explored the possibility that north and south Hi’iaka Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units and created a depression which, by further extension during the rifting event, became Hi’iaka Patera. This type of rifting and depression formation is similar to the mechanism of formation of terrestrial pull-apart basins. With comparison to other regional maps of Io and global studies of paterae and mountains, this work provides insight into the general geologic evolution of Io.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号