共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Descamps T. Michalowski F. Colas M. Assafin M. Polinska D. Hestroffer R. Vieira-Martins M. Birlan A. Peyrot J. Dorseuil T. Dijoux 《Icarus》2007,187(2):482-499
A long-term adaptive optics (AO) campaign of observing the double Asteroid (90) Antiope has been carried out in 2003-2005 using 8-10-m class telescopes, allowing prediction of the circumstances of mutual events occurring during the July 2005 opposition [Marchis, F., Descamps, P., Hestroffer, D., Berthier, J., de Pater, I., 2004. Bull. Am. Astron. Soc. 36, 1180]. This is the first opportunity to use complementary lightcurve and AO observations to extensively study the (90) Antiope system, an interesting visualized binary doublet system located in the main belt. The orbital parameters derived from the AO observations have served as input quantities for the derivation of a whole set of other physical parameters (namely shapes, surface scattering, bulk density, and internal properties) from analysis of collected lightcurves. To completely model the observed lightcurves, we employed Roche figures to construct an overall shape solution. The combination of these complementary observations has enabled us to derive a reliable physical and orbital solution for the system. Our model is consistent with a system of slightly non-spherical components, having a size ratio of 0.95 (with Ravg=42.9±0.5 km, separation=171±1 km), and exhibiting equilibrium figures for homogeneous rotating bodies. A comparison with grazing occultation event lightcurves suggests that the real shapes of the components do not depart from Roche equilibrium figures by more than 10%. The J2000 ecliptic coordinates of the pole of the system are λn=200°±2° and αn=38°±2°. The orbital period was refined to P=16.5051±0.0001 h, and the density is found to be slightly lower than previous determinations, with a value of 1.25±0.05 g/cm3, leading to a significant macro-porosity of 30%. Possible scenarios for the origin of the system are also discussed. 相似文献
2.
Marina Brozovi? Lance A.M. Benner Michael C. Nolan Christopher Magri Jon D. Giorgini Petr Pravec Julia Fang Michael W. Busch Daniel E. Reichart Joshua B. Haislip Joseph Jao Kenneth J. Lawrence 《Icarus》2011,216(1):241-256
We report radar, photometric, and spectroscopic observations of near-Earth Asteroid (136617) 1994 CC. The radar measurements were obtained at Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) on 9 days following the asteroid’s approach within 0.0168 AU on June 10, 2009. 1994 CC was also observed with the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) on May 21 and June 1-3. Visible-wavelength spectroscopy was obtained with the 5-m Hale telescope at Palomar on August 25. Delay-Doppler radar images reveal that 1994 CC is a triple system; along with (153591) 2001 SN263, this is only the second confirmed triple in the near-Earth population. Photometry obtained with PROMPT yields a rotation period for the primary P = 2.38860 ± 0.00009 h and a lightcurve amplitude of ∼0.1 mag suggesting a shape with low elongation. Hale telescope spectroscopy indicates that 1994 CC is an Sq-class object. Delay-Doppler radar images and shape modeling reveal that the primary has an effective diameter of 0.62 ± 0.06 km, low pole-on elongation, few obvious surface features, and a prominent equatorial ridge and sloped hemispheres that closely resemble those seen on the primary of binary near-Earth Asteroid (66391) 1999 KW4. Detailed orbit fitting reported separately by Fang et al. (Fang, J., Margot, J.-L., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A. [2011]. Astron. J. 141, 154-168) gives a mass of the primary of 2.6 × 1011 kg that, coupled with the effective diameter, yields a bulk density of 2.1 ± 0.6 g cm−3. The images constrain the diameters of the inner and outer satellites to be 113 ± 30 m and 80 ± 30 m, respectively. The inner satellite has a semimajor axis of ∼1.7 km (∼5.5 primary radii), an orbital period of ∼30 h, and its Doppler dispersion suggests relatively slow rotation, 26 ± 12 h, consistent with spin-orbit lock. The outer satellite has an orbital period of ∼9 days and a rotation period of 14 ± 7 h, establishing that the rotation is not spin-orbit locked. Among all binary and triple systems observed by radar, at least 25% (7/28) have a satellite that rotates more rapidly than its orbital period. This suggests that asynchronous configurations with Protation < Porbital are relatively common among multiple systems in the near-Earth population. 1994 CC’s outer satellite has an observed maximum separation from the primary of ∼5.7 km (∼18.4 primary radii) that is the largest separation relative to primary radius seen to date among all 36 known binary and triple NEA systems. 1994 CC, (153591) 2001 SN263, and 1998 ST27 are the only triple and binary systems known with satellite separations >10 primary radii, suggesting either a detection bias, or that such widely-separated satellites are relatively uncommon in NEA multiple systems. 相似文献
3.
