首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matija ?uk  David Nesvorný 《Icarus》2010,207(2):732-743
About 15% of both near-Earth and main-belt asteroids with diameters below 10 km are now known to be binary. These small asteroid binaries are relatively uniform and typically contain a fast-spinning, flattened primary and a synchronously rotating, elongated secondary that is 20-40% as large (in diameter) as the primary. The principal formation mechanism for these binaries is now thought to be YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect induced spin-up of the primary followed by mass loss and accretion of the secondary from the released material. It has previously been suggested (?uk, M. [2007]. Astrophys. J. 659, L57-L60) that the present population of small binary asteroids is in a steady state between production through YORP and destruction through binary YORP (BYORP), which should increase or decrease secondary’s orbit, depending on the satellite’s shape. However, BYORP-driven evolution has not been directly modeled until now. Here we construct a simple numerical model of the binary’s orbital as well the secondary’s rotational dynamics which includes BYORP and selected terms representing main solar perturbations. We find that many secondaries should be vulnerable to chaotic rotation even for relatively low-eccentricity mutual orbits. We also find that the precession of the mutual orbit for typical small binary asteroids might be dominated by the perturbations from the prolate and librating secondary, rather than the oblate primary. When we evolve the mutual orbit by BYORP we find that the indirect effects on the binary’s eccentricity (through the coupling between the orbit and the secondary’s spin) dominate over direct ones caused by the BYORP acceleration. In particular, outward evolution causes eccentricity to increase and eventually triggers chaotic rotation of the secondary. We conclude that the most likely outcome will be reestablishing of the synchronous lock with a “flipped” secondary which would then evolve back in. For inward evolution we find an initial decrease of eccentricity and secondary’s librations, to be followed by later increase. We think that it is likely that various forms of dissipation we did not model may damp the secondary’s librations close to the primary, allowing for further inward evolution and a possible merger. We conclude that a merger or a tidal disruption of the secondary are the most likely outcomes of the BYORP evolution. Dissociation into heliocentric pairs by BYORP alone should be very difficult, and satellite loss might be restricted to the minority of systems containing more than one satellite at the time.  相似文献   

2.
Using 8-10-m class telescopes and their Adaptive Optics (AO) systems, we conducted a long-term adaptive optics campaign initiated in 2003 focusing on four binary asteroid systems: (130) Elektra, (283) Emma, (379) Huenna, and (3749) Balam. The analysis of these data confirms the presence of their asteroidal satellite. We did not detect any additional satellite around these systems even though we have the capability of detecting a loosely-bound fragment (located at 1/4×RHill) ∼40 times smaller in diameter than the primary. The orbits derived for their satellites display significant eccentricity, ranging from 0.1 to 0.9, suggesting a different origin. Based on AO size estimate, we show that (130) Elektra and (283) Emma, G-type and P-type asteroids, respectively, have a significant porosity (30-60% considering CI-CO meteorites as analogs) and their satellite's eccentricities (e∼0.1) are possibly due to excitation by tidal effects. (379) Huenna and (3749) Balam, two loosely bound binary systems, are most likely formed by mutual capture. (3749) Balam's possible high bulk density is similar to (433) Eros, another S-type asteroid, and should be poorly fractured as well. (379) Huenna seems to display both characteristics: the moonlet orbits far away from the primary in term of stability (20%×RHill), but the primary's porosity is significant (30-60%).  相似文献   

3.
Up to now, there has been no corroboration from Cassini CIRS of the Voyager IRIS-discovery of cyanoacetylene (HC3N) ice in Titan’s thermal infrared spectrum. We report the first compelling spectral evidence from CIRS for the ν6 HC3N ice feature at 506 cm−1 at latitudes 62°N and 70°N, from which we derive particle sizes and column abundances in Titan’s lower stratosphere. We find mean particle radii of 3.0 μm and 2.3 μm for condensed HC3N at 62°N and 70°N, respectively, and corresponding ice phase molecular column abundances in the range 1-10 × 1016 mol cm−2. Only upper limits for cloud abundances can be established at latitudes of 85°N, 55°N, 30°N, 10°N, and 15°S. Under the assumption that cloud tops coincide with the uppermost levels at which HC3N vapor saturates, we infer geometric thicknesses for the clouds equivalent to 10-20 km or so, with tops at 165 km and 150 km at 70°N and 62°N, respectively.  相似文献   

