首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 825 毫秒
1.
Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid’s pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid.  相似文献   

2.
Joseph Masiero 《Icarus》2010,207(2):795-799
We have investigated the effect of rotation on the polarization of scattered light for the near-Earth asteroid (1943) Anteros using the Dual Beam Imaging Polarimeter on the University of Hawaii’s 2.2 m telescope. Anteros is an L-type asteroid that has not been previously observed polarimetrically. We find weak but significant variations in the polarization of Anteros as a function of rotation, indicating albedo changes across the surface. Specifically, we find that Anteros has a background albedo of pv = 0.18 ± 0.02 with a dark spot of pv < 0.09 covering <2% of the surface.  相似文献   

3.
We observed near-Earth Asteroid (8567) 1996 HW1 at the Arecibo Observatory on six dates in September 2008, obtaining radar images and spectra. By combining these data with an extensive set of new lightcurves taken during 2008-2009 and with previously published lightcurves from 2005, we were able to reconstruct the object’s shape and spin state. 1996 HW1 is an elongated, bifurcated object with maximum diameters of 3.8 × 1.6 × 1.5 km and a contact-binary shape. It is the most bifurcated near-Earth asteroid yet studied and one of the most elongated as well. The sidereal rotation period is 8.76243 ± 0.00004 h and the pole direction is within 5° of ecliptic longitude and latitude (281°, −31°). Radar astrometry has reduced the orbital element uncertainties by 27% relative to the a priori orbit solution that was based on a half-century of optical data. Simple dynamical arguments are used to demonstrate that this asteroid could have originated as a binary system that tidally decayed and merged.  相似文献   

4.
T. Kohout  R. Kiuru  P. Scheirich  R. Macke 《Icarus》2011,212(2):697-700
The density measurements of Almahata Sitta ureilites reveal a bulk density of ∼3.1 g/cm3. This value, together with the 2008 TC3 asteroid shape model and albedo, was used to estimate the asteroid’s mass. Based on the study of recovered meteorites and atmospheric entry observations Asteroid 2008 TC3 is compositionally heterogeneous and of low mechanical strength. Thus we consider the presence of significant macroporosity likely, lowering asteroid’s bulk density compared to that of the Almahata Sitta ureilites. Most realistic albedos lie in a range of 0.09-0.2 and the presence of significant macroporosity leads to mass estimates below 20 × 103 kg, which is lower than previously estimated. The presence of a non-ureilitic fraction and space weathering may affect the albedo and also influence the mass estimates. However, from current data it is not possible to quantify this effect.  相似文献   

5.
David P. O’Brien 《Icarus》2009,203(1):112-118
The near-Earth Asteroids Eros and Itokawa show a pronounced lack of small (?100 m) craters, the vast majority of which were formed during their time in the main belt, and this has been cited as possible evidence that small (?10 m) impactors are efficiently removed from the main belt by the Yarkovsky effect. Using well-tested models for the evolution of the main-belt size distribution and the evolution of crater populations on asteroid surfaces, I show that a pronounced lack of small impactors would require size-dependent removal far stronger than can result from the Yarkovsky effect (or any other known process). Furthermore, such strong removal would lead to wavelike perturbations in the main-belt and near-Earth asteroid size distributions that are inconsistent with their observed size distributions, as well as the cratering records on asteroid surfaces. A more likely explanation is that processes on asteroid surfaces, such as seismic shaking, are responsible for erasing small craters after they form.  相似文献   

6.
Mark Willman 《Icarus》2011,211(1):504-510
We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid’s surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezi?, ?. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object’s diameter. The age of an S-complex asteroid’s surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezi?, ?., Juri?, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezi?, ?., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the ‘dual τ’ space weathering model of Willman et al. (2010).We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and respectively. The fit also suggests an initial principal component color of −0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of ΔPC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.  相似文献   

7.
We present near-infrared spectral measurements of Themis family Asteroid (379) Huenna (D ∼ 98 km) and its 6 km satellite using SpeX on the NASA IRTF. The companion was farther than 1.5″ from the primary at the time of observations and was approximately 5 magnitudes dimmer. We describe a method for separating and extracting the signal of a companion asteroid when the signal is not entirely resolved from the primary. The spectrum of (379) Huenna has a broad, shallow feature near 1 μm and a low slope, characteristic of C-type asteroids. The secondary’s spectrum is consistent with the taxonomic classification of C-complex or X-complex. The quality of the data was not sufficient to identify any subtle feature in the secondary’s spectrum.  相似文献   

