首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The origin of the genus Bos is a debated issue. From ∼ 0.5 Ma until historic times, the genus is well known in the Eurasian large mammal assemblages, where it is represented by Bos primigenius. This species has a highly derived cranial anatomy that shows important morphological differences from other Plio-Pleistocene Eurasian genera of the tribe Bovini such as Leptobos, Bison, Proamphibos-Hemibos, and Bubalus. The oldest clear evidence of Bos is the skull fragment ASB-198-1 from the middle Pleistocene (∼ 0.6-0.8 Ma) site of Asbole (Lower Awash Valley, Ethiopia). The first appearance of Bos in Europe is at the site of Venosa-Notarchirico, Italy (∼ 0.5-0.6 Ma). Although the origin of Bos has traditionally been connected with Leptobos and Bison, after a detailed anatomical and morphometric study we propose here a different origin, connecting the middle Pleistocene Eurasian forms of B. primigenius with the African Late Pliocene and early Pleistocene large size member of the tribe Bovini Pelorovis sensu stricto. The dispersal of the Bos lineage in Western Europe during middle Pleistocene times seems to coincide with the arrival of the Acheulean tool technology in this continent.  相似文献   

2.
3.
4.
5.
Cells of Nostoc muscorum and Rhodopseudomonas spherodes have been subjected to thermal alteration over varying periods of time. Experiments were conducted using both unextracted and extracted cells in the absence and presence of montmorillonite. The isoprenoid hydrocarbons produced in these experiments have been examined. The major hydrocarbons produced were phytane and five isomeric phytenes. Phytane was observed to form faster from the unextracted cells than from the extracted cells. Montmorillonite increased the amount of phytane formed from the unextracted cells of Nostoc muscorum but not from the cells of Rhodopseudomonas spheroides. No phytadienes, pristane or pristenes were detected in the products of any of these experiments.  相似文献   

6.
The determination of the oxidation states of copper and iron in sulfides, and chalcopyrite (CuFeS2) in particular, using 2p X-ray photoemission spectroscopy (XPS) and L2,3-edge X-ray absorption spectroscopy (XAS) is revisited. Reassessment of the published spectra derived by these methods produces consistent results and reveals the ‘d count’ in the copper compounds to be intermediate between d9 and d10. Nevertheless, these covalent copper compounds can be divided into those nominally monovalent and those nominally divalent. The Fe L2,3-edge XAS of chalcopyrite, along with Mössbauer data, confirm the presence of high-spin Fe3+. Chalcopyrite, despite recent published reports to the contrary, clearly belongs to the monovalent copper class.  相似文献   

7.
8.
The mass-dependent equilibrium stable isotope fractionation between different materials is an important geochemical process. Here we present an efficient method to compute the isotope fractionation between complex minerals and fluids at high pressure, P, and temperature, T, representative for the Earth’s crust and mantle. The method is tested by computation of the equilibrium fractionation of lithium isotopes between aqueous fluids and various Li bearing minerals such as staurolite, spodumene and mica. We are able to correctly predict the direction of the isotope fractionation as observed in the experiments. On the quantitative level the computed fractionation factors agree within 1.0‰ with the experimental values indicating predictive power of ab initio methods. We show that with ab initio methods we are able to investigate the underlying mechanisms driving the equilibrium isotope fractionation process, such as coordination of the fractionating elements, their bond strengths to the neighboring atoms, compression of fluids and thermal expansion of solids. This gives valuable insight into the processes governing the isotope fractionation mechanisms on the atomic scale. The method is applicable to any state and does not require different treatment of crystals and fluids.  相似文献   