4.
We present models of the near-infrared (1-5 μm) spectra of Saturn’s F ring obtained by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) at ultra-high phase angles (177.4-178.5°). Modeling this spectrum constrains the size distribution, composition, and structure of F ring particles in the 0.1-100 μm size range. These spectra are very different from those obtained at lower phase angles; they lack the familiar 1.5 and 2 μm absorption bands, and the expected 3 μm water ice primary absorption appears as an unusually narrow dip at 2.87 μm. We have modeled these data using multiple approaches. First, we use a simple Mie scattering model to constrain the size distribution and composition of the particles. The Mie model allows us to understand the overall shapes of the spectra in terms of dominance by diffraction at these ultra-high phase angles, and also to demonstrate that the 2.87 μm dip is associated with the Christiansen frequency of water ice (where the real refractive index passes unity). Second, we use a combination of Mie scattering with Effective Medium Theory to probe the effect of porous (but structureless) particles on the overall shape of the spectrum and depth of the 2.87 μm band. Such simple models are not able to capture the shape of this absorption feature well. Finally, we model each particle as an aggregate of discrete monomers, using the Discrete Dipole Approximation (DDA) model, and find a better fit for the depth of the 2.87 μm feature. The DDA models imply a slightly different overall size distribution. We present a simple heuristic model which explains the differences between the Mie and DDA model results. We conclude that the F ring contains aggregate particles with a size distribution that is distinctly narrower than a typical power law, and that the particles are predominantly crystalline water ice.  相似文献   

5.
We report radar, photometric, and spectroscopic observations of near-Earth Asteroid (136617) 1994 CC. The radar measurements were obtained at Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) on 9 days following the asteroid’s approach within 0.0168 AU on June 10, 2009. 1994 CC was also observed with the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) on May 21 and June 1-3. Visible-wavelength spectroscopy was obtained with the 5-m Hale telescope at Palomar on August 25. Delay-Doppler radar images reveal that 1994 CC is a triple system; along with (153591) 2001 SN263, this is only the second confirmed triple in the near-Earth population. Photometry obtained with PROMPT yields a rotation period for the primary P = 2.38860 ± 0.00009 h and a lightcurve amplitude of ∼0.1 mag suggesting a shape with low elongation. Hale telescope spectroscopy indicates that 1994 CC is an Sq-class object. Delay-Doppler radar images and shape modeling reveal that the primary has an effective diameter of 0.62 ± 0.06 km, low pole-on elongation, few obvious surface features, and a prominent equatorial ridge and sloped hemispheres that closely resemble those seen on the primary of binary near-Earth Asteroid (66391) 1999 KW4. Detailed orbit fitting reported separately by Fang et al. (Fang, J., Margot, J.-L., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A. [2011]. Astron. J. 141, 154-168) gives a mass of the primary of 2.6 × 1011 kg that, coupled with the effective diameter, yields a bulk density of 2.1 ± 0.6 g cm−3. The images constrain the diameters of the inner and outer satellites to be 113 ± 30 m and 80 ± 30 m, respectively. The inner satellite has a semimajor axis of ∼1.7 km (∼5.5 primary radii), an orbital period of ∼30 h, and its Doppler dispersion suggests relatively slow rotation, 26 ± 12 h, consistent with spin-orbit lock. The outer satellite has an orbital period of ∼9 days and a rotation period of 14 ± 7 h, establishing that the rotation is not spin-orbit locked. Among all binary and triple systems observed by radar, at least 25% (7/28) have a satellite that rotates more rapidly than its orbital period. This suggests that asynchronous configurations with Protation < Porbital are relatively common among multiple systems in the near-Earth population. 1994 CC’s outer satellite has an observed maximum separation from the primary of ∼5.7 km (∼18.4 primary radii) that is the largest separation relative to primary radius seen to date among all 36 known binary and triple NEA systems. 1994 CC, (153591) 2001 SN263, and 1998 ST27 are the only triple and binary systems known with satellite separations >10 primary radii, suggesting either a detection bias, or that such widely-separated satellites are relatively uncommon in NEA multiple systems.  相似文献   

