首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P.C. Thomas  P.B. James  R. Haberle 《Icarus》2009,203(2):352-798
The residual south polar cap (RSPC) of Mars includes a group of different depositional units of CO2 ice undergoing a variety of erosional processes. Complete summer coverage of the RSPC by ∼6-m/pixel data of the Context Imager (CTX) on Mars Reconnaissance Orbiter (MRO) has allowed mapping and inventory of the units in the RSPC. Unit maps and estimated thicknesses indicate the total volume of the RSPC is currently <380 km3, and represents less than 3% of the total mass of the current Mars atmosphere. Scarp retreat rates in the CO2 ice derived from comparison of High Resolution Imaging Science Experiment (HiRISE) data with earlier images are comparable to those obtained for periods up to 3 Mars years earlier. These rates, combined with sizes of depressions suggest that the oldest materials were deposited more than 125 Mars years ago. Most current erosion is by backwasting of scarps 1-12 m in height. This backwasting is initiated by a series of scarp-parallel fractures. In the older, thicker unit these fractures form about every Mars year; in thinner, younger materials they form less frequently. Some areas of the older, thicker unit are lost by downwasting rather than by the scarp retreat. A surprising finding from the HiRISE data is the scarcity of visible layering of RSPC materials, a result quite distinct from previous interpretations of layers in lower resolution images. Layers ∼0.1 m thick are exposed on the upper surfaces of some areas, but their timescale of deposition is not known. Late summer albedo changes mapped by the CTX images indicate local recycling of ice, although the amounts may be morphologically insignificant. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data show that the primary material of all the different forms of the RSPC is CO2 ice with only small admixtures of water ice and dust.  相似文献   

2.
We describe and interpret the surface terrain types associated with a widely-reported ∼4 km long, mid-latitude martian viscous flow feature (VFF). The feature is located in the southern hemisphere, on the poleward-facing rim of a ∼60 km-diameter crater in eastern Hellas Planitia. High Resolution Imaging Science Experiment (HiRISE) images, analysed in both 2D and 3D, reveal that the upper margin of the feature is bounded by steep (∼30°) headwalls, typically some tens of metres high, that are formed from unconsolidated material and characterised by a series of slope-parallel linear incisions. Below these incised headwalls, the feature flows at a general angle of ∼10° from a broad upper basin to a confined lower tongue that is bounded by a nested sequence of elongate raised ridges. These characteristics are typical of several VFFs in the region and are strikingly similar to moraine-bounded valley glaciers on Earth, and we sub-classify this feature as a ‘glacier-like form’ (GLF)1. The GLF comprises five distinctive surface terrain types that contrast sharply with surface characteristics outside its bounding moraines. Four of these terrains (scaly terrain, polygonized terrain, linear terrain and mound-and-tail terrain) are located within the GLF’s innermost bounding moraine, while the fifth (rectilinear-ridge terrain) is located between its frontal moraines. These terrains are mapped, characterised and associated with possible mechanisms of formation to draw inferences about the GLF’s glaciology and glacial history. This analysis suggests that the GLF reached its maximal extent in the geologically-recent past, and that it may have been partially wet-based at that time. Subsequent to this phase, the GLF experienced an extended period of general recession that has been punctuated by several episodes of still-stand or advance. Currently, the GLF’s basin appears to be composed of a lower zone that is dominated by an exposed former glacier bed and an upper zone that may still contain a now-degraded and dust-mantled viscous mass, similar to many partially-glacierized basins on Earth.  相似文献   

3.
Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is “neutral” - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the “neutral” emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars.  相似文献   

