首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   

2.
Priyanka Sharma  Shane Byrne 《Icarus》2010,209(2):723-737
Titan’s north polar hydrocarbon lakes offer a unique opportunity to indirectly characterize the statistical properties of Titan’s landscape. The complexity of a shoreline can be related to the complexity of the landscape it is embedded in through fractal theory. We mapped the shorelines of 290 of the north polar titanian lakes in the Cassini synthetic aperture radar dataset. Out of these, we used a subset of 190 lake shorelines for our analysis. The fractal dimensions of the shorelines were calculated via two methods: the divider/ruler method and the box-counting method, at length scales of (1-10) km and found to average 1.27 and 1.32, respectively. The inferred power-spectral exponent of Titan’s topography (β) from theoretical and empirical relations is found to be ?2, which is lower than the values obtained from the global topography of the Earth or Venus. Some of the shorelines exhibit multi-fractal behavior (different fractal dimensions at different scales), which we interpret to signify a transition from one set of dominant surface processes to another. We did not observe any spatial variation in the fractal dimension with latitude; however we do report significant spatial variation of the fractal dimension with longitude. A systematic difference between the dimensions of orthogonal sections of lake shorelines is also noted, which signifies possible anisotropy in Titan’s topography. The topographic information thus gleaned can be used to constrain landscape evolution modeling to infer the dominant surface processes that sculpt the landscape of Titan.  相似文献   

3.
E.P. Turtle  J.E. Perry  A.S. McEwen 《Icarus》2011,212(2):957-959
Recent observations by Cassini’s Imaging Science Subsystem reveal that part of the shoreline of Titan’s Ontario Lacus has retreated by several kilometers and may indicate that the dark area that appeared at Arrakis Planitia (80°S, 120°W) in late 2004 has subsequently faded. These changes provide constraints on aspects of Titan’s methane cycle, as well as on the properties of Titan’s surface materials.  相似文献   

4.
Inspection of near-infrared images from Cassini’s Imaging Science Subsystem and Visual and Infrared Mapping Spectrometer have revealed a new feature in Titan’s haze structure: a narrow band of increased scattering by haze south of the equator. The band seems to indicate a region of very limited mixing in the lower stratosphere, which causes haze particles to be trapped there. This could explain the sharp separation between the two hemispheres, known as the north-south asymmetry, seen in images. The separation of the two hemispheres can also be seen in the stratosphere above 150 km using infrared spectra measured by Cassini’s Composite Infrared Spectrometer. Titan’s behaviour in the lower tropical stratosphere is remarkably similar to that of the Earth’s tropical stratosphere, which hints at possible common dynamical processes.  相似文献   

5.
Radarclinometry is a powerful technique for estimating heights of landforms in synthetic aperture radar (SAR) images of planetary surfaces. In particular, it has been used to estimate heights of dunes in the sand seas of Saturn’s moon Titan (Lorenz, R.D., and 39 colleagues [2006]. Science 312, 724-727). In this work, we verify the technique by comparing dune heights derived from radarclinometry to known topography of dune fields in the Namib sand sea of western Africa. We compared results from three different image grid spacings, and found that 350 m/pixel (the same spacing at which the Cassini RADAR data was processed) is sufficient to determine dune height for dunes of similar morphometry to those of the Namib sand sea. At this grid spacing, height estimates derived from radarclinometry are largely representative of, though may underestimate by as much as 30%, or overestimate by as much as 40%, true dune height. Applying the technique to three regions on Titan, we estimate dune heights of 45-180 m, and dune spacings of 2.3-3.3 km. Obtaining accurate heights of Titan’s dunes will help to constrain the total organic inventory on Titan.  相似文献   