8.
We have extended our earlier work on space weathering of the youngest S-complex asteroid families to include results from asteroid clusters with ages <106 years and to newly identified asteroid pairs with ages <5 × 105 years. We have identified three S-complex asteroid clusters amongst the set of clusters with ages in the range 105-6 years—(1270) Datura, (21509) Lucascavin and (16598) 1992 YC2. The average color of the objects in these clusters agrees with the color predicted by the space weathering model of Willman et al. (Willman, M., Jedicke, R., Nesvorný, D., Moskovitz, N., Ivezi?, Z., Fevig, R. [2008]. Icarus 195, 663-673). SDSS five-filter photometry of the members of the very young asteroid pairs with ages <105 years was used to determine their taxonomic classification. Their types are consistent with the background population near each object. The average color of the S-complex pairs is PC1 = 0.49 ± 0.03, over 5σ redder than predicted by Willman et al. (Willman, M., Jedicke, R., Nesvorný, D., Moskovitz, N., Ivezi?, Z., Fevig, R. [2008]. Icarus 195, 663-673). This may indicate that the most likely pair formation mechanism is a gentle separation due to YORP spin-up leaving much of the aged and reddened surface undisturbed. If this is the case then our color measurement allows us to set an upper limit of ∼64% on the amount of surface disturbed in the separation process. Using pre-existing color data and our new results for the youngest S-complex asteroid clusters we have extended our space weather model to explicitly include the effects of regolith gardening and fit separate weathering and gardening characteristic time scales of τw = 960 ± 160 Myr and τg = 2000 ± 290 Myr respectively. The first principal component color for fresh S-complex material is PC1 = 0.37 ± 0.01 while the maximum amount of local reddening is ΔPC1 = 0.33 ± 0.06. Our first-ever determination of the gardening time is in stark contrast to our calculated gardening time of τg ∼ 270 Myr based on main belt impact rates and reasonable assumptions about crater and ejecta blanket sizes. A possible resolution for the discrepancy is through a ‘honeycomb’ mechanism in which the surface regolith structure absorbs small impactors without producing significant ejecta. This mechanism could also account for the paucity of small craters on (433) Eros.  相似文献   

9.
Lucy F. Lim  Joshua P. Emery 《Icarus》2011,213(2):510-523
We present the thermal infrared (5-35 μm) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph (“IRS”; Houck, J.R. et al. [2004]. Astrophys. J. Suppl. 154, 18-24) together with new groundbased lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 ± 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (HV) at that rotational phase to be 12.58 ± 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 ± 0.4 km with a visible albedo pV = 0.142 ± 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 ± 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 ±  2.8 K and beaming parameter η = 1.16 ± 0.05. Thermophysical modeling places a lower limit of on the thermal inertia of the asteroid’s surface layer (if the surface is very smooth) but more likely values fall between 30 and depending on the sense of rotation.The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 μm reststrahlen band, the 15-16.5 μm Si-O-Si stretching region, and the 16-25 μm reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range Wo2±1En74±2Fs24±1. Spectral deconvolution of the 9-12 μm reststrahlen features indicates that up to ≈20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non-cumulate eucrite as the major component on the surface of 956 Elisa, although cumulate eucrite material may be present at abundances lower than that of the diogenite component.Analysis of new near-IR spectra of 956 Elisa with the Modified Gaussian Model (MGM; Sunshine, J.M., Pieters, C.M., Pratt, S.F. [1990]. J. Geophys. Res. 95 (May), 6955-6966) results in two pyroxene compositions: 75% magnesian low-Ca pyroxene and 25% high-Ca pyroxene. High-Ca pyroxene is not evident in the mid-IR data, but may belong to a component that is underrepresented in the mid-IR spectrum either because of its spatial distribution on the asteroid or because of its particle size. High-Ca pyroxenes that occur as exsolution lamellae may also be more evident spectrally in the NIR than in the mid-IR. In any case, we find that the mid-IR spectrum of 956 Elisa is dominated by emission from material of diogenite-like composition, which has very rarely been observed among asteroids.  相似文献   

