首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high-e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, “rubble pile” asteroid geophysics, and gravitational interactions. The YORP effect torques a “rubble pile” asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.  相似文献   

2.
3.
P. Pravec  A.W. Harris 《Icarus》2007,190(1):250-259
We compiled a list of estimated parameters of binary systems among asteroids from near-Earth to trojan orbits. In this paper, we describe the construction of the list, and we present results of our study of angular momentum content in binary asteroids. The most abundant binary population is that of close binary systems among near-Earth, Mars-crossing, and main belt asteroids that have a primary diameter of about 10 km or smaller. They have a total angular momentum very close to, but not generally exceeding, the critical limit for a single body in a gravity regime. This suggests that they formed from parent bodies spinning at the critical rate (at the gravity spin limit for asteroids in the size range) by some sort of fission or mass shedding. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a candidate to be the dominant source of spin-up to instability. Gravitational interactions during close approaches to the terrestrial planets cannot be a primary mechanism of formation of the binaries, but it may affect properties of the NEA part of the binary population.  相似文献   

4.
D.J. Scheeres 《Icarus》2007,189(2):370-385
The energetics and dynamics of contact binary asteroids as they approach and pass the rotational fission limit is studied. We presume that the asteroids are subject to an external torque, such as from the YORP effect, that increases their angular momentum. Furthermore, we assume the asteroids can be described by a fairly minimal model comprised of a sphere and ellipsoid resting on each other. The minimum energy configurations for contact binary asteroids at different levels of angular momentum are computed and discussed. We find distinct transitions between different configurations as the angular momentum of the system is increased. These indicate that rapidly rotating contact binary asteroids may seek out clearly different relative configurations than slowly rotating systems. We find a single end state of the systems prior to rotational fission, and distinct dynamical outcomes as a function of mass distribution and shape when the rotational fission limit is exceeded. Our theoretical results agree qualitatively with observed properties of near-Earth asteroids, and can be used to help explain the spin-rate barrier, contact binaries, and the observed morphology of most NEO binaries.  相似文献   

5.
We present numerical simulations of near-Earth asteroid (NEA) tidal disruption resulting in bound, mutually orbiting systems. Using a rubble pile model we have constrained the relative likelihoods for possible physical and dynamical properties of the binaries created. Overall 110,500 simulations were run, with each body consisting of ∼1000 particles. The encounter parameters of close approach distance and velocity were varied, as were the bodies' spin, elongation and spin axis direction. The binary production rate increases for closer encounters, at lower speeds, for more elongated bodies, and for bodies with greater spin. The semimajor axes for resultant binaries are peaked between 5 to 20 primary radii, and there is an overall trend for high eccentricity, with 97% of binaries having e > 0.1. The secondary-to-primary size ratios of the simulated binaries are peaked between 0.1 and 0.2, similar to trends among observed asteroid binaries. The spin rates of the primary bodies are narrowly distributed between 3.5- and 6-h periods, whereas the secondaries' periods are more evenly distributed and can exceed 15-h periods. The spin axes of the primary bodies are very closely aligned with the angular momenta of the binary orbits, whereas the secondary spin axes are nearly random. The shapes of the primaries show a large distribution of axis ratios, where those with low elongation (ratio of long and short axis) are both oblate and prolate, and nearly all with large elongation are prolate. This work presents results that suggest tidal disruption of gravitational aggregates can make binaries physically similar to those currently observed in the NEA population. As well, tidal disruption may create an equal number of binaries with qualities different from those observed, mostly binaries with large separation and with elongated primaries.  相似文献   

6.
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d−1, and there is an excess of slow rotators with f<1 d−1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d−1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d−1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (∼5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d−1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids.  相似文献   