6.
Motivated by radar and near-infrared data indicating that Titan’s polar lakes are extremely smooth, we consider the conditions under which a lake surface will be ruffled by wind to form capillary waves. We evaluate laboratory data on wind generation and derive, without scaling for surface tension effects, a threshold for pure methane/ethane of ∼0.5-1 m/s. However, we compute the physical properties of predicted Titan lake compositions using the National Institute for Standards Technology (NIST) code and note that dissolved amounts of C3 and C4 compounds are likely to make Titan lakes much more viscous than pure ethane or methane, even without allowing for suspended particulates which would increase the viscosity further. Wind tunnel experiments show a strong dependence of capillary wave growth on liquid viscosity, and this effect may explain the apparent absence so far of waves, contrary to prior expectations that generation of gravity waves by wind should be easy on Titan. On the other hand, we note that winds over Titan lakes predicted with the TitanWRF Global Circulation Model indicate radar observations so far have in any case been when winds have been low (∼0.5-0.7 m/s), possibly below the wave generation threshold, while peak winds during summer may reach 1-2 m/s. Thus observations of Titan’s northern lakes during the coming years by the Cassini Solstice mission offer the highest probability of observing wind-roughening of lake surfaces, while observations of Ontario Lacus in the south will likely continue to show it to be flat and smooth.  相似文献   

7.
M.A. Janssen  A. Le Gall 《Icarus》2011,212(1):321-328
Since Cassini arrived at Saturn in 2004, its moon Titan has been thoroughly mapped by the RADAR instrument at 2-cm wavelength, in both active and passive modes. Some regions on Titan, including Xanadu and various bright hummocky bright terrains, contain surfaces that are among the most radar-bright encountered in the Solar System. This high brightness has been generally attributed to volume scattering processes in the inhomogeneous, low-loss medium expected for a cold, icy satellite surface. We can test this assumption now that the emissivity has been obtained from the concurrent radiometric measurements for nearly all the surface, with unprecedented accuracy (Janssen et al., and the Cassini RADAR Team [2009]. Icarus 200, 222-239). Kirchhoff’s law of thermal radiation relates the radar and radiometric properties in a way that has never been fully exploited. In this paper we examine here how this law may be applied in this case to better understand the nature of Titan’s radar-bright regions. We develop a quantitative model that, when compared to the observational data, allows us to conclude that either the reflective characteristics of the putative volume scattering subsurface must be highly constrained, or, more likely, organized structure on or in the surface is present that enhances the backscatter.  相似文献   

8.
Chia C. Wang  Ruth Signorell 《Icarus》2010,206(2):787-264
Layered methane clouds in Titan’s troposphere with an upper methane ice cloud, a lower liquid methane-nitrogen cloud, and a gap in between were suggested from in situ measurements and ground-based observations. Here we report laboratory investigations under conditions that mimic Titan’s troposphere providing a detailed picture of the cloud layers. A solid methane cloud with a nitrogen content of less than 14% and a liquid methane-nitrogen cloud with a nitrogen content of ∼30% form above ∼19 km and below ∼16 km altitude, respectively. Contrary to previous assertions, long-lived supercooled liquid methane-nitrogen droplets can be sustained in the region in between. The results demonstrate that a cloud gap could only form in the presence of high amounts of other traces species (ethane nuclei, tholin particles, etc.).  相似文献   