4.
In order to advance our understanding of the long-term stability of subsurface ice, the diurnal martian water cycle, and implications for liquid water, we determined diffusion coefficients and adsorption kinetics for the water vapor produced by the sublimation of ice buried beneath various layers of fine-grained (<63, 63-125, and 125-250 μm) basaltic powder under simulated martian conditions. Sublimation rates at shallower depths, <10 mm, were determined to be affected by mass transfer through the atmosphere in addition to the basalt layer. For greater depths, the measured diffusion coefficients for water vapor moving through basalt grains were 1.56±0.53×10−4, 2.05±0.82×10−4, and for the <63, 63-125, and 125-250 μm basaltic layers, respectively. Through the Brunauer, Emmett and Teller (BET) isotherm, which assumes multiple molecular layers of adsorbed water, we determined the adsorption constants of 52.6±8.3 at 270 K for <63 μm, 39.0±6.4 at 267 K for 63-125 μm, and 54.3±9.3 at 266 K for 125-250 μm, resulting in surface areas of 2.6±0.1×104, 1.7±0.3×104, , respectively. These results suggest that while diffusion is too rapid to explain the purported diurnal cycle in water content of the atmosphere, adsorption is efficient and rapid, and does provide an effective mechanism to explain such a cycle. The present diffusion data suggest that very thin, <50 pr μm, shallow, 10 mm, ice deposits would last for >10 h at ∼224 K, just above the freezing point of saturated CaCl2. Temperatures can remain above ∼224 K over most of the planet, which means that water, even as saturated brine, will sublimate before the freezing point is reached and liquid could be formed. On the other hand, 1 m ice layers below 1 m of fine-grained basaltic regolith at 235 K and 10 Pa of atmospheric water could last 600 to 1300 years. At deeper depths and lower temperatures, ice could last since the last major obliquity change 400,000 years ago.  相似文献   

5.
We examine the stratigraphy of the polar layered deposits (PLD) within the north polar cap of Mars to assess its layer continuity, correlations, cyclicity and structure and implications for the recent climate record. PLD sequences characterized using Fourier analysis and curve shape matching algorithms show that layers correlate throughout the upper part of the PLD. We tested for cyclicity and found that the uppermost ∼300 m contain a dominant wavelength layer packet of ∼30 m, interpreted to be a climate signal related to the 51 kyr precession cycle. Directly below this region we document a section of polar layered deposits ∼100 m thick without a dominant periodic signal; this is interpreted to represent a phase of low net accumulation and lag deposits formed during the last ice age, about 0.5-2 Ma ago. We further analyzed layer structure by combining these results with three-dimensional determinations of layer orientation (strike and dip) to assess the internal stratigraphy of the PLD and its implications for polar history. We show that individual layers within the PLD stratigraphy are not horizontal (no dip) but rather show broad variation in elevation with distance. Correlations suggest that the layer strikes and dips broadly follow present cap surface topography. Local variations in layer orientations in the vicinity of the troughs suggest that (1) trough structures were present at the time of layer accumulation and (2) dips may have been influenced by ice flow and/or static ice accumulation in the presence of preexisting troughs. This new information favors models in which the troughs are long-term structures of the PLD rather than (1) recently eroded into the PLD, or (2) very active and laterally migrating around the PLD. Our results strongly support the hypothesis that significant volumes of polar volatiles are mobilized and transported equator-ward during periods of increased obliquity. Our results predict that the upper ∼300 m of the north polar PLD accumulated in the last 500 ka, yielding net accumulation rates of ∼0.06 cm/yr. The presence and albedo of the no periodic signal zone suggest that polar net accumulation rates are very low and that dust rich lag deposits form during periods of sustained high obliquity. Layer sequences in the south polar and equatorial regions are examined and compared to those in the north; rhythmic sequences are observed in both regions but no direct correlations to the dominant signals of the north polar deposits have yet been found. These new techniques and observations provide a paradigm for further analysis of recent polar history (the upper kilometer of the record) and a basis for extending assessments to the lower part of the polar deposits and to other cyclic deposits in the geological record of Mars.  相似文献   

6.
It has been suggested that inclusions of CO2 or CO2 clathrate hydrates may comprise a portion of the polar deposits on Mars. Here we present results from an experimental study in which CO2 molecules were trapped in water ice deposited from CO2/H2O atmospheres at temperatures relevant for the polar regions of Mars. Fourier-Transform Infrared spectroscopy was used to monitor the phase of the condensed ice, and temperature programmed desorption was used to quantify the ratio of species in the generated ice films. Our results show that when H2O ice is deposited at 140-165 K, CO2 is trapped in large quantities, greater than expected based on lower temperature studies in amorphous ice. The trapping occurs at pressures well below the condensation point for pure CO2 ice, and therefore this mechanism may allow for CO2 deposition at the poles during warmer periods. The amount of trapped CO2 varied from 3% to 16% by mass at 160 K, depending on the substrate studied. Substrates studied were a tetrahydrofuran (C4H8O) base clathrate and Fe-montmorillonite clay, an analog for Mars soil. Experimental evidence indicates that the ice structures are likely CO2 clathrate hydrates. These results have implications for the CO2 content, overall composition, and density of the polar deposits on Mars.  相似文献   