P. Descamps F. Marchis J. Pollock F. Vachier M. Kaasalainen M.H. Wong E.M. Cooper P. Wiggins M. Polinska A. Devyatkin D. Gorshanov 《Icarus》2008,196(2):578-600
In 2007, the M-type binary Asteroid 22 Kalliope reached one of its annual equinoxes. As a consequence, the orbit plane of its small moon, Linus, was aligned closely to the Sun's line of sight, giving rise to a mutual eclipse season. A dedicated international campaign of photometric observations, based on amateur-professional collaboration, was organized and coordinated by the IMCCE in order to catch several of these events. The set of the compiled observations is released in this work. We developed a relevant model of these events, including a topographic shape model of Kalliope refined in the present work, the orbit solution of Linus as well as the photometric effect of the shadow of one component falling on the other. By fitting this model to the only two full recorded events, we derived a new estimation of the equivalent diameter of Kalliope of 166.2±2.8 km, 8% smaller than its IRAS diameter. As to the diameter of Linus, considered as purely spherical, it is estimated to 28±2 km. This substantial “shortening” of Kalliope, gives a bulk density of 3.35±0.33 g/cm3, significantly higher than past determinations but more consistent with its taxonomic type. Some constraints can be inferred on the composition. 相似文献
4.
The origin of the similarly-sized binary Asteroid (90) Antiope remains an unsolved puzzle. To constrain the origin of this unique double system, we recorded individual spectra of the components using SPIFFI, a near-infrared integral field spectrograph fed by SINFONI, an adaptive optics module available on VLT-UT4. Using our previously published orbital model, we requested telescope time when the separation of the components of (90) Antiope was larger than 0.087″, to minimize the contamination between components, during the February 2009 opposition. Several multi-spectral data-cubes in J band (SNR = 40) and H + K band (SNR = 100) were recorded in three epochs and revealed the two components of (90) Antiope. After developing a specific photometric extraction method and running an error analysis by Monte-Carlo simulations, we successfully extracted reliable spectra of both components from 1.1 to 2.4 μm taken on the night of February 21, 2009. These spectra do not display any significant absorption features due to mafic mineral, ices, or organics, and their slopes are in agreement with both components being C- or Cb-type asteroids. Their constant flux ratio indicates that both components’ surface reflectances are quite similar, with a 1-sigma variation of 7%. By comparison with 2MASS J, H, K color distribution of observed Themis family members, we conclude that both bodies were most likely formed at the same time and from the same material. The similarly-sized system could indeed be the result of the breakup of a rubble-pile proto-Antiope into two equal-sized bodies, but other scenarios of formation implying a common origin should also be considered. 相似文献
5.
We present a numerical method for inverting long-period components of lightcurves of asynchronous binary asteroids. Data of five near-Earth binary asteroids, (175706) 1996 FG3, (65803) Didymos, (66391) 1999 KW4, (185851) 2000 DP107 and (66063) 1998 RO1, for two of them from more than one apparition, were inverted. Their mutual orbits' poles and Keplerian elements, size ratios, and ellipsoidal shape axial ratios were estimated via this inversion. The pole solutions and size ratios for 1999 KW4 and 2000 DP107 are in a good agreement with independent estimates from radar measurements. We show that uncertainties of estimates of bulk densities of binary systems can be large, especially when observed on short arcs. 相似文献
6.