9.
We report regional-scale low-resolution backscatter images of Titan's surface acquired by the Cassini RADAR scatterometer at a wavelength of 2.18-cm. We find that the average angular dependence of the backscatter from large regions and from specific surface features is consistent with a model composed of a quasi-specular Hagfors term plus a diffuse cosine component. A Gaussian quasi-specular term also fits the data, but less well than the Hagfors term. We derive values for the mean dielectric constant and root-mean-square (rms) slope of the surface from the quasi-specular term, which we ascribe to scattering from the surface interface only. The diffuse term accommodates contributions from volume scattering, multiple scattering, or wavelength-scale near-surface structure. The Hagfors model results imply a surface with regional mean dielectric constants between 1.9 and 3.6 and regional surface roughness that varies between 5.3° and 13.4° in rms-slope. Dielectric constants between 2 and 3 are expected for a surface composed of solid simple hydrocarbons, water ice, or a mixture of both. Smaller dielectric constants, between 1.6 and 1.9, are consistent with liquid hydrocarbons, while larger dielectric constants, near 4.5, may indicate the presence of water-ammonia ice [Lorenz, R.D., 1998. Icarus 136, 344-348] or organic heteropolymers [Thompson, W.R., Squyres, S.W., 1990. Icarus 86, 336-354]. We present backscatter images corrected for angular effects using the model residuals, which show strong features that correspond roughly to those in 0.94-μm ISS images. We model the localized backscatter from specific features to estimate dielectric constant and rms slope when the angular coverage is within the quasi-specular part of the backscatter curve. Only two apparent surface features are scanned with angular coverage sufficient for accurate modeling. Data from the bright albedo feature Quivira suggests a dielectric constant near 2.8 and rms slope near 10.1°. The dark albedo feature Shangri-La is best fit by a Hagfors model with a dielectric constant close to 2.4 and an rms slope near 9.5°. From the modeled backscatter curves, we find the average radar albedo in the same linear (SL) polarization to be near 0.34. We constrain the total-power albedo in order to compare the measurements with available groundbased radar results, which are typically obtained in both senses of circular polarization. We estimate an upper limit of 0.4 on the total-power albedo, a value that is significantly higher than the 0.21 total albedo value measured at 13 cm [Campbell, D., Black, G., Carter, L., Ostro, S., 2003. Science 302, 431-434]. This is consistent with a surface that has more small-scale structure and is thus more reflective at 2-cm than 13-cm. We compare results across overlapping observations and observe that the reduction and analysis are repeatable and consistent. We also confirm the strong correlations between radar and near-infrared images.  相似文献   

10.
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data.  相似文献   

11.
12.
N.A. Teanby  R. de Kok  P.G.J. Irwin 《Icarus》2009,204(2):645-657
Fine scale layering of haze and composition in Titan’s stratosphere and mesosphere was investigated using visible/UV images from Cassini’s Imaging Science Sub-system (ISS) and IR spectra from Cassini’s Composite Infra-Red Spectrometer (CIRS). Both ISS and CIRS independently show fine layered structures in haze and composition, respectively, in the 150-450 km altitude range with a preferred vertical wavelength of around 50 km. Layers are most pronounced around the north polar winter vortex, although some weaker layers do exist at more southerly latitudes. The amplitude of composition layers in each trace gas profile is proportional to the relative enrichment of that species in the winter polar vortex compared to equatorial latitudes. As enrichment is caused by polar subsidence, this suggests a dynamical origin. We propose that the polar layers are caused by cross-latitude advection across the vortex boundary. This is analogous to processes that lead to ozone laminae formation around Earth’s polar vortices.  相似文献   

13.
R.D. Lorenz  R.D. West 《Icarus》2008,195(2):812-816
The Cassini RADAR instrument made a dedicated cloud backscatter observation near Titan's north pole, presently in winter darkness, to constrain the precipitation of material onto the surface. The detection limit is ∼5 orders of magnitude above that expected in methane rainstorms, and rules out ‘drizzle’ of more than , placing constraints on the winter accumulation of material on Titan's surface during polar winter.  相似文献   

14.
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan’s surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan’s surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ∼350 m to ∼2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan’s surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30°), with no dunes being present above 60°. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30° and 60° north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.  相似文献   

15.
Stephan et al. (Stephan, K. et al. [2010]. Geophys. Res. Lett. 37, 7104-+.) first saw the glint of sunlight specularly reflected off of Titan’s lakes. We develop a quantitative model for analyzing the photometric lightcurve generated during a flyby in which the specularly reflected light flux depends on the fraction of the solar specular footprint that is covered by liquid. We allow for surface waves that spread out the geographic specular intensity distribution. Applying the model to the VIMS T58 observations shows that the waves on Jingpo Lacus must have slopes of no greater than 0.15°, two orders of magnitude flatter than waves on Earth’s oceans. Combining the model with theoretical estimates of the intensity of the specular reflection allows a tighter constraint on the waves: ?0.05°. Residual specular signal while the specular point lies on land implies that either the land is wetted, the wave slope distribution is non-Gaussian, or that 5% of the land off the southwest edge of Jingpo Lacus is covered in puddles. Another specular sequence off of Kraken Mare acquired during Cassini’s T59 flyby shows rapid flux changes that the static model cannot reproduce. Points just 1 min apart vary in flux by more than a factor of two. The present dataset does not uniquely determine the mechanism causing these rapid changes. We suggest that changing wind conditions, kilometer-wavelength waves, or moving clouds could account for the variability. Future specular observations should be designed with a fast cadence, at least 6 points per minute, in order to differentiate between these hypotheses. Such new data will further constrain the nature of Titan’s lakes and their interactions with Titan’s atmosphere.  相似文献   