7.
We report radar, photometric, and spectroscopic observations of near-Earth Asteroid (136617) 1994 CC. The radar measurements were obtained at Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) on 9 days following the asteroid’s approach within 0.0168 AU on June 10, 2009. 1994 CC was also observed with the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) on May 21 and June 1-3. Visible-wavelength spectroscopy was obtained with the 5-m Hale telescope at Palomar on August 25. Delay-Doppler radar images reveal that 1994 CC is a triple system; along with (153591) 2001 SN263, this is only the second confirmed triple in the near-Earth population. Photometry obtained with PROMPT yields a rotation period for the primary P = 2.38860 ± 0.00009 h and a lightcurve amplitude of ∼0.1 mag suggesting a shape with low elongation. Hale telescope spectroscopy indicates that 1994 CC is an Sq-class object. Delay-Doppler radar images and shape modeling reveal that the primary has an effective diameter of 0.62 ± 0.06 km, low pole-on elongation, few obvious surface features, and a prominent equatorial ridge and sloped hemispheres that closely resemble those seen on the primary of binary near-Earth Asteroid (66391) 1999 KW4. Detailed orbit fitting reported separately by Fang et al. (Fang, J., Margot, J.-L., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A. [2011]. Astron. J. 141, 154-168) gives a mass of the primary of 2.6 × 1011 kg that, coupled with the effective diameter, yields a bulk density of 2.1 ± 0.6 g cm−3. The images constrain the diameters of the inner and outer satellites to be 113 ± 30 m and 80 ± 30 m, respectively. The inner satellite has a semimajor axis of ∼1.7 km (∼5.5 primary radii), an orbital period of ∼30 h, and its Doppler dispersion suggests relatively slow rotation, 26 ± 12 h, consistent with spin-orbit lock. The outer satellite has an orbital period of ∼9 days and a rotation period of 14 ± 7 h, establishing that the rotation is not spin-orbit locked. Among all binary and triple systems observed by radar, at least 25% (7/28) have a satellite that rotates more rapidly than its orbital period. This suggests that asynchronous configurations with Protation < Porbital are relatively common among multiple systems in the near-Earth population. 1994 CC’s outer satellite has an observed maximum separation from the primary of ∼5.7 km (∼18.4 primary radii) that is the largest separation relative to primary radius seen to date among all 36 known binary and triple NEA systems. 1994 CC, (153591) 2001 SN263, and 1998 ST27 are the only triple and binary systems known with satellite separations >10 primary radii, suggesting either a detection bias, or that such widely-separated satellites are relatively uncommon in NEA multiple systems.  相似文献   

8.
This note discusses the stability of collinear equilibrium points around a rotating system composed of two masses rigidly connected by a massless rod in the case, where the centripetal force outweighs the gravitational force. It is found that a stable region appears at L1 when the ratio of gravitational to centripetal acceleration is less than 0.125, and that there is always no stable area at L2 and L3; the result is applied to the fast rotating Asteroid 2000EB14.  相似文献   

9.
Jay McMahon  Daniel Scheeres 《Icarus》2010,209(2):494-509
A previous theory by the authors for detailed modeling of the binary YORP effect is reviewed and expanded to accommodate doubly-synchronous binary systems, as well as a method for non-dimensionalizing the coefficients for application to binary systems where a shape model to compute its own coefficients is not available. The theory is also expanded to account for the effects of primary J2 and the Sun’s 3rd body perturbation on the secular orbit evolution. The newly expanded theory is applied to the binary near-Earth Asteroid 1999 KW4, for which a detailed shape model is available. The result of simulation of the secular evolutionary equations shows that the KW4 orbit will be double in size in approximately 22,000 years, and will reach the Hill radius in approximately 54,000 years. The simulation also shows that the eccentricity will alternate growing and shrinking in magnitude, depending on the location of the solar node in the body-fixed frame. Therefore the eccentricity is not fixed to evolve in the opposite sign as the semi-major axis unless the circulation of the node (with a period of 500 years) is averaged out as well. The current orbit expansion rate for KW4 of 7 cm per year is shown to be detectable with observations of the mean anomaly which grows quadratically in time with an expanding orbit. Finally, the KW4 results are scaled for application to a number of other binary systems for which detailed shape models are not available. This application shows that the orbits considered can expand to their Hill radius in the range of 104-106 years. This implies rapid formation of binary systems is necessary to support the large percentage of binaries observed in the NEA population.  相似文献   