9.
Kaolinite, gibbsite and quartz are the dominant minerals in samples collected from two outcrops of a Cenomanian (∼95 Ma) laterite in southwestern Minnesota. A combination of measured yields and isotope ratios permitted mass balance calculations of the δD and δ18O values of the kaolinite in these samples. These calculations yielded kaolinite δD values of about −73‰ and δ18O values of about +18.7‰. The δD and δ18O values appear to preserve information on the ancient weathering system.If formed in hydrogen and oxygen isotope equilibrium with water characterized by the global meteoric water line (GMWL), the kaolinite δD and δ18O values indicate a crystallization temperature of 22 (±5) °C. A nominal paleotemperature of 22 °C implies a δ18O value for the corresponding water of −6.3‰. The combination of temperature and meteoric water δ18O values is consistent with relatively intense rainfall at that mid-paleolatitude location (∼40°N) on the eastern shore of the North American Western Interior Seaway. The inferred Cenomanian paleosol temperature of ∼22 °C is in general accord with published mid-Cretaceous continental mean annual temperatures (MAT) estimated from leaf margin analyses of fossil plants.When compared with results from a published GCM-based Cenomanian climate simulation which specifies a latitudinal sea surface temperature (SST) gradient that was either near modern or smaller-than-modern, the kaolinite paleotemperature of 22 °C is closer to the GCM-predicted MAT for a smaller equator-to-pole temperature difference in the mid-Cretaceous. Moreover, the warm, kaolinite-derived, mid-paleolatitude temperature of 22 °C is associated with proxy estimates of high concentrations of atmospheric CO2 in the Cenomanian. The overall similarity of proxy and model results suggests that the general features of Cenomanian continental climate in that North American locale are probably being revealed.  相似文献   

10.
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (δ44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in δ44/40Ca (∼0.3‰) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between δ44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 μmol/m2/h, respectively. The lower δ44/40Ca observed at ?29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of δ44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the δ44/40Ca of the reservoir is constrained as −0.2‰ relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on δ44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.  相似文献   

11.
Reduction of the C-3 vinyl group to an ethyl substituent is a key, yet poorly understood, event in the diagenetic pathway linking chlorophyll a to sedimentary alkyl porphyrins. Laboratory simulation experiments employing conditions that mimic those of natural anoxic environments (aqueous media, low temperature, presence of H2S and limitation of oxygen) lead to partial conversion of the chlorophyll a derivative methyl pyrophaeophorbide a to mesopyrophaeophorbide a via reduction of the C-3 vinyl substituent mediated by H2S. The mild conditions employed, and the apparent susceptibility of methyl pyrophaeophorbide a to reductive transformation, implies that reduction mediated by H2S could be a widespread process occurring in anoxic depositional environments. Our findings have implications for the geological preservation of chlorins and other biological markers and provide clear evidence that reactions involving H2S are important in the geochemical reduction of sedimenting organic matter and can occur at temperatures within the range for natural environments.  相似文献   

12.
The potential significance of the contributions of long chain iso and anteiso monomethyl alkanes (LC MMAs) from plants of the Lamiaceae, a family that includes many culinary and aromatic herbs of cultural value, to sediments and soil has been evaluated by analyzing 21 specimens from 16 species of Lamiaceae from different environmental settings in Hubei Province, central China, and comparing the results with those from tobacco plants, which are established to be rich in these compounds. Odd numbered iso-alkanes (i-C25 to i-C36) and even numbered anteiso-alkanes (a-C25 to a-C36) are abundant in the Lamiaceae (1.9-23.2% and 0.9-23.8% of total alkanes, respectively). The proportions of LC MMAs are relatively high and comparable to those in the tobacco plant. However, chain lengths in the Lamiaceae are longer than those in tobacco plants and compound-specific δ13C values are more negative than in the tobacco plants, potentially allowing distinction of their different origins. The results imply that Lamiaceae, in addition to some other land plants, can be important sources of LC iso- and anteiso-alkanes in sediments and soils.  相似文献   

13.
Shewanella oneidensis is a dissimilatory iron reducing bacterium capable of inducing the extracellular precipitation of magnetite. This precipitation requires a combination of passive and active mechanisms. Precipitation occurs as a consequence of active production of Fe2+(aq) when bacteria utilize ferrihydrite as a terminal electron acceptor, and the pH rise probably due to the bacterial metabolism of amino acids. As for passive mechanisms, the localized concentration of Fe2+(aq) and Fe3+(aq) at the net negatively charged cell wall, cell structures and/or cell debris induces a local rise of supersaturation of the system with respect to magnetite, triggering the precipitation of such a phase.These biologically induced magnetites are morphologically identical to those formed inorganically in free-drift experiments (closed system; 25 °C, 1 atm total pressure), both from aqueous solutions containing Fe(ClO4)2, FeCl3, NaHCO3, NaCO3 and NaOH, and also from sterile culture medium added with FeCl2. However, organic material becomes incorporated in substantial amounts into the crystal structure of S. oneidensis-induced magnetites, modifying such a structure compared to that of inorganic magnetites. This structural change and the presence of organic matter are detected by Raman and FT-IR spectroscopic analyses and may be used as a biomarker to recognize the biogenic origin of natural magnetites.  相似文献   