S.M. Lederer D.L. Domingue M. Abe K.S. Jarvis Y. Ohba L.M. French S. Hasegawa S.M. Larson 《Icarus》2005,173(1):153-165
In March 2001, the Hayabusa spacecraft target, Asteroid 25143 Itokawa, made its final close approach to Earth prior to the spacecraft's launch. We carried out an extensive observing campaign from January to September 2001 to better characterize this near-Earth asteroid. Global physical properties of the surface of Itokawa were characterized by analyzing its photometric properties and behavior. Results included here capitalize on analysis of broadband photometric observations taken with a number of telescopes, instruments, and observers. We employed a Hapke model to estimate the surface roughness, single particle scattering albedo, single particle scattering characteristics, phase integral, and geometric and bond albedo. We find that this asteroid has a higher geometric albedo than average main belt S-class asteroids; this is consistent with results from other observers. The broadband colors of Itokawa further support evidence that this is an atypical S-class asteroid. Broadband colors show spectral characteristics more typically found on large-diameter main-belt asteroids believed to be space-weathered, suggesting the surface of this small diameter, near-Earth asteroid could likewise be space-weathered. 相似文献
7.
Near-Earth Asteroid (66391) 1999 KW4 was the subject of the recently published first extensive radar imaging, shape and mutual orbit modeling, and physical and dynamical characterization of a binary asteroid. In this paper we present in detail our numerical simulation of KW4 behind that work. Our propagations of the system with some variation in estimated parameters cover the set of KW4's possible current dynamical states consistent with the body models and other information obtained directly from the observations. We also apply our implementation of this simulation capability to address some of the dynamical mechanisms by which KW4 may be moved into the more energetically excited of those possible current states, particularly solar gravity interaction. Through comparison of the results with certain features of the observation data, we conclude that the actual KW4 system is not in the most energetically relaxed configuration but must be moderately excited. The system occupies a generalized Cassini state 2 which is different from that considered in most previously published treatments of Cassini states in that it involves co-precession of the primary's spin frame and the mutual orbit rather than co-precession of a satellite's spin frame and that satellite's orbit about the primary. We present a simple analytical theory describing the system's dynamics, which should be applicable to any other binary systems, of which KW4 is representative, in which a massive, roughly oblate primary is spinning rapidly relative to the rate of its mutual orbit with an on-average synchronous, elongated secondary. We examine separately both the effect of the larger binary component's oblateness, and the effect of the smaller component's roughly triaxial ellipsoid shape. The simple analytical formulae obtained agree with full-detail numerical simulation results, and can be used for remote estimation of binary mass properties from observed system motion. 相似文献
8.
P. Descamps F. Marchis J. Durech A.W. Harris J. Berthier A. Peyrot J. Greene M. Assafin J.I.B. Camargo F. Vachier K.M. Ivarsen M.C. Nysewander J.B. Haislip F. Colas L. Bernasconi P. Baudouin S. Sposetti 《Icarus》2009,203(1):88-101
We report on the results of a 6-month photometric study of the main-belt binary C-type Asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermione’s physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis, et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005. Icarus 178, 450-464]. A new effective diameter of 187 ± 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 + 0.5/−0.2 g cm−3. We infer a macroscopic porosity of ∼33 + 5/−20%. 相似文献
9.
In 2003, we initiated a long-term Adaptive Optics campaign to study the orbit of various main-belt asteroidal systems. Here we present a consistent solution for the mutual orbits of four binary systems: 22 Kalliope, 45 Eugenia, 107 Camilla and 762 Pulcova. With the exception of 45 Eugenia, we did not detect any additional satellites around these systems although we have the capability of detecting a loosely-bound fragment (located at 1/4×RHill) that is ∼40 times smaller in diameter than the primary. The common characteristic of these mutual orbits is that they are roughly circular. Three of these binary systems belong to a C-“group” taxonomic class. Our estimates of their bulk densities are consistently lower (∼1 g/cm3) than their associated meteorite analogs, suggesting an interior porosity of 30-50% (taking CI-CO meteorites as analogs). 22 Kalliope, a W-type asteroid, has a significantly higher bulk density of ∼3 g/cm3, derived based on IRAS radiometric size measurement. We compare the characteristics of these orbits in the light of tidal-effect evolution. 相似文献
10.