6.
A large, circular marking ∼1800 km across is seen in near-infrared images of Titan. The feature is centered at 10°S, 120°W on Titan, encompasses much of Titan’s western Xanadu region, and has an off-center, quasi-circular, inner margin about 700 km across, with lobate outer margins extending 200-500 km from the inner margin. On the feature’s southern flank is Tui Regio, an area that has very high reflectivity at 5 μm, and is hypothesized to exhibit geologically recent cryovolcanic flows (Barnes, J.W. et al. [2006]. Geophys. Res. Lett. 33), similar to flows seen in Hotei Regio, a cryovolcanic area whose morphology may be controlled by pre-existing, crustal fractures resulting from an ancient impact (Soderblom, L.A. et al. [2009]. Icarus, 204). The spectral reflectivity of the large, circular feature is quite different than that of its surroundings, making it compositionally distinct, and radar measurements of its topography, brightness temperature and volume scattering also suggest that the feature is quite distinct from its surroundings. These and several other lines of evidence, in addition to the feature’s morphology, suggest that it may occupy the site of an ancient impact.  相似文献   

7.
We present observations of Uranus taken with the near-infrared camera NIRC2 on the 10-m W.M. Keck II telescope, the Wide Field Planetary Camera 2 (WFPC2) and the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) from July 2007 through November 2009. In this paper we focus on a bright southern feature, referred to as the “Berg.” In Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., Ahue, A.W., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M. [2009]. Icarus 203, 265-286), we reported that this feature, which oscillated between latitudes of −32° and −36° for several decades, suddenly started on a northward track in 2005. In this paper we show the complete record of observations of this feature’s track towards the equator, including its demise. After an initially slow linear drift, the feature’s drift rate accelerated at latitudes ∣θ∣ < 25°. By late 2009 the feature, very faint by then, was spotted at a latitude of −5° before disappearing from view. During its northward track, the feature’s morphology changed dramatically, and several small bright unresolved features were occasionally visible poleward of the main “streak.” These small features were sometimes visible at a wavelength of 2.2 μm, indicative that the clouds reached altitudes of ∼0.6 bar. The main part of the Berg, which is generally a long sometimes multipart streak, is estimated to be much deeper in the atmosphere, near 3.5 bars in 2004, but rising to 1.8-2.5 bars in 2007 after it began its northward drift. Through comparisons with Neptune’s Great Dark Spot and simulations of the latter, we discuss why the Berg may be tied to a vortex, an anticyclone deeper in the atmosphere that is visible only through orographic companion clouds.  相似文献   

8.
S.J. Weidenschilling 《Icarus》2011,214(2):671-684
The present size frequency distribution (SFD) of bodies in the asteroid belt appears to have preserved some record of the primordial population, with an excess of bodies of diameter D ∼ 100 km relative to a simple power law. The survival of Vesta’s basaltic crust also implies that the early SFD had a shallow slope in the range ∼10-100 km. (Morbidelli, A., Bottke, W.F., Nesvorny, D., Levison, H.F. [2009]. Icarus 204, 558-573) were unable to produce these features by accretion from an initial population of km-sized planetesimals. They concluded that bodies with sizes in the range ∼100-1000 km and a SFD similar to the current population were produced directly from solid particles of sub-meter scale, without experiencing accretion through intermediate sizes. We present results of new accretion simulations in the primordial asteroid region. The requisite SFD can be produced from an initial population of planetesimals of sizes ?0.1 km, smaller than the usual assumption of km-sized bodies. The bump at D ∼ 100 km is produced by a transition from dispersion-dominated runaway growth to a regime dominated by Keplerian shear, before the formation of large protoplanetary embryos. Thus, accretion of the asteroids from an initial population of small (sub-km) planetesimals cannot be ruled out.  相似文献   

9.
We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn’s moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion.We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s−1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan’s surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results.Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/Mi ∼ 1-2 were found in the simulations.  相似文献   

10.
After molecular nitrogen, methane is the most abundant species in Titan’s atmosphere and plays a major role in its energy budget and its chemistry. Methane has strong bands at 3.3 μm emitting mainly at daytime after absorption of solar radiation. This emission is strongly affected by non-local thermodynamic equilibrium (non-LTE) in Titan’s upper atmosphere and, hence, an accurate modeling of the non-LTE populations of the emitting vibrational levels is necessary for its analysis. We present a sophisticated and extensive non-LTE model which considers 22 CH4 levels and takes into account all known excitation mechanisms in which they take part. Solar absorption is the major excitation process controlling the population of the v3-quanta levels above 1000 km whereas the distribution of the vibrational energy within levels of similar energy through collisions with N2 is also of importance below that altitude. CH4-CH4 vibrational exchange of v4-quanta affects their population below 500 km. We found that the ν3 → ground band dominates Titan’s 3.3 μm daytime limb radiance above 750 km whereas the ν3 + ν4 → ν4 band does below that altitude and down to 300 km. The ν3 + ν2 → ν2, the 2ν3 → ν3, and the 13CH4ν3 → ground bands each contribute from 5% to 8% at regions below 800 km. The ν3 + 2ν4 → 2ν4and ν2 + ν3 + ν4 → ν2 + ν4 bands each contribute from 2% to 5% below 650 km. Contributions from other CH4 bands are negligible. We have used the non-LTE model to retrieve the CH4 abundance from 500 to 1100 km in the southern hemisphere from Cassini-VIMS daytime measurements near 3.3 μm. Our retrievals show good agreement with previous measurements and model results, supporting a weak deviation from well mixed values from the lower atmosphere up to 1000 km.  相似文献   