7.
We have identified and characterized a basaltic Mars simulant that is available as whole rocks, sand and dust. The source rock for the simulant is a basalt mined from the Tertiary Tropico Group in the western Mojave Desert. The Mojave Mars Simulant (MMS) was chosen for its inert hygroscopic characteristics, its availability in a variety of forms, and its physical and chemical characteristics. The MMS dust and MMS sand are produced by mechanically crushing basaltic boulders. This is a process that more closely resembles the weathering/comminution processes on Mars where impact events and aerodynamic interactions provide comminution in the (relative) absence of water and organics. MMS is among the suite of test rocks and soils that was used in the development of the 2007/8 Phoenix Scout and is being used in the 2009 Mars Science Laboratory (MSL) missions. The MMS development team is using the simulant for research that centers on sampling tool interactions in icy soils. Herein we describe the physical properties and chemical composition of this new Mars simulant.  相似文献   

8.
It is shown that viscous liquid film flow (VLF-flow) on the surfaces of slopes of martian dunes can be a low-temperature rheological phenomenon active today on high latitudes. A quantitative model indicates that the VLF-flows are consistent with the flow of liquid brines similar to that observed by imaging at the Phoenix landing site. VLF-flows depend on the viscosity, dynamics, and energetics of temporary darkened liquid brines. The darkening of the flowing brine is possibly, at least partially, attributed to non-volatile ingredients of the liquid brines. Evidence of previous VLF-flows can also be seen on the dunes, suggesting that it is an ongoing process that also occurred in the recent past.  相似文献   

9.
Shallow Radar (SHARAD) on board NASA’s Mars Reconnaissance Orbiter has successfully detected tens of reflectors in the subsurface of the north polar layered deposits (NPLD) of Mars. Radar reflections are hypothesized to originate from the same material interfaces that result in visible layering. As a first step towards verifying this assumption, this study uses signal analyses and geometric comparisons to quantitatively examine the relationship between reflectors and visible layers exposed in an NPLD outcrop. To understand subsurface structures and reflector geometry, reflector surfaces have been gridded in three dimensions, taking into account the influence of surface slopes to obtain accurate subsurface geometries. These geometries reveal reflector dips that are consistent with optical layer slopes. Distance–elevation profiling of subsurface reflectors and visible layer boundaries reveals that reflectors and layers demonstrate similar topography, verifying that reflectors represent paleosurfaces of the deposit. Statistical and frequency-domain analyses of the separation distances between successive layers and successive reflectors confirms the agreement of radar reflector spacing with characteristic spacing of certain visible layers. Direct elevation comparisons between individual reflectors and discrete optical layers, while necessary for a one-to-one correlation, are complicated by variations in subsurface structure that exist between the outcrop and the SHARAD observations, as inferred from subsurface mapping. Although these complications have prevented a unique correlation, a genetic link between radar reflectors and visible layers has been confirmed, validating the assumption that radar reflectors can be used as geometric proxies for visible stratigraphy. Furthermore, the techniques for conducting a stratigraphic integration have been generalized and improved so that the integration can be undertaken at additional locations.  相似文献   

10.
We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the ‘cold’ surface areas in the North polar region (Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle.  相似文献   

11.
Richard Ulrich 《Icarus》2009,201(1):127-134
Diffusion advection is an effect in diffusive multicomponent mass transfer that occurs when the flux vectors of the individual components do not add up to zero. This can be a significant effect for the mass transfer of water vapor from subsurface ice or liquid reservoirs through porous regolith at martian temperatures and pressures. Ignoring diffusion advection and using Fick's law alone to calculate the flux under these conditions will result in an erroneously small value while using a measured flux to calculate a diffusivity will result in an erroneously high value. The inaccuracy in both cases increases with temperature. The literature contains several examples of erroneous treatment of this effect. The correct approach is well-known from other applications of mass transfer and takes diffusion advection into account in the appropriate amount regardless of the temperature and pressure and reduces to the simple Fick's law when conditions warrant. In this way, there is no need to decide under what conditions diffusion advection is or is not important. It can be used in the transition region to pure Knudsen diffusion in a fashion similar to that used with the more limited Fickian approach.  相似文献   

