首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A first experimental study was conducted to determine the equilibrium iron isotope fractionation between pyrrhotite and silicate melt at magmatic conditions. Experiments were performed in an internally heated gas pressure vessel at 500 MPa and temperatures between 840 and 1000 °C for 120-168 h. Three different types of experiments were conducted and after phase separation the iron isotope composition of the run products was measured by MC-ICP-MS. (i) Kinetic experiments using 57Fe-enriched glass and natural pyrrhotite revealed that a close approach to equilibrium is attained already after 48 h. (ii) Isotope exchange experiments—using mixtures of hydrous peralkaline rhyolitic glass powder (∼4 wt% H2O) and natural pyrrhotites (Fe1 − xS) as starting materials— and (iii) crystallisation experiments, in which pyrrhotite was formed by reaction between elemental sulphur and rhyolitic melt, consistently showed that pyrrhotite preferentially incorporates light iron. No temperature dependence of the fractionation factor was found between 840 and 1000 °C, within experimental and analytical precision. An average fractionation factor of Δ 56Fe/54Fepyrrhotite-melt = −0. 35 ± 0.04‰ (2SE, n = 13) was determined for this temperature range. Predictions of Fe isotope fractionation between FeS and ferric iron-dominated silicate minerals are consistent with our experimental results, indicating that the marked contrast in both ligand and redox state of iron control the isotope fractionation between pyrrhotite and silicate melt. Consequently, the fractionation factor determined in this study is representative for the specific Fe2+/ΣFe ratio of our peralkaline rhyolitic melt of 0.38 ± 0.02. At higher Fe2+/ΣFe ratios a smaller fractionation factor is expected. Further investigation on Fe isotope fractionation between other mineral phases and silicate melts is needed, but the presented experimental results already suggest that even at high temperatures resolvable variations in the Fe isotope composition can be generated by equilibrium isotope fractionation in natural magmatic systems.  相似文献   

2.
In order to use lithium isotopes as tracers of silicate weathering, it is of primary importance to determine the processes responsible for Li isotope fractionation and to constrain the isotope fractionation factors caused by each process as a function of environmental parameters (e.g. temperature, pH). The aim of this study is to assess Li isotope fractionation during the dissolution of basalt and particularly during leaching of Li into solution by diffusion or ion exchange. To this end, we performed dissolution experiments on a Li-enriched synthetic basaltic glass at low ratios of mineral surface area/volume of solution (S/V), over short timescales, at various temperatures (50 and 90 °C) and pH (3, 7, and 10). Analyses of the Li isotope composition of the resulting solutions show that the leachates are enriched in 6Li (δ7Li = +4.9 to +10.5‰) compared to the fresh basaltic glass (δ7Li = +10.3 ± 0.4‰). The δ7Li value of the leachate is lower during the early stages of the leaching process, increasing to values close to the fresh basaltic glass as leaching progresses. These low δ7Li values can be explained in terms of diffusion-driven isotope fractionation. In order to quantify the fractionation caused by diffusion, we have developed a model that couples Li diffusion with dissolution of the glassy silicate network. This model calculates the ratio of the diffusion coefficients of both isotopes (a = D7/D6), as well as its dependence on temperature, pH, and S/V. a is mainly dependent on temperature, which can be explained by a small difference in activation energy (0.10 ± 0.02 kJ/mol) between 6Li+ and 7Li+. This temperature dependence reveals that Li isotope fractionation during diffusion is low at low temperatures (T < 20 °C), but can be significant at high temperatures. However, concerning hydrothermal fluids (T > 120 °C), the dissolution rate of basaltic glass is also high and masks the effects of diffusion. These results indicate that the high δ7Li values of river waters, in particular in basaltic catchments, and the fractionated values of hydrothermal fluids are mainly controlled by precipitation of secondary phases.  相似文献   

