首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely recognised that a significant limitation to the ultimate precision of carbon stable isotope ratio measurements, as obtained from dual-inlet mass spectrometric measurements of CO2 isotopologue ion abundances at m/z 44, 45, and 46, is the correction for interference from 17O-bearing molecular ions. Two long-established, alternative procedures for determining the magnitude of this correction are in widespread use (although only one has IAEA approval); their differences lead to small but potentially significant discrepancies in the magnitude of the resulting correction. Furthermore, neither approach was designed to accommodate oxygen three-isotope distributions which do not conform to terrestrial mass-dependent behaviour. Stratospheric CO2, for example, contains a strongly ‘mass-independent’ oxygen isotope composition. A new strategy for determining the 17O-bearing ion correction is presented, for application where the oxygen three-isotope characteristics of the analyte CO2 are accurately known (or assigned) in terms of the slope λ of the three-isotope fractionation line and the ordinate axis intercept 103 ln(1 + k) on a 103 ln(1 + δ17O) versus 103 ln(1 + δ18O) plot. At the heart of the approach is the relationship between 17R, which is the 17O/16O ratio of the sample CO2, and other assigned or empirically determined parameters needed for the δ13C evaluation:
  相似文献   

2.
Rhodochrosite crystals were precipitated from Na-Mn-Cl-HCO3 parent solutions following passive, forced and combined passive-to-forced CO2 degassing methods. Forced and combined passive-to-forced CO2 degassing produced rhodochrosite crystals with a small non-equilibrium oxygen isotope effect whereas passive CO2 degassing protocols yielded rhodochrosite in apparent isotopic equilibrium with water. On the basis of the apparent equilibrium isotopic data, a new temperature-dependent relation is proposed for the oxygen isotope fractionation between rhodochrosite and water between 10 and 40 °C:
1000lnαrhodochrosite-water=17.84±0.18(103/T)-30.24±0.62  相似文献   

3.
The solubility of synthetic NdPO4 monazite end-member was experimentally determined from 300 up to 800 °C, at 2000 bars in pure water, and in aqueous chloride or phosphate solutions. Both the classical weight-loss method and a new method based on isotope dilution coupled with thermal ionization mass spectrometer were used. In the range of temperature studied monazite showed a prograde solubility from 10−5.4 m at 300 °C up to 10−2.57 m at 800 °C. Experiments in H2O-H3PO4-NaCl-HCl solutions suggested Nd(OH)30 was the major species that was formed at high temperature and pressure. The equilibrium constants (log K) for the reaction:
  相似文献   

4.
Aragonite was precipitated in the laboratory at 25 °C in isotopic equilibrium with Na-Ca-Mg-Cl-CO3 solutions at two different pH values (i.e., pH = ∼8.2 and ∼10.8) by the constant addition method. On the basis of the oxygen isotope composition of the aragonite precipitates, it was demonstrated that the equilibrium aragonite-water fractionation factor is independent of the pH of the parent solution and equal to:
1000lnα(aragonite-H2O)=29.12±0.09  相似文献   

5.
The oxygen isotope fractionation between the structural carbonate of inorganically precipitated hydroxyapatite (HAP) and water was determined in the range 10-37 °C. Values of 1000 ln α() are linearly correlated with inverse temperature (K) according to the following equation: 1000 ln α() = 25.19 (±0.53)·T−1 − 56.47 (±1.81) (R2 = 0.998). This fractionation equation has a slightly steeper slope than those already established between calcite and water ( [O’Neil et al., 1969] and [Kim and O’Neil, 1997]) even though measured fractionations are of comparable amplitude in the temperature range of these experimental studies. It is consequently observed that the oxygen isotope fractionation between apatite carbonate and phosphate increases from about 7.5‰ up to 9.1‰ with decreasing temperature from 37 °C to 10 °C. A compilation of δ18O values of both phosphate and carbonate from modern mammal teeth and bones confirms that both variables are linearly correlated, despite a significant scattering up to 3.5‰, with a slope close to 1 and an intercept corresponding to a 1000 ln α() value of 8.1‰. This apparent fractionation factor is slightly higher or close to the fractionation factor expected to be in the range 7-8‰ at the body temperature of mammals.  相似文献   