Michael W. Busch Steven J. Ostro Jon D. Giorgini Randy Rose Petr Pravec Stephen B. Broschart 《Icarus》2006,181(1):145-155
We estimate Asteroid 1992 SK's physical properties from delay-Doppler images and Doppler-only echo spectra obtained during March 22-27, 1999, at Goldstone and from optical lightcurves obtained during February-March 1999 at Ond?ejov Observatory. The images span only about 15° of sky motion and are not strong, but they place up to twenty 40 m by 160 m pixels on the asteroid and have complete rotational phase coverage. Our analysis establishes that the radar observations are confined to subradar latitudes between −20° and −40°. The echo spectra and optical lightcurves span ∼80° of sky motion, which provides important geometric leverage on the pole direction. The lightcurves are essential for accurate estimation of the asteroid's shape and spin state. We estimate the asteroid's period to be 7.3182±0.0003 h and its pole direction to be at ecliptic longitude, latitude=(99°±5°,−3°±5°). The asteroid is about 1.4 km in maximum extent and mildly asymmetric, with an elongation of about 1.5 and relatively subdued topography. The OC radar albedo is 0.11±0.02 and the SC/OC ratio is 0.34±0.05. The current orbital solution permits accurate identification of planetary close approaches during 826-2690. We use our model to predict salient characteristics of radar images and optical lightcurves obtainable during the asteroid's March 2006 approach. 相似文献
11.
Seitaro Urakawa Shin-ichiro Okumura Tsuyoshi Sakamoto Shinsuke Abe Kohei Kitazato Sunao Hasegawa Nobuyuki Kawai Shogo Nagayama Michitoshi Yoshida 《Icarus》2011,215(1):17-26
We present lightcurve observations and multiband photometry for 107P/Wilson-Harrington using five small- and medium-sized telescopes. The lightcurve has shown a periodicity of 0.2979 day (7.15 h) and 0.0993 day (2.38 h), which has a commensurability of 3:1. The physical properties of the lightcurve indicate two models: (1) 107P/Wilson-Harrington is a tumbling object with a sidereal rotation period of 0.2979 day and a precession period of 0.0993 day. The shape has a long axis mode (LAM) of L1:L2:L3 = 1.0:1.0:1.6. The direction of the total rotational angular momentum is around λ = 310°, β = −10°, or λ = 132°, β = −17°. The nutation angle is approximately constant at 65°. (2) 107P/Wilson-Harrington is not a tumbler. The sidereal rotation period is 0.2979 day. The shape is nearly spherical but slightly hexagonal with a short axis mode (SAM) of L1:L2:L3 = 1.5:1.5:1.0. The pole orientation is around λ = 330°, β = −27°. In addition, the model includes the possibility of binary hosting. For both models, the sense of rotation is retrograde. Furthermore, multiband photometry indicates that the taxonomy class of 107P/Wilson-Harrington is C-type. No clear rotational color variations are confirmed on the surface. 相似文献
12.
P. Pravec A.W. Harris B.D. Warner K. Hornoch D. Higgins A. Galád Š. Gajdoš J. Világi Yu.N. Krugly V. Chiorny W.R. Cooney Jr. D. Terrell R.D. Stephens V. Reddy F. Colas R. Durkee R.A. Koff 《Icarus》2008,197(2):497-504
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d−1, and there is an excess of slow rotators with f<1 d−1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d−1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d−1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (∼5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d−1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids. 相似文献
13.
(U)BVRI photometry of 27 mainly small (≈30 km) Trojans show that the previously reported size-spectral slope trend among Trojans and Hildas must be modified. The small-slope small-bodies gap present in previous works does not exist. This has also been noted by other recent reported observations. While the largest asteroids have slopes less than about 10% kÅ−1 the smallest asteroids have both small and large slopes. The maximum slope is about 15% kÅ−1 for all outer main belt groups (Cybeles, Hildas and Trojans). Combining observations from different authors reveal that these three groups have small asteroids (below 50 km) in the same slope range, while the large Trojans (≈100 km) have in general significantly steeper slopes than Hildas and Cybeles of similar size. The size-slope trend would favor organic materials as mainly responsible for the reflectance properties of the surfaces. 相似文献
14.