3.
Iron isotopic compositions measured in chondrules from various chondrites vary between δ57Fe/54Fe = +0.9‰ and −2.0‰, a larger range than for igneous rocks. Whether these compositions were inherited from chondrule precursors, resulted from the chondrule-forming process itself or were produced by later parent body alteration is as yet unclear. Since iron metal is a common phase in some chondrules, it is important to explore a possible link between the metal formation process and the observed iron isotope mass fractionation. In this experimental study we have heated a fayalite-rich composition under reducing conditions for heating times ranging from 2 min to 6 h. We performed chemical and iron isotope analyses of the product phases, iron metal and silicate glass. We demonstrated a lack of evaporation of Fe from the silicate melt in similar isothermal experiments performed under non-reducing conditions. Therefore, the measured isotopic mass fractionation in the glass, ranging between −0.32‰ and +3.0‰, is attributed to the reduction process. It is explained by the faster transport of lighter iron isotopes to the surface where reduction occurs, and is analogous to kinetic isotope fractionation observed in diffusion couples [Richter, F.M., Davis, A.M., Depaolo, D.J., Watson, E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta67, 3905-3923]. The metal phase contains 90-99.8% of the Fe in the system and lacks significant isotopic mass fractionation, with values remaining similar to that of the starting material throughout. The maximum iron isotope mass fractionation in the glass was achieved within 1 h and was followed by an isotopic exchange and re-equilibration with the metal phase (incomplete at ∼6 h). This study demonstrates that reduction of silicates at high temperatures can trigger iron isotopic fractionation comparable in its bulk range to that observed in chondrules. Furthermore, if metal in Type I chondrules was formed by reduction of Fe silicate, our observed isotopic fractionations constrain chondrule formation times to approximately 60 min, consistent with previous work.  相似文献   

4.
Silicon isotopes in meteorites and planetary core formation   总被引:1,自引:0,他引:1  
The silicon (Si) isotope compositions of 42 meteorite and terrestrial samples have been determined using MC-ICPMS with the aim of resolving the current debate over their compositions and the implications for core formation. No systematic δ30Si differences are resolved between chondrites (δ30Si = −0.49 ± 0.15‰, 2σSD) and achondrites (δ30Si = −0.47 ± 0.11‰, 2σSD), although enstatite chondrites are consistently lighter (δ30Si = −0.63 ± 0.07‰, 2σSD) in comparison to other meteorite groups. The data reported here for meteorites and terrestrial samples display an average difference Δ30SiBSE−meteorite∗ = 0.15 ± 0.10‰, which is consistent within uncertainty with previous studies. No effect from sample heterogeneity, preparation, chemistry or mass spectrometry can be identified as responsible for the reported differences between current datasets. The heavier composition of the bulk silicate Earth is consistent with previous conclusions that Si partitioned into the metal phase during metal-silicate equilibration at the time of core formation. Fixing the temperature of core formation to the peridotite liquidus and using an appropriate metal silicate fractionation factor (ε ∼0.89), the Δ30SiBSE−meteorite∗ value from this study indicates that the Earth core contains at least 2.5 and possibly up to 16.8 wt% Si.  相似文献   

5.
Diffusive isotopic fractionation factors are important in order to understand natural processes and have practical application in radioactive waste storage and carbon dioxide sequestration. We determined the isotope fractionation factors and the effective diffusion coefficients of chloride and bromide ions during aqueous diffusion in polyacrylamide gel. Diffusion was determined as functions of temperature, time and concentration. The effect of temperature is relatively large on the diffusion coefficient (D) but only small on isotope fractionation. For chlorine, the ratio, D35Cl/D37Cl varied from 1.00128 ± 0.00017 (1σ) at 2 °C to 1.00192 ± 0.00015 at 80 °C. For bromine, D79Br/D81Br varied from 1.00098 ± 0.00009 at 2 °C to 1.0064 ± 0.00013 at 21 °C and 1.00078 ± 0.00018 (1σ) at 80 °C. There were no significant effects on the isotope fractionation due to concentration. The lack of sensitivity of the diffusive isotope fractionation to anything at the most common temperatures (0 to 30 °C) makes it particularly valuable for application to understanding processes in geological environments and an important natural tracer in order to understand fluid transport processes.  相似文献   