10.
Although the theory of Roche 1847 for the tidal disruption limits of orbiting satellites assumes a fluid body, a length to diameter of exactly 2.07:1, and a particular body orientation, the theory is commonly applied to the satellites of the Solar System and to small asteroids and comets passing nearby a planet. Clearly these bodies are neither fluid nor generally are that elongated, so a more appropriate theory is needed. Here we present exact analytical results for the distortion and disruption limits of solid spinning ellipsoidal bodies subjected to tidal forces, using the Drucker-Prager strength model with zero cohesion. It is the appropriate model for dry granular materials such as sands and rocks, for rubble-pile asteroids and comets, and for larger satellites, asteroids and comets where the cohesion can be ignored. This study uses the same approach as the studies of spin limits for solid ellipsoidal bodies given in [Holsapple, K.A., 2001. Icarus 154, 432-448; Holsapple, K.A., 2004. Icarus 172, 272-303]. It is a static theory that predicts conditions for breakup and predicts the nature of the deformations at the limit state, but does not track the dynamics of the body as it comes apart. The strength is characterized by a single material parameter associated with an angle of friction, which can range from zero to 90°. The case with zero friction angle has no shear strength whatsoever, so it is then the model of a fluid or gas. The case of 90° represents a material that cannot fail in shear, but still has zero tensile strength. Typical dry soils have angles of friction of 30°-40°. Since the static fluid case is included in the theory as a special case, the classical results of Roche [Roche, E.A., 1847. Acad. Sci. Lett. Montpelier. Mem. Section Sci. 1, 243-262] and Jeans [Jeans, J.H., 1917. Mem. R. Astron. Soc. London 62, 1-48] are included and re-derived in their entirety; but the general solid case has much more variety and applicability. We consider both the spin-locked case, appropriate for most satellites of the Solar System; and the zero spin case, a possible case for a passing stray body. Detailed plots of many special cases are presented, in terms of shape, orientation and mass densities. A very typical result gives a closest approach d=1.5(ρ/ρP)1/3R in terms of the planet radius R, and the satellite and planet mass densities ρ and ρP. We also use the theory to distinguish between conditions allowing global shape changes leading to new equilibrium states, or those leading to complete disruption. We apply the theory to the potentially hazardous Asteroid 99942 Apophis due to pass very near the Earth in 2029, and conclude it is extremely unlikely to experience any tidal readjustments during its passage. The states of many of the satellites of the Solar System are compared to the theory, and we find that all are well within their tidal disruption limits for expected values of the internal friction.  相似文献   

11.
We present results of a simulation of a steady-state binary near-Earth asteroid (NEA) population. This study combines previous work on tidal disruption of gravitational aggregates [Walsh, K.J., Richardson, D.C., 2006. Icarus 180, 201-216] with a Monte Carlo simulation of NEA planetary encounters. Evolutionary effects include tidal evolution and binary disruption from close planetary encounters. The results show that with the best known progenitor (small Main Belt asteroids) shape and spin distributions, and current estimates of NEA lifetime and encounter probabilities, that tidal disruption should account for approximately 1-2% of NEAs being binaries. Given the best observed estimate of a ∼15% binary NEA fraction, we conclude that there are other formation mechanisms that contribute significantly to this population. We also present the expected distribution of binary orbital and physical properties for the steady-state binary NEAs formed by tidal disruption. We discuss the effects on binary fraction and properties due to changes in the least constrained parameters, and other possible effects on our model that could account for differences between the presented results and the observed binary population. Finally, we model possible effects of a significant population of binaries migrating to the near-Earth population from the Main Belt.  相似文献   

12.
The past tidal evolution of the satellite Dysnomia of the dwarf planet Eris can be inferred from the current physical and orbital properties of the system. Preliminary considerations, which assumed a circular orbit for the satellite, suggested that the satellite formed close to the planet, perhaps as a result of a giant impact, and that it is thus unlikely that smaller satellites lie further out. However, if the satellite's orbit is eccentric, even if the eccentricity is very small, a qualitatively different past tidal evolution may be indicated. Early in the Solar System's history, the satellite may have been on a highly eccentric orbit much farther from the planet than it is now, suggestive of a capture origin. Additional satellites farther out cannot be ruled out.  相似文献   

13.
In the restricted circular three-body problem, two massive bodies travel on circular orbits about their mutual center of mass and gravitationally perturb the motion of a massless particle. The triangular Lagrange points, L4 and L5, form equilateral triangles with the two massive bodies and lie in their orbital plane. Provided the primary is at least 27 times as massive as the secondary, orbits near L4 and L5 can remain close to these locations indefinitely. More than 2200 cataloged asteroids librate about the L4 and L5 points of the Sun-Jupiter system, and five bodies have been discovered around the L4 point of the Sun-Neptune system. Small satellites have also been found librating about the L4 and L5 points of two of Saturn's moons. However, no objects have been discovered around the Earth-Moon L4 and L5 points. Using numerical integrations, we show that orbits near the Earth-Moon L4 and L5 points can survive for over a billion years even when solar perturbations are included, but the further addition of the far smaller perturbations from other planets destabilize these orbits within several million years. Thus, the lack of observed objects in these regions cannot be used as a constraint on Solar System formation, nor on the tidal evolution of the Moon's orbit.  相似文献   

14.
Jack Wisdom 《Icarus》2008,193(2):637-640
Expressions for tidal dissipation in a body in synchronous rotation at arbitrary orbital eccentricity and obliquity are derived. The rate of tidal dissipation for a synchronously rotating body is compared to that in a body in asymptotic nonsynchronous rotation.  相似文献   