We describe in this work a thorough study of the physical and orbital characteristics of extensively observed main-belt and trojan binaries, mainly taken from the LAOSA (Large Adaptive Optics Survey of Asteroids [Marchis, F., Baek, M., Berthier, J., Descamps, P., Hestroffer, D., Kaasalainen, M., Vachier, F., 2006c. In: Workshop on Spacecraft Reconnaissance of Asteroid and Comet Interiors. Abstract #3042]) database, along with a selection of bifurcated objects. Dimensionless quantities, such as the specific angular momentum and the scaled primary spin rate, are computed and discussed for each system. They suggest that these asteroidal systems might be the outcome of rotational fission or mass shedding of a parent body presumably subjected to an external torque. One of the most striking features of separated binaries composed of a large primary (Rp>100 km) with a much smaller secondary (Rs<20 km) is that they all have total angular momentum of ∼0.27. This value is quite close to the Maclaurin-Jacobi bifurcation (0.308) of a spinning fluid body. Alternatively, contact binaries and tidally locked double asteroids, made of components of similar size, have an angular momentum larger than 0.48. They compare successfully with the fission equilibrium sequence of a rotating fluid mass. In conclusion, we find that total angular momentum is a useful proxy to assess the internal structure of such systems. 相似文献
15.
A previous theory by the authors for detailed modeling of the binary YORP effect is reviewed and expanded to accommodate doubly-synchronous binary systems, as well as a method for non-dimensionalizing the coefficients for application to binary systems where a shape model to compute its own coefficients is not available. The theory is also expanded to account for the effects of primary J2 and the Sun’s 3rd body perturbation on the secular orbit evolution. The newly expanded theory is applied to the binary near-Earth Asteroid 1999 KW4, for which a detailed shape model is available. The result of simulation of the secular evolutionary equations shows that the KW4 orbit will be double in size in approximately 22,000 years, and will reach the Hill radius in approximately 54,000 years. The simulation also shows that the eccentricity will alternate growing and shrinking in magnitude, depending on the location of the solar node in the body-fixed frame. Therefore the eccentricity is not fixed to evolve in the opposite sign as the semi-major axis unless the circulation of the node (with a period of 500 years) is averaged out as well. The current orbit expansion rate for KW4 of 7 cm per year is shown to be detectable with observations of the mean anomaly which grows quadratically in time with an expanding orbit. Finally, the KW4 results are scaled for application to a number of other binary systems for which detailed shape models are not available. This application shows that the orbits considered can expand to their Hill radius in the range of 104-106 years. This implies rapid formation of binary systems is necessary to support the large percentage of binaries observed in the NEA population. 相似文献
16.
P. Descamps F. Marchis T. Michalowski J. Pollock M. Birlan F. Vachier M. Fauvaud F. Pilcher 《Icarus》2009,203(1):102-111
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to λ0 = 199.5 ± 0.5° and β0 = 39.8 ± 5° in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps, P., Marchis, F., Michalowski, T., Vachier, F., Colas, F., Berthier, J., Assafin, M., Dunckel, P.B., Polinska, M., Pych, W., Hestroffer, D., Miller, K., Vieira-Martins, R., Birlan, M., Teng-Chuen-Yu, J.-P., Peyrot, A., Payet, B., Dorseuil, J., Léonie, Y., Dijoux, T., 2007. Figure of the double Asteroid 90 Antiope from AO and lightcurves observations. Icarus 187, 482-499). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the “shoulders” of the lightcurves. The bulk density was then recomputed to 1.28 ± 0.04 g cm−3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (∼50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ∼17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family. 相似文献
17.
P. Descamps 《Icarus》2010,207(2):758-768
The present paper deals with the application of the classical theory of equilibrium figures of two rotating liquid masses to the case where bodies exhibit a radially stratified internal density distribution so that they can be considered as inhomogeneous bodies. The derived ellipsoidal shape solutions are applied to five real systems of equal-sized synchronous asteroids. Furthermore, internal inhomogeneity puts strong constraints on the surface grain density. A satisfactory model fit is achieved with internal densities of asteroids steadily increasing outwards. In particular, from such an approach we derived grain densities of the considered systems in agreement with their mineralogical composition inferred from reflectance spectroscopy. According to this new approach, 4492 Debussy, presently of unknown spectral type, is predicted to appear as a C-type object with a grain density on the order of 2 g/cm3. 相似文献
18.