12.
We used MGS-MOC and MRO-MARCI daily mapping images of the North Polar Region of Mars from 16 August 2005 (Ls = 270°) to 21 May 2009 (Ls = 270°), covering portions of three consecutive martian years (MY 27-MY 29), to observe the seasonal behavior of the polar ice cap and atmospheric phenomena. The rate of cap regression was similar in MY 28 and MY 29, but was advanced by 3.5° of Ls (∼7-8 sols) in MY 29. The spatial and temporal behaviors of dust and condensate clouds were similar in the two years and generally in accord with prior years. Dust storms (>100 km2) were observed in all seasons, with peak activity occurring at Ls = 10-20° from 50°N to 70°N and at Ls = 135-140° from 70°N to 90°N. The most active quadrant was 0-90°W in MY 28, shifting to 180-270°W in MY 29. The majority of regional storms in both years developed in longitudes from 10°W to 60°W. During late summer the larger storms obscure the North Polar Region in a cloud of dust that transitions to north polar hood condensate clouds around autumnal equinox.Changes in the distribution of perennial ice deposits, especially in Olympia Planum, were observed between the 2 years, with the MY 29 ice distribution being the most extensive observed to date. Modeling suggests that the small, bright ice patches on the residual cap are not the result of slope or elevation effects. Rather we suggest that they are the result of local meteorological effects on ice deposition. The annual darkening and brightening of peripheral areas of the residual cap around summer solstice can be explained by the sublimation of a brighter frost layer revealing an underlying darker, ice rich layer that itself either sublimes to reveal brighter material below or acts as a cold trap, attracting condensation of water vapor that brightens the surface. An alternative explanation invokes transport and deposition of dust on the surface from the cap interior, and later removal of that dust. The decrease in cap albedo and accompanying increase in near surface atmospheric stability may be related to the annual minimum of polar storm activity near northern summer solstice.  相似文献   

13.
P.B. James  P.C. Thomas 《Icarus》2010,208(1):82-85
We have used Mars Reconnaissance Orbiter data from 2007 and 2009 to compare summer behaviors of the seasonal and residual south polar caps of Mars in those two years. We find that the planet-encircling dust storm that occurred in the first of the two Mars years enhanced the loss of seasonal CO2 deposits relative to the second year but did not have a large effect on the continuing erosion of the pits and mesas within the residual cap materials. This suggests that the increase of bright frost in some regions of the residual cap observed between Mariner 9 and Viking can be accommodated within observed martian weather variability and does not require unknown processes or climate change.  相似文献   

14.
We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 μs (∼1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during accumulation rather than one of lag production during periods of sublimation.  相似文献   

15.
We report on the nature of fine particle (<150 μm) transport under simulated martian conditions, in order to better understand the Mars Science Laboratory’s (MSL) sample acquisition, processing and handling subsystem (SA/SPaH). We find that triboelectric charging due to particle movement may have to be controlled in order for successful transport of fines that are created within the drill, processed through the Collection and Handling for In situ Martian Rock Analysis (CHIMRA) sample handing system, and delivered to the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments. These fines will be transferred from the surface material to the portioner, a 3 mm diameter, 8 mm deep distribution center where they will drop ∼2 cm to the instrument inlet funnels. In our experiments, movement of different material including terrestrial analogs and martian soil simulants (Mars Mojave Simulant - MMS) resulted in 1-7 nanocoulombs of charge to build up for several different experimental configurations. When this charging phenomenon occurs, several different results are observed including particle clumping, adherence of material on conductive surfaces, or electrostatic repulsion, which causes like-charged particles to move away from each other. This electrostatic repulsion can sort samples based upon differing size fractions, while adhesion causes particles of different sizes to bind into clods. Identifying these electrostatic effects can help us understand potential bias in the analytical instruments and to define the best operational protocols to collect samples on the surface of Mars.  相似文献   