11.
Arecibo (2380 MHz, 12.6 cm) and Goldstone (8560 MHz, 3.5 cm) delay-Doppler radar images obtained in July and August of 2000 reveal that 4486 Mithra is an irregular, significantly bifurcated object, with a central valley ∼380 m deep and a long axis potentially exceeding 2 km. With its bimodal appearance, Mithra is a strong candidate for a contact binary asteroid. Sequences of Goldstone images spanning up to 3 h per day show very little rotation and establish that Mithra is an unusually slow rotator. We used Goldstone and Arecibo data to estimate Mithra’s 3D shape and spin state. We obtain prograde (λ = 337°, β = 19°) and retrograde (λ = 154°, β = −19°) models that give comparable fits, have very similar shapes roughly resembling an hourglass, and have a rotation period of 67.5 ± 6.0 h. The dimensions of these two models are very similar; for the prograde solution the maximum dimensions are X = 2.35 ± 0.15 km, Y = 1.65 ± 0.10 km, Z = 1.44 ± 0.10 km. Dynamical analysis of our models suggests that in the past, Mithra most likely went through a period of even slower rotation with its obliquity close to 90°. The spin rate is predicted to be increasing due to thermal torque (YORP), while the obliquity, which is currently +68° and +106° for the prograde and retrograde models, respectively, is predicted to move away from 90°.  相似文献   

12.
We obtained time-resolved, near-infrared spectra of Io during the 60-90 min following its reappearance from eclipse by Jupiter on five occasions in 2004. The purpose was to search for spectral changes, particularly in the well-known SO2 frost absorption bands, that would indicate surface-atmosphere exchange of gaseous SO2 induced by temperature changes during eclipse. These observations were a follow-on to eclipse spectroscopy observations in which Bellucci et al. [Bellucci et al., 2004. Icarus 172, 141-148] reported significant changes in the strengths of two strong SO2 bands in data acquired with the VIMS instrument aboard the Cassini spacecraft. One of the bands (4.07 μm [ν1 + ν3]) observed by Bellucci et al. is visible from ground-based observatories and is included in our data. We detected no changes in Io’s spectrum at any of the five observed events during the approximately 60-90 min during which spectra were obtained following Io’s emergence from Jupiter’s shadow. The areas of the three strongest SO2 bands in the region 3.5-4.15 μm were measured for each spectrum; the variation of the band areas with time does not exceed that which can be explained by the Io’s few degrees of axial rotation during the intervals of observation, and in no case does the change in band strength approach that seen in the Cassini VIMS data. Our data are of sufficient quality and resolution to show the weak 2.198 μm (4549.6 cm−1) 4ν1 band of SO2 frost on Io for what we believe is the first time. At one of the events (June 22, 2004), we began the acquisition of spectra ∼6 min before Io reappeared from Jupiter’s shadow, during which time it was detected through its own thermal emission. No SO2 bands were superimposed on the purely thermal spectrum on this occasion, suggesting that the upper limit to condensed SO2 in the vertical column above Io’s surface was ∼4 × 10−5 g cm−2.  相似文献   

13.
Here we show results from thermal-infrared observations of km-sized binary near-Earth asteroids (NEAs). We combine previously published thermal properties for NEAs with newly derived values for three binary NEAs. The η value derived from the near-Earth asteroid thermal model (NEATM) for each object is then used to estimate an average thermal inertia for the population of binary NEAs and compared against similar estimates for the population of non-binaries. We find that these objects have, in general, surface temperatures cooler than the average values for non-binary NEAs as suggested by elevated η values. We discuss how this may be evidence of higher-than-average surface thermal inertia. This latter physical parameter is a sensitive indicator of the presence or absence of regolith: bodies covered with fine regolith, such as the Earth’s moon, have low thermal inertia, whereas a surface with little or no regolith displays high thermal inertia. Our results are suggestive of a binary formation mechanism capable of altering surface properties, possibly removing regolith: an obvious candidate is the YORP effect.We present also newly determined sizes and geometric visible albedos derived from thermal-infrared observations of three binary NEAs: (5381) Sekhmet, (153591) 2001 SN263, and (164121) 2003 YT1. The diameters of these asteroids are 1.41 ± 0.21 km, 1.56 ± 0.31 km, and 2.63 ± 0.40 km, respectively. Their albedos are 0.23 ± 0.13, 0.24 ± 0.16, and 0.048 ± 0.015, respectively.  相似文献   