15.
Ishan Sharma 《Icarus》2009,(2):636-654
Many new small moons of the giant planets have been discovered recently. In parallel, satellites of several asteroids, e.g., Ida, have been found. Strikingly, a majority of these new-found planetary moons are estimated to have very low densities, which, along with their hypothesized accretionary origins, suggests a rubble internal structure. This, coupled to the fact that many asteroids are also thought to be particle aggregates held together principally by self-gravity, motivates the present investigation into the possible ellipsoidal shapes that a rubble-pile satellite may achieve as it orbits an aspherical primary. Conversely, knowledge of the shape will constrain the granular aggregate's orbit—the closer it gets to a primary, both primary's tidal effect and the satellite's spin are greater. We will assume that the primary body is sufficiently massive so as not to be influenced by the satellite. However, we will incorporate the primary's possible ellipsoidal shape, e.g., flattening at its poles in the case of a planet, and the proloidal shape of asteroids. In this, the present investigation is an extension of the first classical Darwin problem to granular aggregates. General equations defining an ellipsoidal rubble pile's equilibrium about an ellipsoidal primary are developed. They are then utilized to scrutinize the possible granular nature of small inner moons of the giant planets. It is found that most satellites satisfy constraints necessary to exist as equilibrated granular aggregates. Objects like Naiad, Metis and Adrastea appear to violate these limits, but in doing so, provide clues to their internal density and/or structure. We also recover the Roche limit for a granular satellite of a spherical primary, and employ it to study the martian satellites, Phobos and Deimos, as well as to make contact with earlier work of Davidsson [Davidsson, B., 2001. Icarus 149, 375–383]. The satellite's interior will be modeled as a rigid-plastic, cohesion-less material with a Drucker–Prager yield criterion. This rheology is a reasonable first model for rubble piles. We will employ an approximate volume-averaging procedure that is based on the classical method of moments, and is an extension of the virial method [Chandrasekhar, S., 1969. Ellipsoidal Figures of Equilibrium. Yale Univ. Press, New Haven] to granular solid bodies.  相似文献   

16.
We present the first observational measurement of the orbit and size distribution of small Solar System objects whose orbits are wholly interior to the Earth's (Inner Earth Objects, IEOs, with aphelion <0.983 AU). We show that we are able to model the detections of near-Earth objects (NEO) by the Catalina Sky Survey (CSS) using a detailed parameterization of the CSS survey cadence and detection efficiencies as implemented within the Jedicke et al. [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J.M., Bottke, W.F., 2003. Icarus 161, 17-33] survey simulator and utilizing the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] model of the NEO population's size and orbit distribution. We then show that the CSS detections of 4 IEOs are consistent with the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] IEO model. Observational selection effects for the IEOs discovered by the CSS were then determined using the survey simulator in order to calculate the corrected number and H distribution of the IEOs. The actual number of IEOs with H<18 (21) is 36±26 (530±240) and the slope of the H magnitude distribution (∝10αH) for the IEOs is . The slope is consistent with previous measurements for the NEO population of αNEO=0.35±0.02 [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] and αNEO=0.39±0.013 [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311]. Based on the agreement between the predicted and observed IEO orbit and absolute magnitude distributions there is no indication of any non-gravitational effects (e.g. Yarkovsky, tidal disruption) affecting the known IEO population.  相似文献   

17.
We present a comprehensive theory for the breakup conditions for ellipsoidal homogeneous secondary bodies subjected to the tidal forces from a nearby larger primary: for materials ranging from purely fluid ones, to granular rubble-pile gravel-like ones, and to those with either cohesive or granular strength including cohesive rocks and metals. The theory includes but greatly extends the classical analyses given by Roche in 1847, which dealt only with fluids, and also our previous analysis [Holsapple, K.A., Michel, P., 2006. Icarus 183, 331-348], which dealt only with solid but non-cohesive bodies. The results here give the distance inside of which breakup must occur, for both a steadily orbiting satellite and for a passing or impacting object. For the fluid bodies there is a single specific shape (a “Roche Ellipsoid”) that can be in equilibrium at any given distance from a primary, and especially only one shape that can exist at the overall minimum distance (d/R)(ρ/ρp)1/3=2.455, the classical well-known “Roche limit.” In contrast, solid bodies can exist at a given distance from a primary with a range of shapes. Here we give multiple plots of the minimum distances for various important combinations of body shape, spin, mass density, and the strength parameters characterized by an angle of friction and cohesive strength. Such results can be used in different ways. They can be used to estimate limits on strengths and mass densities for orbiting bodies at a known distance and shape. They can be used to determine breakup distances for passing bodies with an assumed strength and shape. They can be used to constraint physical properties such as bulk density of bodies with a known shape that were known to breakup at a given distance. A collection of approximately 40 satellites of the Solar System is used for comparison to the theory. About half of those bodies are closer than the Roche fluid limit and must have some cohesion and/or friction angle to exist at their present orbital distance. The required solid strength for those states is determined. Finally, we apply the theory to the break up of the SL9 comet at close approach with Jupiter. Our results make clear that the literature estimates of its bulk density depend markedly on unknown parameters such as shape, orientation and spin, and most importantly, material strength characterization.  相似文献   