16.
A. Gaudin  E. Dehouck  N. Mangold 《Icarus》2011,216(1):257-268
Phyllosilicates on Mars are widespread in the ancient crust suggesting the presence of liquid water at the martian surface and therefore warmer conditions during its early history. However, the role of the ancient climate in the alteration process, which produced these phyllosilicates, remains under debate, because similar mineral assemblages can be produced by hydrothermal alteration at depth. This paper focuses on the origin of coincident outcrops of Fe/Mg bearing phyllosilicates and Al-bearing phyllosilicates, which are observed in several regions of Mars. We performed a detailed mineralogical comparison between a section in Nili Fossae, Mars, and a weathering profile located at Murrin Murrin, Western Australia. The Murrin Murrin profile is developed in Archaean serpentinized peridotite massifs over a ∼40 m thick sequence. It has three alteration zones: the serpentine mineral saprolite is found at the bottom, immediately overlain by Fe/Mg-bearing smectites and then Al-bearing phyllosilicates (kaolinite) mixed with iron hydroxides. This example illustrates how Al-dominated minerals can derive from the alteration of initially Al-poor ultramafic rocks by the intense leaching of Mg2+. This mineralogical sequence is very similar to that detected locally in Nili Fossae by orbital spectroscopy. By analogy, we propose that the mineral assemblage detected on Mars is the result of long-term weathering, and thus could be the best evidence of past weathering as a direct result of a climate significantly warmer than at present.  相似文献   

17.
18.
Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.  相似文献   

19.
D. Reiss  M. Zanetti  G. Neukum 《Icarus》2011,215(1):358-369
Active dust devils were observed in Syria Planum in Mars Observer Camera - Wide Angle (MOC-WA) and High Resolution Stereo Camera (HRSC) imagery acquired on the same day with a time delay of ∼26 min. The unique operating technique of the HRSC allowed the measurement of the traverse velocities and directions of motion. Large dust devils observed in the HRSC image could be retraced to their counterparts in the earlier acquired MOC-WA image. Minimum lifetimes of three large (avg. ∼700 m in diameter) dust devils are ∼26 min, as inferred from retracing. For one of these large dust devil (∼820 m in diameter) it was possible to calculate a minimum lifetime of ∼74 min based on the measured horizontal speed and the length of its associated dust devil track. The comparison of our minimum lifetimes with previous published results of minimum and average lifetimes of small (∼19 m in diameter, avg. min. lifetime of ∼2.83 min) and medium (∼185 m in diameter, avg. min. lifetime of ∼13 min) dust devils imply that larger dust devils on Mars are active for much longer periods of time than smaller ones, as it is the case for terrestrial dust devils. Knowledge of martian dust devil lifetimes is an important parameter for the calculation of dust lifting rates. Estimates of the contribution of large dust devils (>300-1000 m in diameter) indicate that they may contribute, at least regionally, to ∼50% of dust entrainment by dust devils into the atmosphere compared to the dust devils <300 m in diameter given that the size-frequency distribution follows a power-law. Although large dust devils occur relatively rarely and the sediment fluxes are probably lower compared to smaller dust devils, their contribution to the background dust opacity by dust devils on Mars could be at least regionally large due to their longer lifetimes and ability of dust lifting into high atmospheric layers.  相似文献   

20.
H.M. Böttger  S.R. Lewis  F. Forget 《Icarus》2005,177(1):174-189
This paper describes General Circulation Model (GCM) simulations of the martian water cycle focusing on the effects of an adsorbing regolith. We describe the 10-layer regolith model used in this study which has been adapted from the 1-D model developed by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. Even with a 30-min timestep and taking into account the effect of surface water ice, our fully implicit scheme compares well with the results obtained by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. This means, however, that the regolith is not able to reproduce the diurnal variations in column water vapour abundance of up to a factor of 2-3 as seen in some observations, with only about 10% of the atmospheric water vapour column exchanging with the subsurface on a daily basis. In 3-D simulations we find that the regolith adsorbs water preferentially in high latitudes. This is especially true in the northern hemisphere, where perennial subsurface water ice builds up poleward of 60° N at depths which are comparable to the Odyssey observations. Much less ice forms in the southern high latitudes, which suggests that the water ice currently present in the martian subsurface is not stable under present conditions and is slowly subliming and being deposited in the northern hemisphere. When initialising the model with an Odyssey-like subsurface water ice distribution the model is capable of forcing the simulated water cycle from an arbitrary state close to the Mars Global Surveyor Thermal Emission Spectrometer observations. Without the actions of the adsorbing regolith the equilibrated water cycle is found to be a factor of 2-4 too wet. The process by which this occurs is by adsorption of water during northern hemisphere summer in northern mid and high latitudes where it remains locked in until northern spring when the seasonal CO2 ice cap retreats. At this time the water diffuses out of the regolith in response to increased temperature and is returned to the residual water ice cap by eddie transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号