6.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

7.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

8.
The solubility of ZnS(cr) was measured at 100 °C, 150 bars in sulfide solutions as a function of sulfur concentration (m(Stotal) = 0.02-0.15) and acidity (pHt = 2-11). The experiments were conducted using a Ti flow-through hydrothermal reactor enabling the sampling of large volumes of solutions at experimental conditions, with the subsequent concentration and determination of trace quantities of Zn. Prior to the experiments, a long-term in situ conditioning of the solid phase was performed in order to attain the reproducible Zn concentrations (i.e. solubilities). The ZnS(cr) solubility product was monitored in the course of the experiment. The following species were found to account for Zn speciation in solution: Zn2+ (pHt < 3), (pHt 3-4.5), (pHt 5-8), and ZnS(HS) (pHt > 8) (pHt predominance regions are given for m(Stotal) = 0.1). Solubility data collected in this study at pHt > 3 were combined with the ZnS(cr) solubility product determined at lower pH to yield the following equilibrium constants (t = 100 °C, P = 150 bars):
  相似文献   

9.
Stable oxygen isotopic fractionation during inorganic calcite precipitation was experimentally studied by spontaneous precipitation at various pH (8.3 < pH < 10.5), precipitation rates (1.8 < log R < 4.4 μmol m− 2 h− 1) and temperatures (5, 25, and 40 °C) using the CO2 diffusion technique.The results show that the apparent stable oxygen isotopic fractionation factor between calcite and water (αcalcite–water) is affected by temperature, the pH of the solution, and the precipitation rate of calcite. Isotopic equilibrium is not maintained during spontaneous precipitation from the solution. Under isotopic non-equilibrium conditions, at a constant temperature and precipitation rate, apparent 1000lnαcalcite–water decreases with increasing pH of the solution. If the temperature and pH are held constant, apparent 1000lnαcalcite–water values decrease with elevated precipitation rates of calcite. At pH = 8.3, oxygen isotopic fractionation between inorganically precipitated calcite and water as a function of the precipitation rate (R) can be described by the expressions
at 5, 25, and 40 °C, respectively.The impact of precipitation rate on 1000lnαcalcite–water value in our experiments clearly indicates a kinetic effect on oxygen isotopic fractionation during calcite precipitation from aqueous solution, even if calcite precipitated slowly from aqueous solution at the given temperature range. Our results support Coplen's work [Coplen T. B. (2007) Calibration of the calcite–water oxygen isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957], which indicates that the equilibrium oxygen isotopic fractionation factor might be greater than the commonly accepted value.  相似文献   

10.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

11.
Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO3, CaCl2 and MgCl2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO3(aq) system (as ) increased with average mol percentage of Mg (XMg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO3(aq) system. Although did not vary for precipitation rates that ranged from 103.21 to 104.60 μmol m−2 h−1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 103 ln α could not be evaluated from these experiments.  相似文献   

12.
Ammonium was injected from the subseafloor hydrothermal system at the Endeavour Segment, Juan de Fuca Ridge, into the deep-sea water column resulting in an -rich (?177 nM) neutrally buoyant hydrothermal plume. This was quickly removed by both autotrophic ammonia oxidation and assimilation. The former accounted for at least 93% of total net removal, with its maximum rate in the neutrally buoyant plume (?53 nM d−1) up to 10-fold that in background deep water. Ammonia oxidation in this plume potentially added 26-130 mg into the deep-sea water column. This oxidation process was heavily influenced by the presence of organic-rich particles, with which ammonia-oxidizing bacteria (AOB) were often associated (40-68%). AOB contributed up to 10.8% of the total microbial communities within the plume, and might constitute a novel lineage of β-proteobacterial AOB based on 16S rRNA and amoA phylogenetic analyses. Meanwhile, assimilation rates were also substantially enhanced within the neutrally buoyant plume (?26.4 nM d−1) and accounted for at least 47% of total net removal rates. The combined oxidation and assimilation rates always exceeded total net removal rates, suggesting active in situregeneration rates of at least an order of magnitude greater than the particulate nitrogen flux from the euphotic zone. Ammonia oxidation is responsible for turnover of 0.7-13 days and is probably the predominant in situ organic carbon production process (0.6-13 mg C m−2 d−1) at early stages of Endeavour neutrally buoyant plumes.  相似文献   