10.
We present a mineralogical assessment of near-Earth Asteroid, (1036) Ganymed, using data obtained May 18, 2006 UT combined with 24 Color Asteroid Survey data to cover the spectral interval of 0.3-2.45 μm. Results of the analysis indicate (1036) Ganymed is an S (VI) asteroid with a surface silicate assemblage consisting primarily of orthopyroxene, (Fs23(±5)Wo3(±3)), consistent with calculated band centers and band area ratios (BAR). (1036) Ganymed appears to be once part of a large mesosiderite containing howardite, eucrite, and diogenite (HED) pyroxenes mixed with metal that was broken apart and dispersed. The calculated composition of the average pyroxenes in the surface material of (1036) Ganymed is consistent with mesosiderite pyroxenes, in particular the diogenites. A second possibility could be (1036) Ganymed is not yet represented in the meteorite collection. Our investigation has confirmed Ganymed is not a parent body of the ordinary chondrites and is not genetically related to (433) Eros.  相似文献   

11.
A mineralogical assessment of 3:1 Kirkwood Gap Asteroids (3760) Poutanen and (974) Lioba, has been carried out from spectral data obtained May 21, 2008 (974) and May 25, 2009 (3760) UT using the NASA Infrared Telescope Facility. Results indicate (3760) Poutanen as a spinel-bearing asteroid. The spinel contained within this asteroid appears to be embedded in calcium aluminum inclusions (CAIs) much like that of the CV3 chondrite Allende. The preservation of the CAIs implies a lack of igneous processing and places further constraints on the heating that occurred within the early Solar System. This analysis suggests (3760) Poutanen originated in the general formation zone of the CV3 meteorites, but in a sub-region depleted in iron-rich matrix material and enriched in pyroxene-bearing clasts. Analysis of (974) Lioba indicates it is an S(IV) asteroid with a surface silicate assemblage consisting of olivine and orthopyroxene, (Fs21(±5)Wo8(±3)), consistent with measured band centers, (0.96 ± 0.01 μm; 1.95 ± 0.02 μm), and the band area ratio (0.59 ± 0.15). The location, delivery efficiency ((24.5%) Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C. [1993]. Icarus 101, 174-187), calculated mineralogy, and BAR strongly suggest (974) Lioba is a plausible parent body for the LL- or L-ordinary chondrites.  相似文献   

12.
We report radar, photometric, and spectroscopic observations of near-Earth Asteroid (136617) 1994 CC. The radar measurements were obtained at Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) on 9 days following the asteroid’s approach within 0.0168 AU on June 10, 2009. 1994 CC was also observed with the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) on May 21 and June 1-3. Visible-wavelength spectroscopy was obtained with the 5-m Hale telescope at Palomar on August 25. Delay-Doppler radar images reveal that 1994 CC is a triple system; along with (153591) 2001 SN263, this is only the second confirmed triple in the near-Earth population. Photometry obtained with PROMPT yields a rotation period for the primary P = 2.38860 ± 0.00009 h and a lightcurve amplitude of ∼0.1 mag suggesting a shape with low elongation. Hale telescope spectroscopy indicates that 1994 CC is an Sq-class object. Delay-Doppler radar images and shape modeling reveal that the primary has an effective diameter of 0.62 ± 0.06 km, low pole-on elongation, few obvious surface features, and a prominent equatorial ridge and sloped hemispheres that closely resemble those seen on the primary of binary near-Earth Asteroid (66391) 1999 KW4. Detailed orbit fitting reported separately by Fang et al. (Fang, J., Margot, J.-L., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A. [2011]. Astron. J. 141, 154-168) gives a mass of the primary of 2.6 × 1011 kg that, coupled with the effective diameter, yields a bulk density of 2.1 ± 0.6 g cm−3. The images constrain the diameters of the inner and outer satellites to be 113 ± 30 m and 80 ± 30 m, respectively. The inner satellite has a semimajor axis of ∼1.7 km (∼5.5 primary radii), an orbital period of ∼30 h, and its Doppler dispersion suggests relatively slow rotation, 26 ± 12 h, consistent with spin-orbit lock. The outer satellite has an orbital period of ∼9 days and a rotation period of 14 ± 7 h, establishing that the rotation is not spin-orbit locked. Among all binary and triple systems observed by radar, at least 25% (7/28) have a satellite that rotates more rapidly than its orbital period. This suggests that asynchronous configurations with Protation < Porbital are relatively common among multiple systems in the near-Earth population. 1994 CC’s outer satellite has an observed maximum separation from the primary of ∼5.7 km (∼18.4 primary radii) that is the largest separation relative to primary radius seen to date among all 36 known binary and triple NEA systems. 1994 CC, (153591) 2001 SN263, and 1998 ST27 are the only triple and binary systems known with satellite separations >10 primary radii, suggesting either a detection bias, or that such widely-separated satellites are relatively uncommon in NEA multiple systems.  相似文献   