14.
Lijie Han  Adam P. Showman 《Icarus》2011,212(1):262-267
We present self-consistent, fully coupled two-dimensional (2D) numerical models of thermal evolution and tidal heating to investigate how convection interacts with tidal dissipation under the influence of non-Newtonian grain-size-sensitive creep rheology (plausibly resulting from grain boundary sliding) in Europa’s ice shell. To determine the thermal evolution, we solved the convection equations (using finite-element code ConMan) with the tidal dissipation as a heat source. For a given heterogeneous temperature field at a given time, we determined the tidal dissipation rate throughout the ice shell by solving for the tidal stresses and strains subject to Maxwell viscoelastic rheology (using finite-element code Tekton). In this way, the convection and tidal heating are fully coupled and evolve together. Our simulations show that the tidal dissipation rate can have a strong impact on the onset of thermal convection in Europa’s ice shell under non-Newtonian GSS rheology. By varying the ice grain size (1-10 mm), ice-shell thickness (20-120 km), and tidal-strain amplitude (0-4 × 10−5), we study the interrelationship of convection and conduction regimes in Europa’s ice shell. Under non-Newtonian grain-size-sensitive creep rheology and ice grain size larger than 1 mm, no thermal convection can initiate in Europa’s ice shell (for thicknesses <100 km) without tidal dissipation. However, thermal convection can start in thinner ice shells under the influence of tidal dissipation. The required tidal-strain amplitude for convection to occur decreases as the ice-shell thickness increases. For grain sizes of 1-10 mm, convection can occur in ice shells as thin as 20-40 km with the estimated tidal-strain amplitude of 2 × 10−5 on Europa.  相似文献   

15.
We performed a complete wavelet analysis of Saturn’s C ring on 62 stellar occultation profiles. These profiles were obtained by Cassini’s Ultraviolet Imaging Spectrograph High Speed Photometer. We used a WWZ wavelet power transform to analyze them. With a co-adding process, we found evidence of 40 wavelike structures, 18 of which are reported here for the first time. Seventeen of these appear to be propagating waves (wavelength changing systematically with distance from Saturn). The longest new wavetrain in the C ring is a 52-km-long wave in a plateau at 86,397 km. We produced a complete map of resonances with external satellites and possible structures rotating with Saturn’s rotation period up to the eighth order, allowing us to associate a previously observed wave with the Atlas 2:1 inner Lindblad resonance (ILR) and newly detected waves with the Mimas 6:2 ILR and the Pandora 4:2 ILR. We derived surface mass densities and mass extinction coefficients, finding σ = 0.22(±0.03) g cm−2 for the Atlas 2:1 ILR, σ = 1.31(±0.20) g cm−2 for the Mimas 6:2 ILR, and σ = 1.42(±0.21) g cm−2 for the Pandora 4:2 ILR. We determined a range of mass extinction coefficients (κ = τ/σ) for the waves associated with resonances with κ = 0.13 (±0.03) to 0.28(±0.06) cm2 g−1, where τ is the optical depth. These values are higher than the reported values for the A ring (0.01-0.02 cm2 g−1) and the Cassini Division (0.07-0.12 cm2 g−1 from Colwell et al. (Colwell, J.E., Cooney, J.H., Esposito, L.W., Srem?evi?, M. [2009]. Icarus 200, 574-580)). We also note that the mass extinction coefficient is probably not constant across the C ring (in contrast to the A ring and the Cassini Division): it is systematically higher in the plateaus than elsewhere, suggesting smaller particles in the plateaus. We present the results of our analysis of these waves in the C ring and estimate the mass of the C ring to be between3.7(±0.9) × 1016 kg and 7.9(±2.0) × 1016 kg (equivalent to an icy satellite of radius between 28.0(±2.3) km and 36.2(±3.0) km with a density of 400 kg m−3, close to that of Pan or Atlas). Using the ring viscosity derived from the wave damping length, we also estimate the vertical thickness of the C ring between 1.9(±0.4) m and 5.6(±1.4) m, comparable to the vertical thickness of the Cassini Division.  相似文献   