6.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

7.
Vacuum evaporation experiments with Type B CAI-like starting compositions were carried out at temperatures of 1600, 1700, 1800, and 1900 °C to determine the evaporation kinetics and evaporation coefficients of silicon and magnesium as a function of temperature as well as the kinetic isotope fractionation factor for magnesium. The vacuum evaporation kinetics of silicon and magnesium are well characterized by a relation of the form J = JoeE/RT with Jo = 4.17 × 107 mol cm−2 s−1, E = 576 ± 36 kJ mol−1 for magnesium, Jo = 3.81 × 106 mol cm−2 s−1, E = 551 ± 63 kJ mol−1 for silicon. These rates only apply to evaporation into vacuum whereas the actual Type B CAIs were almost certainly surrounded by a finite pressure of a hydrogen-dominated gas. A more general formulation for the evaporation kinetics of silicon and magnesium from a Type B CAI-like liquid that applies equally to vacuum and conditions of finite hydrogen pressure involves combining our determinations of the evaporation coefficients for these elements as a function of temperature (γ = γ0eE/RT with γ0 = 25.3, E = 92 ± 37 kJ mol−1 for γSi; γ0 = 143, E = 121 ± 53 kJ mol−1 for γMg) with a thermodynamic model for the saturation vapor pressures of Mg and SiO over the condensed phase. High-precision determinations of the magnesium isotopic composition of the evaporation residues from samples of different size and different evaporation temperature were made using a multicollector inductively coupled plasma mass spectrometer. The kinetic isotopic fractionation factors derived from this data set show that there is a distinct temperature effect, such that the isotopic fractionation for a given amount of magnesium evaporated is smaller at lower temperature. We did not find any significant change in the isotope fractionation factor related to sample size, which we interpret to mean that recondensation and finite chemical diffusion in the melt did not affect the isotopic fractionations. Extrapolating the magnesium kinetic isotope fractionations factors from the temperature range of our experiments to temperatures corresponding to partially molten Type B CAI compositions (1250-1400 °C) results in a value of αMg ≈ 0.991, which is significantly different from the commonly used value of .  相似文献   

8.
Recent empirical and theoretical calculations of the temperature-dependant oxygen stable isotope fractionation behavior of cerussite have highlighted potential problems with earlier work on this topic. The synthetic cerussite which was used earlier by the lead author to determine fractionation factors was re-examined using energy dispersive X-ray analysis, and found to be internally contaminated with inclusions of the phase hydrocerussite at levels of 5-10% by volume. The volume of hydrocerussite present within the samples is not sufficient to explain the entire discrepancy between this work and the empirical and theoretical calculations made earlier by the second author of this paper. Regardless of the exact causes of experimental failure or kinetic effects, the hydrocerussite contamination and the difficulty of demonstrating that these experiments reached isotopic equilibrium suggest that the use of cerussite oxygen isotope fractionation factors determined by slow precipitation experiments be discontinued in favor of the empirically calibrated fractionation factor 1000 ln αcerussite-water = 2.29(106/T2) − 3.56. In addition, we have determined that the oxygen isotope fractionation factor between hydrocerussite and water at 20 °C is 1.0232.  相似文献   

9.
Aragonite was precipitated in the laboratory at 0, 5, 10, 25, and 40 °C to determine the temperature dependence of the equilibrium oxygen isotope fractionation between aragonite and water. Forced CO2 degassing, passive CO2 degassing, and constant addition methods were employed to precipitate aragonite from supersaturated solutions, but the resulting aragonite-water oxygen isotope fractionation was independent of the precipitation method. In addition, under the experimental conditions of this study, the effect of precipitation rate on the oxygen isotope fractionation between aragonite and water was almost within the analytical error of ±∼0.13‰ and thus insignificant. Because the presence of Mg2+ ions is required to nucleate and precipitate aragonite from Na-Ca-Cl-HCO3 solutions under these experimental conditions, the influence of the total Mg2+ concentration (up to ∼0.9 molal) on the aragonite-water oxygen isotope fractionation was examined at 25 °C. No significant Mg2+ ion effect, or oxygen isotope salt effect, was detected up to 100 mmolal total Mg2+ but a noticeable isotope salt effect was observed at ∼0.9 molal total Mg2+.On the basis of results of the laboratory synthesis experiments, a new expression for the aragonite-water fractionation is proposed over the temperature range of 0-40 °C:
1000lnαaragonite-water=17.88±0.13(103/T)-31.14±0.46  相似文献   