13.
Here we show results from thermal-infrared observations of km-sized binary near-Earth asteroids (NEAs). We combine previously published thermal properties for NEAs with newly derived values for three binary NEAs. The η value derived from the near-Earth asteroid thermal model (NEATM) for each object is then used to estimate an average thermal inertia for the population of binary NEAs and compared against similar estimates for the population of non-binaries. We find that these objects have, in general, surface temperatures cooler than the average values for non-binary NEAs as suggested by elevated η values. We discuss how this may be evidence of higher-than-average surface thermal inertia. This latter physical parameter is a sensitive indicator of the presence or absence of regolith: bodies covered with fine regolith, such as the Earth’s moon, have low thermal inertia, whereas a surface with little or no regolith displays high thermal inertia. Our results are suggestive of a binary formation mechanism capable of altering surface properties, possibly removing regolith: an obvious candidate is the YORP effect.We present also newly determined sizes and geometric visible albedos derived from thermal-infrared observations of three binary NEAs: (5381) Sekhmet, (153591) 2001 SN263, and (164121) 2003 YT1. The diameters of these asteroids are 1.41 ± 0.21 km, 1.56 ± 0.31 km, and 2.63 ± 0.40 km, respectively. Their albedos are 0.23 ± 0.13, 0.24 ± 0.16, and 0.048 ± 0.015, respectively.  相似文献   

14.
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high-e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, “rubble pile” asteroid geophysics, and gravitational interactions. The YORP effect torques a “rubble pile” asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.  相似文献   

15.
In March 2001, the Hayabusa spacecraft target, Asteroid 25143 Itokawa, made its final close approach to Earth prior to the spacecraft's launch. We carried out an extensive observing campaign from January to September 2001 to better characterize this near-Earth asteroid. Global physical properties of the surface of Itokawa were characterized by analyzing its photometric properties and behavior. Results included here capitalize on analysis of broadband photometric observations taken with a number of telescopes, instruments, and observers. We employed a Hapke model to estimate the surface roughness, single particle scattering albedo, single particle scattering characteristics, phase integral, and geometric and bond albedo. We find that this asteroid has a higher geometric albedo than average main belt S-class asteroids; this is consistent with results from other observers. The broadband colors of Itokawa further support evidence that this is an atypical S-class asteroid. Broadband colors show spectral characteristics more typically found on large-diameter main-belt asteroids believed to be space-weathered, suggesting the surface of this small diameter, near-Earth asteroid could likewise be space-weathered.  相似文献   

16.
Vesta, the second largest Main-Belt Asteroid, will be the first to be explored in 2011 by NASA’s Dawn mission. It is a dry, likely differentiated body with spectrum suggesting that is has been resurfaced by basaltic lava flows, not too different from the lunar maria.Here we present the first disk-resolved spectroscopic observations of an asteroid from the ground. We observed (4) Vesta with the ESO-VLT adaptive optics equipped integral-field near-infrared spectrograph SINFONI, as part of its science verification campaign. The highest spatial resolution of ∼90 km on Vesta’s surface was obtained during excellent seeing conditions (0.5) in October 2004.We observe spectral variations across Vesta’ surface that can be interpreted as variations of either the pyroxene composition, or the effect of surface aging. We compare Vesta’s 2 μm absorption band to that of howardite-eucrite-diogenite (HED) meteorites that are thought to originate from Vesta, and establish particular links between specific regions and HED subclasses. The overall composition is found to be mostly compatible with howardite meteorites, although a small area around 180°E longitude could be attributed to a diogenite-rich spot. We finally focus our spectral analysis on the characteristics of Vesta’s bright and dark regions as seen from Hubble Space Telescope’s visible and Keck-II’s near-infrared images.  相似文献   