18.
Thomas S. Statler 《Icarus》2009,202(2):502-513
Radiation recoil (YORP) torques are shown to be extremely sensitive to small-scale surface topography, using numerical simulations. Starting from a set of “base objects” representative of the near-Earth object population, random realizations of three types of small-scale topography are added: Gaussian surface fluctuations, craters, and boulders. For each, the expected relative errors in the spin and obliquity components of the YORP torque caused by the observationally unresolved small-scale topography are computed. Gaussian power, at angular scales below an observational limit, produces expected errors of order 100% if observations constrain the surface to a spherical harmonic order l?10. For errors under 10%, the surface must be constrained to at least l=20. A single crater with diameter roughly half the object's mean radius, placed at random locations, results in expected errors of several tens of percent. The errors scale with crater diameter D as D2 for D>0.3 and as D3 for D<0.3 mean radii. Objects that are identical except for the location of a single large crater can differ by factors of several in YORP torque, while being photometrically indistinguishable at the level of hundredths of a magnitude. Boulders placed randomly on identical base objects create torque errors roughly 3 times larger than do craters of the same diameter, with errors scaling as the square of the boulder diameter. A single boulder comparable to Yoshinodai on 25143 Itokawa, moved by as little as twice its own diameter, can alter the magnitude of the torque by factors of several, and change the sign of its spin component at all obliquities. Most of the total torque error produced by multiple unresolved craters is contributed by the handful of largest craters; but both large and small boulders contribute comparably to the total boulder-induced error. A YORP torque prediction derived from groundbased data can be expected to be in error by of order 100% due to unresolved topography. Small surface changes caused by slow spin-up or spin-down may have significant stochastic effects on the spin evolution of small bodies. For rotation periods between roughly 2 and 10 h, these unpredictable changes may reverse the sign of the YORP torque. Objects in this spin regime may random-walk up and down in spin rate before the rubble-pile limit is exceeded and fissioning or loss of surface objects occurs. Similar behavior may be expected at rotation rates approaching the limiting values for tensile-strength dominated objects.  相似文献   

19.
Tidal heating in Enceladus   总被引:1,自引:0,他引:1  
Jennifer Meyer  Jack Wisdom 《Icarus》2007,188(2):535-539
The heating in Enceladus in an equilibrium resonant configuration with other saturnian satellites can be estimated independently of the physical properties of Enceladus. We find that equilibrium tidal heating cannot account for the heat that is observed to be coming from Enceladus. Equilibrium heating in possible past resonances likewise cannot explain prior resurfacing events.  相似文献   

20.
P. Descamps  F. Marchis 《Icarus》2008,193(1):74-84
We describe in this work a thorough study of the physical and orbital characteristics of extensively observed main-belt and trojan binaries, mainly taken from the LAOSA (Large Adaptive Optics Survey of Asteroids [Marchis, F., Baek, M., Berthier, J., Descamps, P., Hestroffer, D., Kaasalainen, M., Vachier, F., 2006c. In: Workshop on Spacecraft Reconnaissance of Asteroid and Comet Interiors. Abstract #3042]) database, along with a selection of bifurcated objects. Dimensionless quantities, such as the specific angular momentum and the scaled primary spin rate, are computed and discussed for each system. They suggest that these asteroidal systems might be the outcome of rotational fission or mass shedding of a parent body presumably subjected to an external torque. One of the most striking features of separated binaries composed of a large primary (Rp>100 km) with a much smaller secondary (Rs<20 km) is that they all have total angular momentum of ∼0.27. This value is quite close to the Maclaurin-Jacobi bifurcation (0.308) of a spinning fluid body. Alternatively, contact binaries and tidally locked double asteroids, made of components of similar size, have an angular momentum larger than 0.48. They compare successfully with the fission equilibrium sequence of a rotating fluid mass. In conclusion, we find that total angular momentum is a useful proxy to assess the internal structure of such systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号