16.
P. Hedelt  Y. Ito  L. Esposito 《Icarus》2010,210(1):424-435
Based on measurements performed by the Hydrogen Deuterium Absorption Cell (HDAC) aboard the Cassini orbiter, Titan’s atomic hydrogen exosphere is investigated. Data obtained during the T9 encounter are used to infer the distribution of atomic hydrogen throughout Titan’s exosphere, as well as the exospheric temperature.The measurements performed during the flyby are modeled by performing Monte Carlo radiative transfer calculations of solar Lyman-α radiation, which is resonantly scattered on atomic hydrogen in Titan’s exosphere. Two different atomic hydrogen distribution models are applied to determine the best fitting density profile. One model is a static model that uses the Chamberlain formalism to calculate the distribution of atomic hydrogen throughout the exosphere, whereas the second model is a Particle model, which can also be applied to non-Maxwellian velocity distributions.The density distributions provided by both models are able to fit the measurements although both models differ at the exobase: best fitting exobase atomic hydrogen densities of nH = (1.5 ± 0.5) × 104 cm−3 and nH = (7 ± 1) × 104 cm−3 were found using the density distribution provided by both models, respectively. This is based on the fact that during the encounter, HDAC was sensitive to altitudes above about 3000 km, hence well above the exobase at about 1500 km. Above 3000 km, both models produce densities which are comparable, when taking into account the measurement uncertainty.The inferred exobase density using the Chamberlain profile is a factor of about 2.6 lower than the density obtained from Voyager 1 measurements and much lower than the values inferred from current photochemical models. However, when taking into account the higher solar activity during the Voyager flyby, this is consistent with the Voyager measurements. When using the density profile provided by the particle model, the best fitting exobase density is in perfect agreement with the densities inferred by current photochemical models.Furthermore, a best fitting exospheric temperature of atomic hydrogen in the range of TH = (150-175) ± 25 K was obtained when assuming an isothermal exosphere for the calculations. The required exospheric temperature depends on the density distribution chosen. This result is within the temperature range determined by different instruments aboard Cassini. The inferred temperature is close to the critical temperature for atomic hydrogen, above which it can escape hydrodynamically after it diffused through the heavier background gas.  相似文献   

17.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

18.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

19.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

20.
The relation between gravity anomalies, topography and volcanism can yield important insights about the internal dynamics of planets. From the power spectra of gravity and topography on Earth, Venus and Mars we infer that gravity anomalies have likely predominantly sources below the lithosphere up to about spherical harmonic degree l=30 for Earth, 40 for Venus and 5 for Mars. To interpret the low-degree part of the gravity spectrum in terms of possible sublithospheric density anomalies we derive radial mantle viscosity profiles consistent with mineral physics. For these viscosity profiles we then compute gravity and topography kernels, which indicate how much gravity anomaly and how much topography is caused by a density anomaly at a given depth. With these kernels, we firstly compute an expected gravity-topography ratio. Good agreement with the observed ratio indicates that for Venus, in contrast to Earth and Mars, long-wavelength topography is largely dynamically supported from the sublithospheric mantle. Secondly, we combine an empirical power spectrum of density anomalies inferred from seismic tomography in Earth’s mantle with gravity kernels to model the gravity power spectrum. We find a good match between modeled and observed gravity power spectrum for all three planets, except for 2?l?4 on Venus. Density anomalies in the Venusian mantle for these low degrees thus appear to be very small. We combine gravity kernels and the gravity field to derive radially averaged density anomaly models for the Martian and Venusian mantles. Gravity kernels for l?5 are very small on Venus below ≈800 km depth. Thus our inferences on Venusian mantle density are basically restricted to the upper 800 km. On Mars, gravity anomalies for 2?l?5 may originate from density anomalies anywhere within its mantle. For Mars as for Earth, inferred density anomalies are dominated by l=2 structure, but we cannot infer whether there are features in the lowermost mantle of Mars that correspond to Earth’s Large Low Shear Velocity Provinces (LLSVPs). We find that volcanism on Mars tends to occur primarily in regions above inferred low mantle density, but our model cannot distinguish whether or not there is a Martian analog for the finding that Earth’s Large Igneous Provinces mainly originate above the margins of LLSVPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号