13.
The application of stable Fe isotopes as a tracer of the biogeochemical Fe cycle necessitates a mechanistic knowledge of natural fractionation processes. We studied the equilibrium Fe isotope fractionation upon sorption of Fe(II) to aluminum oxide (γ-Al2O3), goethite (α-FeOOH), quartz (α-SiO2), and goethite-loaded quartz in batch experiments, and performed continuous-flow column experiments to study the extent of equilibrium and kinetic Fe isotope fractionation during reactive transport of Fe(II) through pure and goethite-loaded quartz sand. In addition, batch and column experiments were used to quantify the coupled electron transfer-atom exchange between dissolved Fe(II) (Fe(II)aq) and structural Fe(III) of goethite. All experiments were conducted under strictly anoxic conditions at pH 7.2 in 20 mM MOPS (3-(N-morpholino)-propanesulfonic acid) buffer and 23 °C. Iron isotope ratios were measured by high-resolution MC-ICP-MS. Isotope data were analyzed with isotope fractionation models. In batch systems, we observed significant Fe isotope fractionation upon equilibrium sorption of Fe(II) to all sorbents tested, except for aluminum oxide. The equilibrium enrichment factor, , of the Fe(II)sorb-Fe(II)aq couple was 0.85 ± 0.10‰ (±2σ) for quartz and 0.85 ± 0.08‰ (±2σ) for goethite-loaded quartz. In the goethite system, the sorption-induced isotope fractionation was superimposed by atom exchange, leading to a δ56/54Fe shift in solution towards the isotopic composition of the goethite. Without consideration of atom exchange, the equilibrium enrichment factor was 2.01 ± 0.08‰ (±2σ), but decreased to 0.73 ± 0.24‰ (±2σ) when atom exchange was taken into account. The amount of structural Fe in goethite that equilibrated isotopically with Fe(II)aq via atom exchange was equivalent to one atomic Fe layer of the mineral surface (∼3% of goethite-Fe). Column experiments showed significant Fe isotope fractionation with δ56/54Fe(II)aq spanning a range of 1.00‰ and 1.65‰ for pure and goethite-loaded quartz, respectively. Reactive transport of Fe(II) under non-steady state conditions led to complex, non-monotonous Fe isotope trends that could be explained by a combination of kinetic and equilibrium isotope enrichment factors. Our results demonstrate that in abiotic anoxic systems with near-neutral pH, sorption of Fe(II) to mineral surfaces, even to supposedly non-reactive minerals such as quartz, induces significant Fe isotope fractionation. Therefore we expect Fe isotope signatures in natural systems with changing concentration gradients of Fe(II)aq to be affected by sorption.  相似文献   

14.
Partitioning of strontium during spontaneous calcite formation was experimentally studied using an advanced CO2-diffusion technique. Results at different precipitation rates and T = 5, 25, and 40 °C show that at constant temperature Sr incorporation into calcite is controlled by the precipitation rate (R in μmol/m2/h) according to the individual expressions
  相似文献   