14.
15.
Farhana Sultana 《Geoforum》2011,42(2):163-172
This article argues that resource access, use, control, ownership and conflict are not only mediated through social relations of power, but also through emotional geographies where gendered subjectivities and embodied emotions constitute how nature-society relations are lived and experienced on a daily basis. By engaging the insights from feminist political ecology literatures and emotional geographies literatures, the article demonstrates that resource struggles and conflicts are not just material challenges but emotional ones, which are mediated through bodies, spaces and emotions. Such a focus fleshes out the complexities, entanglements and messy relations that constitute political ecologies of resources management, where practices and processes are negotiated through constructions of gender, embodiments, and emotions. Abstractions of ‘resource struggles’ and ‘resource conflicts’ are thereby grounded in embodied emotional geographies of places, peoples, and resources, enabling us to better understand the ways resources and emotions come to matter in everyday survival struggles. This framing can enrich feminist political ecology theorizations and texture our understandings of commonly-used terms such as access, use, control, conflict and struggles vis-à-vis natural resources in any context. In other words, we are better able to conceptualize and explain how and why people access, use, and struggle over resources the ways they do. A case study of drinking water contamination from Bangladesh is used to develop the theoretical arguments in contributing to existing debates in (feminist) political ecologies.  相似文献   

16.
The global rise in atmospheric greenhouse gas concentrations calls for practicable solutions to capture CO2. In this study, a mineral carbonation process was applied in which CO2 reacts with alkaline lignite ash and forms stable carbonate solids. In comparison to previous studies, the assays were conducted at low temperatures and pressures and under semi-dry reaction conditions in an 8 L laboratory mixing device. In order to find optimum process conditions the pCO2 (10-20%), stirring rate (500-3000 rpm) and the liquid to solid ratio (L/S = 0.03-0.36 L kg−1) were varied. In all experiments a considerable CO2 uptake from the gas phase was observed. Concurrently the solid phase contents of Ca and Mg (hydr)oxides decreased and CaCO3 and MgCO3 fractions increased throughout the experiments, showing that CO2 was stabilized as a solid carbonate. The carbonation reaction depends on three factors: Dissolution of CO2 in the liquid phase, mobilization of Ca and Mg from the mineral surface and precipitation of the carbonate solids. Those limitations were found to depend strongly on the variation of the process parameters. Optimum reaction conditions could be found for L/S ratios between 0.12 and 0.18, medium stirring velocities and pCO2 between 10% and 20%.Maximum CO2 uptake by the solid phase was 4.8 mmol g−1 after 120 min, corresponding to a carbonation efficiency for the alkaline material of 53% of the theoretical CO2 binding capacity. In comparison to previous studies both CO2 uptake and carbonation efficiencies were in a similar range, but the reaction times in the semi-dry process were considerably shorter. The proposed method additionally allows for a more simple carbonation setup due to low T and P, and produces an easier to handle product with low water content.  相似文献   

17.
18.
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pKa values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10−5, 1.3(±0.2) × 10−4, 5.9(±3.3) × 10−5, and 1.1(±0.6) × 10−4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.  相似文献   

19.
20.
The coccolithophore Emiliania huxleyi was grown in seawater under different Ba concentrations. The relationship of coccolith Ba/Ca ratio and seawater Ba/Ca ratio was found to be linear. The linear regression yields the apparent Ba exchange coefficient of 0.10. Our data support a recently proposed generic model (Langer G., Gussone N., Nehrke G., Riebesell U., Eisenhauer A., Kuhnert H., Rost B., Trimborn S., and Thoms S. (2006) Coccolith strontium to calcium ratios in Emiliania huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol. Oceanogr.51, 310-320.) developed for explaining apparent exchange coefficients of metabolically inert divalent trace metals, such as Sr, in E. huxleyi. This model represents the first approach combining cell physiological processes and data from inorganic precipitation experiments, which quantitatively explains coccolith apparent Sr and Ba exchange coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号