10.
Silicon isotopes in dissolved silicic acid were measured in the upper four kilometers between 4°N and 3°S latitude at 110°W longitude in the eastern Equatorial Pacific. Silicon isotopes became progressively heavier with silicic acid depletion of surface water as expected from biological fractionation. The value of ε estimated by applying a steady-state isotope fractionation model to data from all stations between 4°N and 3°S was −0.77 ± 0.12‰ (std. err.). When the analysis was restricted to those stations whose temperature and salinity profiles indicated that they were directly influenced by upwelling of the Equatorial Undercurrent (EUC), the resulting value of ε was −1.08 ± 0.27‰ (std. err.) similar to the value established in culture studies (−1.1‰). When the non steady state Rayleigh model was applied to the same restricted data set the resulting value of ε was significantly more positive, −0.61 ± 0.16‰ (std. err.). To the extent that the equatorial system approximates a steady state these results support a value of −1.1‰ for the fractionation factor for isotopes of Si in the sea. Without the assumption of steady state the value of ε can only be constrained to be between −0.6 and −1.1‰. Silicic acid in Equatorial Pacific Deep Water below 2000 m had a near constant δ30Si of +1.32 ± 0.05‰. That value is significantly more positive than obtained for North Pacific Deep Water at similar depths at stations to the northwest of our study area (0.9-1.0‰) and it is slightly less positive than new measures of the δ30Si of silicic acid from the silicic acid plume centered over the Cascadia basin in the Northeast Pacific (Si(OH)4 > 180  μM, δ30Si = +1.46 ± 0.12‰ (SD, n = 4). We show that the data from the equator and Cascadia basin fit a general trend of increasing δ30Si(OH)4 with increasing silicic acid concentration in the deep sea, but that the isotope values from the Northeast Pacific are anomalously light. The observed level of variation in the silicon isotope composition of deep waters from this single ocean basin is considerably larger than that predicted by current models based on fractionation during opal formation with no isotope effect during dissolution. Confirmation of such high variability in deep water δ30Si(OH)4 within individual ocean basins will require reassessment of the mechanisms controlling the distribution of isotopes of silicon in the sea.  相似文献   

11.
We report Si isotopic data on a suite of terrestrial mantle-derived samples, meteorites and a lunar sample. Our data on co-existing mantle minerals, peridotites and basalts demonstrate lack of any resolvable high temperature fractionation during igneous processes. We show that the δ30Si of the bulk silicate Earth (BSE) is identical, within analytical uncertainties, to carbonaceous and ordinary chondrites (CHUR). Based on our data the difference between δ30SiBSE and δ30SiCHUR is 0.035 ± 0.035. Whole-rock differentiated meteorites from different parent bodies (Mars, Vesta) and a lunar breccia sample also show similar δ30Si suggesting broad-scale Si isotope homogeneity in the inner Solar System with an average δ29Si = −0.20 ± 0.01 and δ30Si = −0.39 ± 0.02 relative to the NBS28 Si isotope standard.A difference between δ30SiBSE and δ30SiCHUR of 0.035, as observed in our study, translates to less than 1.67 wt.% Si in the core considering a continuous accretion model whereas estimates using a batch model are even lower. Within uncertainties (±0.035‰) in the δ30Si difference between the BSE and CHUR, a maximum of 3.84 wt.% Si could be present in the Earth’s core whereas at δ30SiBSE30SiCHUR = 0, there is no requirement of Si in the Earth’s core. Such low Si in the core necessitates the presence of other light elements in the core to explain its density deficit. Our data also places constraints on the oxidation state of the Earth’s mantle during core segregation. The uncertainties in estimating the concentration of oxidized Fe in the mantle during the first 90% of accretion arise from uncertainties in the estimates of the equilibrium partition coefficient of silicon between metal and silicate at conditions relevant to core formation. For δ30SiBSE30SiCHUR = 0.035 ± 0.035, the concentration of oxidized Fe in the mantle during the first 90% of accretion could be as low as ∼1%. However, at δ30SiBSE30SiCHUR = 0, the Si isotope data do not require any change in the mantle concentration of oxidized Fe during accretion from the present day value of 6.26%.  相似文献   

12.
Transition metal stable isotope signatures can be useful for tracing both natural and anthropogenic signals in the environment, but only if the mechanisms responsible for fractionation are understood. To investigate isotope fractionations due to electrochemistry (or redox processes), we examine the stable isotope behavior of iron and zinc during the reduction reaction  + 2e = Mmetal as a function of electrochemical driving force, temperature, and time. In all cases light isotopes are preferentially electroplated, following a mass-dependent law. Generally, the extent of fractionation is larger for higher temperatures and lower driving forces, and is roughly insensitive to amount of charge delivered. The maximum fractionations are δ56/54Fe = −4.0‰ and δ66/64Zn = −5.5‰, larger than observed fractionations in the natural environment and larger than those predicted due to changes in speciation. All the observed fractionation trends are interpreted in terms of three distinct processes that occur during an electrochemical reaction: mass transport to the electrode, chemical speciation changes adjacent to the electrode, and electron transfer at the electrode. We show that a large isotope effect adjacent the electrode surface arises from the charge-transfer kinetics, but this effect is attenuated in cases where diffusion of ions to the electrode surface becomes the rate-limiting step. Thus while a general increase in fractionation is observed with increasing temperature, this appears to be a result of thermally enhanced mass transport to the reacting interface rather than an isotope effect associated with the charge-transfer kinetics. This study demonstrates that laboratory experiments can successfully distinguish isotopic signatures arising from mass transport, chemical speciation, and electron transfer. Understanding how these processes fractionate metal isotopes under laboratory conditions is the first step towards discovering what role these processes play in fractionating metal isotopes in natural systems.  相似文献   