16.
We present observations at near-infrared wavelengths (1-5 μm) of Jupiter’s north polar region and Northern Red Oval (NN-LRS-1). The observations were taken with the near-infrared camera NIRC2 coupled to the adaptive optics system on the 10-m W.M. Keck Telescope on UT 21 August 2010. At 5-μm Jupiter’s disk reveals considerable structure, including small bright rings which appear to surround all small vortices. It is striking, though, that no such ring is seen around the Northern Red Oval. In de Pater et al. [2010a. Icarus 210, 742-762], we showed that such rings also exist around all small vortices in Jupiter’s southern hemisphere, and are absent around the Great Red Spot and Red Oval BA. We show here that the vertical structure and extent of the Northern Red Oval is very similar to that of Jupiter’s Red Oval BA. These new observations of the Northern Red Oval, therefore, support the idea of a dichotomy between small and large anticyclones, in which ovals larger than about two Rossby deformation radii do not have 5-μm bright rings. In de Pater et al. [2010a. Icarus 210, 742-762], we explained this difference in terms of the secondary circulations within the vortices. We further compare the brightness distribution of our new 5-μm images with previously published radio observations of Jupiter, highlighting the depletion of NH3 gas over areas that are bright at 5 μm.  相似文献   

17.
Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002–August 2009) and the beginning of spring, allowing a detailed monitoring of Titan’s cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan’s clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60°N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4 years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1 year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30°S and 60°S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached.We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n = 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn’s tides.Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan’s poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan’s northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a ‘sudden’ shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan’s surface higher than previously expected.  相似文献   

18.
Analysis of Titan’s hemispheric brightness asymmetry from mapped Cassini images reveals an axis of symmetry that is tilted with respect to the rotational axis of the solid body. Twenty images taken from 2004 through 2007 show a mean axial offset of 3.8 ± 0.9° relative to the solid body’s pole, directed 79 ± 24° to the west of the sub-solar longitude. These values are consistent with recent measurements of an implied atmospheric spin axis determined from isothermal mapping by [Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A., 2008. Icarus 197, 549-555].  相似文献   

19.
An investigation of the capabilities and science goals of a submillimeter-wave heterodyne sounder onboard a Titan orbiter is presented. Based on a model of Titan’s submillimeter spectrum, and including realistic instrumental performances, we show that passive limb observations of Titan’s submillimeter radiation would bring novel and unique information on the dynamical and chemical state of Titan’s atmosphere, particularly in the so far poorly probed 500-900 km region. The 300-360, 540-660 and 1080-1280 GHz spectral ranges appear especially promising, and could be explored with an instrument equipped with a tunable local oscillator system. Vertical temperature profiles can be determined up to ∼1200 km using rotational lines of CH4, CO, and HCN. Winds can be measured over the 200-1200 km altitude range with an accuracy of 3-5 m/s from Doppler shift measurements of any strong optically thin line. Numerous molecular species are accessible, including H2O, NH3, CH3C2H, CH2NH, and several nitriles (HC3N, HC5N, CH3CN, and C2H3CN). Many of them are expected to be detectable in a large fraction of the atmosphere and in some cases at all levels, providing an observational link between stratospheric and thermospheric chemistry. Isotopic variants of some of these species can also be measured, providing new measurements of H, C, N, and O isotopic ratios. Mapping of the thermal, wind, and composition fields, best achieved from a polar orbit and with an articulated antenna, would provide a new view of the couplings between chemistry and dynamics over an extended altitude range of Titan’s atmosphere. Additional science goals at Saturn and Enceladus are briefly discussed.  相似文献   

20.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号