17.
On 5 September 2008, the Rosetta spacecraft encountered the asteroid 2867 Steins on its way to the comet 67P/Churyumov-Gerasimenko. This was the first of two planned asteroid fly-bys performed by the probe, the second fly-by being with the much larger asteroid 21 Lutetia in July 2010. The VIRTIS imaging spectrometer (IFOV 0.250 mrad, overall spectral range 0.25-5.1 μm) onboard Rosetta acquired data of Steins already before the closest approach phase, when the target was spatially unresolved, in order to obtain a light curve of the asteroid in the infrared spectral range extending up to 5 μm, that was never explored before. The VIRTIS light curve campaign started at 11:30 UTC onboard time, when the spacecraft was about 221,377 km away from the target, and ended at 17:58 UTC, at a distance of 20,741 km away from Steins. During this timeframe, the solar phase angle of the asteroid was roughly constant, ranging from 38.2° to 36.3°.Assuming the most recent value derived for the rotational period of Steins (Lamy et al., 2008), the VIRTIS observations covered slightly more than one rotation of the asteroid. In this interval, VIRTIS collected 8 hyperspectral cubes where Steins was captured 119 times, both in the visual and in the infrared range. Given the low signal and the unresolved appearance of the source, for which the instrument was not designed, only a small subset of wavelengths turned out to be suitable to sample the light curve. Nevertheless, in both the VIS and NIR ranges we find a similar trend, with two different maxima and minima during one rotational period, and amplitudes consistent with the results in the visual range obtained in previous works, including the data set acquired by the OSIRIS camera onboard Rosetta. We also report the presence of a new broad feature centered at approximately 0.81-0.82 μm, which is seen in the visual data throughout the rotation of the asteroid.  相似文献   

18.
During its close Earth approach in 2001, the E-class near-Earth Asteroid (33342) 1998 WT24 was the focus of extensive radar, optical, and thermal infrared observations. We present a physical model of this object, estimated from Arecibo and Goldstone radar images that cover multiple rotations and span over 100° of sky motion. The asteroid has an equivalent diameter of 415±40 m and a diffuse radar scattering law that is identical in both senses of circular polarization, implying a surface that is extremely rough on centimeter-to-decimeter scales. The shape is dominated by three large basins, which may be impact craters or a relic of past dynamical disruption of the object. Analysis of YORP perturbations on WT24's spin state predicts that the asteroid's spin rate is decreasing at a rate of . Simply extrapolating this rate suggests that the asteroid will despin over the next 150 kyr and was spinning at its surface disruption rate 75 kyr ago, but the rotational evolution of WT24 depends on the surface's thermal properties and probably is more complex than a simple spin-down.  相似文献   

19.
Impact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, we use a series of linked seismic and geomorphic models to investigate the process in detail. We begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and we use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of 400±200 Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than ∼100 m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations. This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only localized (regional) seismic effects from individual impacts.  相似文献   

20.
In order to gain further insight into their surface compositions and relationships with meteorites, we have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV slope, a 0.7 μm feature and a 3 μm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be characterized by the slopes of their continua. We thus plot the slope of the continuum between 1.8 and 2.5 μm against slope between 1.0 and 1.75 μm, the break at ∼1.8 μm chosen since phyllosilicates show numerous water-related features beyond this wavelength. On such plots, the C complex fields match those of phyllosilicates kaolinite and montmorillonite that have been heated to about 700 °C, while the X complex fields match the fields for phyllosilicates montmorillonite and serpentine that have been similarly heated. We thus suggest that the surface of the C complex asteroids consist of decomposition products of kaolinite or montmorillonite while for the X complex we suggest that surfaces consist of decomposition products of montmorillonite or serpentine. On the basis of overlapping in fields on the continuum plots we suggest that the CI chondrites are linked with the Cgh asteroids, individual CV and CR chondrites are linked with Xc asteroids, a CK chondrite is linked with the Ch or Cgh asteroids, a number of unusual CI/CM meteorites are linked with C asteroids, and the CM chondrites are linked with the Xk asteroids. The associations are in reasonable agreement with chondrite mineralogy and albedo data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号