15.
Four or five sets of ab initio models, including Unrestricted Hartree Fock (UHF) and hybrid Density Functional Theory (DFT) are calculated for each species in a series of aqueous ferric aquo-chloro complexes: , , , FeCl3(H2O)3, FeCl3(H2O)2, , FeCl5H2O2−, , ) in order to determine the relative isotopic fractionation among the complexes, to compare the results of different models for the same complexes, to examine factors that influence the magnitude of the isotopic fractionation, and to compare bond-partner-driven fractionation with redox-driven fractionation.Relative to , all models show a nearly linear decrease in 56Fe/54Fe as the number of Cl ions per Fe3+ ion increases, with slopes of −0.8‰ to −1.0‰ per Cl at 20 °C. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 8.93‰ to 9.73‰ for , 8.04-9.12‰ for , 7.61-8.73‰ for , 7.14-8.25‰ for , and 3.09-4.41‰ for . The fractionation between and ranges from 1.5‰ to 2.6‰, depending on the model; this is comparable in magnitude to fractionation effects due to Fe3+/Fe2+ redox reactions. β values from the UHF models are consistently higher than those from the hybrid DFT models.Isotopic fractionation is shown to be sensitive to differences in ligand bond stiffness (above), coordination number, bond length, and the frequency of the asymmetric Fe-X stretching vibrational mode, as predicted by previous theoretical studies. Complexes with smaller coordination numbers have higher 1000 ln β (7.46‰, 5.25‰, and 3.48‰ for , ,, respectively, from the B3LYP/6-31G(d) model). Species with the same number of chlorides but fewer waters also show the effect of coordination number on 1000 ln β: (7.46‰ vs. 7.05‰ for FeCl3(H2O)2 vs. FeCl3(H2O)3 and 5.25‰ vs. 4.94‰ for vs. FeCl5H2O2− with the B3LYP/6-31G(d) model). As more Fe-Cl bonds substitute for Fe-OH2 bonds (with a resulting decrease in β), the lengths of the Fe-Cl bonds and the Fe-O bonds increase.Preliminary modeling of shows an Fe3+/Fe2+ fractionation of 3.2‰ for the B3LYP/6-31G(d) model, in agreement with previous studies. The addition of an explicit outer hydration sphere of 12 H2O molecules to models of improves agreement with measured vibrational frequencies and bond lengths; 1000 ln β increases by 0.8-1.0‰. An additional hydration sphere around increases 1000 ln β by only 0.1‰.Isotopic fractionations predicted for this simple system imply that ligands present in an aqueous iron environment are potentially important drivers of fractionation, and suggest that significant fractionation effects are likely in other aqueous systems containing sulfides or organic ligands. Fractionation effects due to both speciation and redox must be considered when interpreting iron isotope fractionations in the geological record.  相似文献   

16.
Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 °C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M ? I ? 1 M), total dissolved carbonate concentration (10−4 M < ΣCO2 < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 °C, pH, and aqueous CO32− activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory (Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with
  相似文献   

17.
Aragonite was precipitated in the laboratory at 0, 5, 10, 25, and 40 °C to determine the temperature dependence of the equilibrium oxygen isotope fractionation between aragonite and water. Forced CO2 degassing, passive CO2 degassing, and constant addition methods were employed to precipitate aragonite from supersaturated solutions, but the resulting aragonite-water oxygen isotope fractionation was independent of the precipitation method. In addition, under the experimental conditions of this study, the effect of precipitation rate on the oxygen isotope fractionation between aragonite and water was almost within the analytical error of ±∼0.13‰ and thus insignificant. Because the presence of Mg2+ ions is required to nucleate and precipitate aragonite from Na-Ca-Cl-HCO3 solutions under these experimental conditions, the influence of the total Mg2+ concentration (up to ∼0.9 molal) on the aragonite-water oxygen isotope fractionation was examined at 25 °C. No significant Mg2+ ion effect, or oxygen isotope salt effect, was detected up to 100 mmolal total Mg2+ but a noticeable isotope salt effect was observed at ∼0.9 molal total Mg2+.On the basis of results of the laboratory synthesis experiments, a new expression for the aragonite-water fractionation is proposed over the temperature range of 0-40 °C:
1000lnαaragonite-water=17.88±0.13(103/T)-31.14±0.46  相似文献   