13.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   

14.
Lead-205 decays to 205Tl with a half-life of 15 Myr and should have been present in the early solar system according to astrophysical models. However, despite numerous attempts, Tl isotopic measurements of meteorites have been unable to demonstrate convincingly its former presence. Here, we report large (∼5‰) variations in Tl isotope composition in metal and troilite fragments from a range of iron meteorites that were determined at high precision using multiple collector inductively coupled plasma mass spectrometry. The Tl isotopic compositions of seven metal samples of the IAB iron meteorites Toluca and Canyon Diablo define a correlation with 204Pb/203Tl. When interpreted as an isochron, this corresponds to an initial 205Pb/204Pb ratio of (7.4 ± 1.0) × 10−5. Alternative explanations for the correlation, such as mixing of variably mass-fractionated meteorite components or terrestrial contamination are harder to reconcile with independent constraints. However, troilite nodules from Toluca and Canyon Diablo contain Tl that is significantly less radiogenic than co-existing metal with isotope compositions that are variable and decoupled from 204Pb/203Tl. These effects are similar to those recently reported by others for Fe and Ni isotopes in iron meteorite sulfides and appear to be the result of kinetic stable isotope fractionation during diffusion. Though it cannot conclusively be shown that the metal fragments are unaffected by the secondary processes that disturbed the troilites, mass balance modeling indicates that the alteration of the troilites is unlikely to have significantly affected the Tl isotope compositions of the co-existing metals. It is therefore reasonable to conclude that the IAB metal isochron is a product of the in situ decay of 205Pb. If the I-Xe ages of IAB silicate inclusions record the same event as the 205Pb-205Tl chronometer then crystallization of the IAB metal was probably completed between 10 and 20 Myr after the condensation of the first solids. This implies an initial solar system 205Pb/204Pb of (1.0-2.1) × 10−4, which is in excellent agreement with recently published astrophysical predictions. Similar calculations yield an initial solar system Tl isotope composition of ε205Tl = −2.8 ± 1.7. The Tl isotopic composition and concentration of the silicate Earth depends critically on the timing and mechanism of core formation and Earth’s volatile element depletion history. Modeling of the Earth’s accretion and core formation using the calculated initial solar system Tl isotope composition and 205Pb/204Pb, however, does not yield reasonable results for the silicate Earth unless either the Earth lost Tl and Pb late in its accretion history or the core contains much higher concentrations of Pb and Tl than are found in iron meteorites.  相似文献   

15.
Ca isotope fractionation during inorganic calcite formation was experimentally studied by spontaneous precipitation at various precipitation rates (1.8 < log R < 4.4 μmol/m2/h) and temperatures (5, 25, and 40 °C) with traces of Sr using the CO2 diffusion technique.Results show that in analogy to Sr/Ca [see Tang J., Köhler S. J. and Dietzel M. (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation. Geochim. Cosmochim. Acta] the 44Ca/40Ca fractionation during calcite formation can be followed by the Surface Entrapment Model (SEMO). According to the SEMO calculations at isotopic equilibrium no fractionation occurs (i.e., the fractionation coefficient αcalcite-aq = (44Ca/40Ca)s/(44Ca/40Ca)aq = 1 and Δ44/40Cacalcite-aq = 0‰), whereas at disequilibrium 44Ca is fractionated in a primary surface layer (i.e., the surface entrapment factor of 44Ca, F44Ca < 1). As a crystal grows at disequilibrium, the surface-depleted 44Ca is entrapped into the newly formed crystal lattice. 44Ca depletion in calcite can be counteracted by ion diffusion within the surface region. Our experimental results show elevated 44Ca fractionation in calcite grown at high precipitation rates due to limited time for Ca isotope re-equilibration by ion diffusion. Elevated temperature results in an increase of 44Ca ion diffusion and less 44Ca fractionation in the surface region. Thus, it is predicted from the SEMO that an increase in temperature results in less 44Ca fractionation and the impact of precipitation rate on 44Ca fractionation is reduced.A highly significant positive linear relationship between absolute 44Ca/40Ca fractionation and the apparent Sr distribution coefficient during calcite formation according to the equation
Δ44/40Cacalcite-aq=(1.90±0.26)·logDSr2.83±0.28  相似文献   