Christopher Magri Ellen S. Howell Patrick A. Taylor Michael Mueller Lance A.M. Benner Steven J. Ostro Michael D. Hicks James M. Somers Vladimir V. Kouprianov Igor E. Molotov Jean-Luc Margot Vojislava Protitch-Benishek David Higgins Donald P. Pray 《Icarus》2011,214(1):210-227
We observed near-Earth Asteroid (8567) 1996 HW1 at the Arecibo Observatory on six dates in September 2008, obtaining radar images and spectra. By combining these data with an extensive set of new lightcurves taken during 2008-2009 and with previously published lightcurves from 2005, we were able to reconstruct the object’s shape and spin state. 1996 HW1 is an elongated, bifurcated object with maximum diameters of 3.8 × 1.6 × 1.5 km and a contact-binary shape. It is the most bifurcated near-Earth asteroid yet studied and one of the most elongated as well. The sidereal rotation period is 8.76243 ± 0.00004 h and the pole direction is within 5° of ecliptic longitude and latitude (281°, −31°). Radar astrometry has reduced the orbital element uncertainties by 27% relative to the a priori orbit solution that was based on a half-century of optical data. Simple dynamical arguments are used to demonstrate that this asteroid could have originated as a binary system that tidally decayed and merged. 相似文献
19.
We present results of a simulation of a steady-state binary near-Earth asteroid (NEA) population. This study combines previous work on tidal disruption of gravitational aggregates [Walsh, K.J., Richardson, D.C., 2006. Icarus 180, 201-216] with a Monte Carlo simulation of NEA planetary encounters. Evolutionary effects include tidal evolution and binary disruption from close planetary encounters. The results show that with the best known progenitor (small Main Belt asteroids) shape and spin distributions, and current estimates of NEA lifetime and encounter probabilities, that tidal disruption should account for approximately 1-2% of NEAs being binaries. Given the best observed estimate of a ∼15% binary NEA fraction, we conclude that there are other formation mechanisms that contribute significantly to this population. We also present the expected distribution of binary orbital and physical properties for the steady-state binary NEAs formed by tidal disruption. We discuss the effects on binary fraction and properties due to changes in the least constrained parameters, and other possible effects on our model that could account for differences between the presented results and the observed binary population. Finally, we model possible effects of a significant population of binaries migrating to the near-Earth population from the Main Belt. 相似文献
20.
We present results of a ground-based observational study of the Hayabusa mission target near-Earth Asteroid (25143) Itokawa. Our data consist of BVRI-filter CCD photometry and low resolution CCD spectroscopy, from which the asteroid's rotation period, axial ratio, broadband colors, and taxonomic classification are derived. Analysis of the R-filter lightcurve data shows a synodic rotation period of 12.12±0.02 h, consistent with results from other observers. We observed a maximum peak-to-peak amplitude of 1.05 magnitudes, which—depending on the taxonomic class assumed when correcting for phase angle effects—implies a minimum axial ratio of 2.14. The shape of the rotation lightcurves varies considerably between data sets due to the changing viewing geometry. The lightcurve data from this study has been included in the shape model analysis of Kaasalainen et al. (2003 Astron. Astrophys, 405, L29-L32) and the Hapke analysis of Lederer et al. (2005 Icarus 173,153-165). Color variations were also observed, with the interpolated color indices at lightcurve midpoint being: (B-V)=0.94±0.05, (V-R)=0.40±0.06, and (V-I)=0.74±0.07. Our low resolution Palomar spectra from March 2001 covered a wavelength range of 0.3-1.0 μm. We measured a spectral slope of 9.3±0.3%/100 nm between 0.55-0.70 μm and a deep 1 μm absorption (equivalent ECAS color: w-x=−0.111±0.003, v-x=0.031±0.003). Comparison of our spectra with published ECAS data from Zellner et al. (1985 Icarus 61, 355-416) indicates that this object is most likely of Q- or S-type, similar to ordinary chondrite meteorites. Our data are more consistent with a Q-type body when both the spectroscopic data and the available BVRI photometry are taken into account. 相似文献