18.
Mass-spectrometric stable isotope measurements of CO2 use molecular ion currents at mass-to-charge ratios m/z 44, 45 and 46 to derive the elemental isotope ratios n(13C)/n(12C) and n(18O)/n(16O), abbreviated 13C/12C and 18O/16O, relative to a reference. The ion currents have to be corrected for the contribution of 17O-bearing isotopologues, the so-called ‘17O correction’. The magnitude of this correction depends on the calibrated isotope ratios of the reference. Isotope ratio calibrations are difficult and are therefore a matter of debate. Here, I provide a comprehensive evaluation of the existing 13C/12C (13R), 17O/16O (17R) and 18O/16O (18R) calibrations of the reference material Vienna Standard Mean Ocean Water (VSMOW) and CO2 generated from the reference material Vienna Pee Dee Belemnite (VPDB) by reaction with 100% H3PO4 at 25 °C (VPDB-CO2). I find , 18RVSMOW/10−6 = 2005.20 ± 0.45, 13RVPDB-CO2/10-6= 11124 ± 45, and 18RVPDB-CO2/10-6=2088.37±0.90. I also rephrase the calculation scheme for the 17O correction completely in terms of relative isotope ratio differences (δ values). This reveals that only ratios of isotope ratios (namely, 17R/13R and 13R17R/18R) are required for the 17O correction. These can be, and have been, measured on conventional stable isotope mass spectrometers. I then show that the remaining error for these ratios of isotope ratios can lead to significant uncertainty in the derived relative 13C/12C difference, but not for18O/16O. Even though inter-laboratory differences can be corrected for by a common ‘ratio assumption set’ and/or normalisation, the ultimate accuracy of the 17O correction is hereby limited. Errors of similar magnitude can be introduced by the assumed mass-dependent relationship between 17O/16O and 18O/16O isotope ratios. For highest accuracy in the 13C/12C ratio, independent triple oxygen isotope measurements are required. Finally, I propose an experiment that allows direct measurement of 13R17R/18R.  相似文献   

19.
The enthalpy of mixing of the calcite-rhodochrosite (Ca,Mn)CO3 solid solution was determined at 25 °C from calorimetric measurements of the enthalpy of precipitation of solids with different compositions. A detailed study of the broadening of powder X-ray diffraction peaks shows that most of the precipitates are compositionally homogeneous. All the experimental enthalpy of mixing (ΔHm) values are positive and fit reasonably well (R2 = 0.86) to a Guggenheim function of three terms:
  相似文献   

20.
Ammoniojarosite [(NH4,H3O)Fe3(OH)6(SO4)2], a poorly soluble basic ferric sulfate, was produced by microbiological oxidation of ferrous sulfate at pH 2.0-3.0 over a range of concentrations (5.4-805 mM) and temperatures (22-65 °C). Ammoniojarosites were also produced by chemical (abiotic) procedures in parallel thermal (36-95 °C) experiments. At 36 °C, schwertmannite [ideally Fe8O8(OH)6(SO4)] was the only solid product formed at <10 mM concentrations. Between 11.5 and 85.4 mM , a mixed product of ammoniojarosite and schwertmannite precipitated, as identified by X-ray diffraction. In excess of 165 mM , ammoniojarosite was the only solid phase produced. An increase in the incubation temperature using thermoacidophiles at 45 and 65 °C accelerated the formation of ammoniojarosite in culture solutions containing 165 mM . Both the biogenic and chemical ammoniojarosites were yellow (2Y-4Y in Munsell hue), low surface area (<1 m2/g), well crystalline materials with average co and ao unit cell parameters of 17.467 ± 0.048 Å and 7.330 ± 0.006 Å, respectively. Strong positive correlations were observed between unit cell axial ratios (co/ao) and increasing synthesis temperature in both biotic and abiotic systems. All samples were N deficient compared to stoichiometric ammoniojarosite, and both chemical and X-ray data indicated partial replacement of by H3O+ to form solid solutions with 0.14-0.24 mole H3O+ per formula unit. The morphology of the biogenic jarosites included aggregated discs, pseudo-cubic crystals and botryoidal particles, whereas the chemical specimens prepared at 36-95 °C were composed of irregular crystals with angular edges. Morphological information may thus be useful to evaluate environmental parameters and mode of formation. The data may also have application in predicting phase boundary conditions for Fe(III) precipitation in biogeochemical processes and treatment systems involving acid sulfate waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号