16.
Tri-octahedral Li-Mg smectites (hectorites) were synthesized at temperatures ranging from 25 to 250 °C, in the presence of solutions highly enriched in lithium. After removing all the exchangeable lithium from the synthesized clays, Li isotope fractionation (Δ7Liclay-solution) was determined. This fractionation was linked to Li incorporation into the structural octahedral site, substituting for Mg2+. As predicted, experimental Δ7Liclay-solution inversely correlates with temperature, and ranges from −1.6‰ ± 1.3‰ at 250 °C to −10.0‰ ± 1.3‰ at 90 °C, and then stays relatively constant down to 25 °C. The relatively constant isotope fractionation factor below 90 °C may be due to high concentrations of edge octahedra in low crystallinity smectites. The isotopic fractionation factor (α), for a given temperature, does not depend on the solution matrix, nor on the amount of structural Li incorporated into the clay. Empirical linear laws for α as a function of 1/T (K) were inferred. Smectite Li contents and smectite-solution distribution coefficients (DLi/Mg) increase with temperature, as expected for a substitution process. The fractions of dissolved Li incorporated into the smectite octahedral sites are small and do not depend on the duration of the experiment. In a seawater-like matrix solution, less Li is incorporated into the smectites, probably as a result of competition with dissolved Mg2+ ions for incorporation into the octahedral sites. The high Li contents observed in marine smectites are therefore best explained either by a significant contribution from basalts, by adsorption processes, or by the influence of seawater chemical composition on distribution coefficients. We also calculate, using present-day estimates of hydrothermal water and river fluxes, that a steady-state ocean would require a relatively large global clay-water Li isotope fractionation (−12‰ to −21‰). This study demonstrates the ability of laboratory experiments to quantify the impact of secondary phases on the Li geochemical cycle and associated isotope fractionations.  相似文献   

17.
The equilibrium Mg isotope fractionation factor between epsomite and aqueous MgSO4 solution has been measured using the three isotope method in recrystallization experiments conducted at 7, 20, and 40 °C. Complete or near-complete isotopic exchange was achieved within 14 days in all experiments. The Mg isotope exchange rate between epsomite and MgSO4 solution is dependent on the temperature, epsomite seed crystal grain size, and experimental agitation method. The Mg isotope fractionation factors (Δ26Mgeps-sol) at 7, 20, and 40 °C are 0.63 ± 0.07‰, 0.58 ± 0.16‰, and 0.56 ± 0.03‰, respectively. These values are indistinguishable within error, indicating that the Mg isotope composition of epsomite is relatively insensitive to temperature. The magnitude of the isotope fractionation factor (Δ26Mgeps-sol = ca. 0.6‰ between 7 and 40 °C) indicates that significant Mg isotope variations can be produced in evaporite sequences, and Mg isotopes may therefore, constrain the degree of closed-system behavior, paleo-humidity, and hydrological history of evaporative environments.  相似文献   

18.
This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ26Mg; n = 37), obtained from a coral reference sample (JCp-1).Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ26Mgcalcite-seawater = −2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception (Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ26Mgbiogenic aragonite-seawater = −0.9 ± 0.2.Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation.Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO3 relate to the activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO3.  相似文献   

19.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

20.
A new high temperature piston cylinder design has enabled the measurement of platinum solubility in mafic melts at temperatures up to 2500 °C, 2.2 GPa pressure, and under reducing conditions for 1-10 h. These high temperature and low fO2 conditions may mimic a magma ocean during planetary core formation. Under these conditions, we measured tens to hundreds of ppm Pt in the quenched silicate glass corresponding to , 4-12 orders of magnitude lower than extrapolations from high fO2 experiments at 1 bar and at temperatures no higher than 1550 °C. Moreover, the new experiments provide coupled textural and compositional evidence that noble metal micro-nuggets, ubiquitous in experimental studies of the highly siderophile elements, can be produced on quench: we measure equally high Pt concentrations in the rapidly quenched nugget-free peripheral margin of the silicate as we do in the more slowly quenched nugget-bearing interior region. We find that both temperature and melt composition exercise strong control on and that Pt0 and Pt1+ may contribute significantly to the total dissolved Pt such that low fO2 does not imply low Pt solubility. Equilibration of metal alloy with liquid silicate in a hot primitive magma might not have depleted platinum to the extent previously believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号