首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The abundance of carbon monoxide in the Venus’ dayside atmosphere above the clouds was measured by ground-based 2.3 μm spectroscopy for 4 days. The hemispherical distributions found show no significant latitudinal or longitudinal structure. The disc-averaged mixing ratio of 58 ± 17 ppm found at a representative height of 62-67 km is consistent with previous measurements. Such a flat distribution of CO abundance above the clouds seems to be controlled by an efficient horizontal eddy diffusion with a time scale of 30 days or shorter although the CO distribution below the clouds seems to be controlled by the meridional circulation. The pole-ward wind speed of the meridional circulation above the clouds is estimated to be 0.2 m s−1 or less based on the difference between the CO mixing ratios above and below the clouds.  相似文献   

2.
Darrell F. Strobel 《Icarus》2010,208(2):878-886
The third most abundant species in Titan’s atmosphere is molecular hydrogen with a tropospheric/lower stratospheric mole fraction of 0.001 derived from Voyager and Cassini infrared measurements. The globally averaged thermospheric H2 mole fraction profile from the Cassini Ion Neutral Mass Spectrometer (INMS) measurements implies a small positive gradient in the H2 mixing ratio from the tropopause region to the lower thermosphere (∼950-1000 km), which drives a downward H2 flux into Titan’s surface comparable to the H2 escape flux out of the atmosphere (∼2 × 1010 cm−2 s−1 referenced to the surface) and requires larger photochemical production rates of H2 than obtained by previous photochemical models. From detailed model calculations based on known photochemistry with eddy, molecular, and thermal diffusion, the tropospheric and thermospheric H2 mole fractions are incompatible by a factor of ∼2. The measurements imply that the downward H2 surface flux is in substantial excess of the speculative threshold value for methanogenic life consumption of H2 (McKay, C.P., Smith, H.D. [2005], Icarus 178, 274-276. doi:10.1016/j.icarus.2005.05.018), but without the extreme reduction in the surface H2 mixing ratio.  相似文献   

3.
Variations of the upper cloud boundary and the CO, HF, and HCl mixing ratios were observed using the CSHELL spectrograph at NASA IRTF. The observations were made in three sessions (October 2007, January 2009, and June 2009) at early morning and late afternoon on Venus in the latitude range of ±60°. CO2 lines at 2.25 μm reveal variations of the cloud aerosol density (∼25%) and scale height near 65 km. The measured reflectivity of Venus at low latitudes is 0.7 at 2.25 μm and 0.028 at 3.66 μm, and the effective CO2 column density is smaller at 3.66 μm than those at 2.25 μm by a factor of 4. This agrees with the almost conservative multiple scattering at 2.25 μm and single scattering in the almost black aerosol at 3.66 μm. The expected difference is just a factor of (1 − g)−1 = 4, where g = 0.75 is the scattering asymmetry factor for Venus’ clouds. The observed CO mixing ratio is 52 ± 4 ppm near 08:00 and 40 ± 4 ppm near 16:30 at 68 km, and the higher ratio in the morning may be caused by extension of the CO morningside bulge to the cloud tops. The observed weak limb brightening in CO indicates an increase of the CO mixing ratio with altitude. HF is constant at 3.5 ± 0.2 ppb at 68 km in both morningside and afternoon observations and in the latitude range ±60°. Therefore the observations do not favor a bulge of HF, though HF is lighter than CO. Probably a source in the upper atmosphere facilitates the bulge formation. The recent measurements of HCl near 70 km are controversial (0.1 and 0.74 ppm) and require either a strong sink or a strong source of HCl in the clouds. The HCl lines of the (2-0) band are blended by the solar and telluric lines. Therefore we observed the P8 lines of the (1-0) band at 3.44 μm. These lines are spectrally clean and result in the HCl mixing ratio of 0.40 ± 0.03 ppm at 74 km. HCl does not vary with latitude within ±60°. Our observations support a uniformly mixed HCl throughout the Venus atmosphere.  相似文献   

4.
Venus nightglow was observed at NASA IRTF using a high-resolution long-slit spectrograph CSHELL at LT = 21:30 and 4:00 on Venus. Variations of the O2 airglow at 1.27 μm and its rotational temperature are extracted from the observed spectra. The mean O2 nightglow is 0.57 MR at 21:30 at 35°S-35°N, and the temperature increases from 171 K near the equator to ∼200 K at ±35°. We have found a narrow window that covers the OH (1-0) P1(4.5) and (2-1) Q1(1.5) airglow lines. The detected line intensities are converted into the (1-0) and (2-1) band intensities of 7.2 ± 1.8 kR and <1.4 kR at 21:30 and 15.5 ± 2 kR and 4.7 ± 1 kR at 4:00. The f-component of the (1-0) P1(4.5) line has not been detected in either observation, possibly because of resonance quenching in CO2. The observed Earth’s OH (1-0) and (2-1) bands were 400 and 90 kR at 19:30 and 250 and 65 kR at 9:40, respectively. A photochemical model for the nighttime atmosphere at 80-130 km has been made. The model involves 61 reactions of 24 species, including odd hydrogen and chlorine chemistries, with fluxes of O, N, and H at 130 km as input parameters. To fit the OH vibrational distribution observed by VEX, quenching of OH (v > 3) in CO2 only to v ? 2 is assumed. According to the model, the nightside-mean O2 emission of 0.52 MR from the VEX and our observations requires an O flux of 2.9 × 1012 cm−2 s−1 which is 45% of the dayside production above 80 km. This makes questionable the nightside-mean O2 intensities of ∼1 MR from some observations. Bright nightglow patches are not ruled out; however, the mean nightglow is ∼0.5 MR as observed by VEX and supported by the model. The NO nightglow of 425 R needs an N flux of 1.2 × 109 cm−2 s−1, which is close to that from VTGCM at solar minimum. However, the dayside supply of N at solar maximum is half that required to explain the NO nightglow in the PV observations. The limited data on the OH nightglow variations from the VEX and our observations are in reasonable agreement with the model. The calculated intensities and peak altitudes of the O2, NO, and OH nightglow agree with the observations. Relationships for the nightglow intensities as functions of the O, N, and H fluxes are derived.  相似文献   

5.
Venus was observed at 2.4 and 3.7 μm with a resolving power of 4×104 using the long-slit high-resolution spectrograph CSHELL at NASA IRTF. The observations were made along a chord that covered a latitude range of ± 60° at a local time near 8:00. The continuous reflectivity and limb brightening at 2.4 μm are fitted by the clouds with a single scattering albedo 1−a=0.01 and a pure absorbing layer with τ=0.09 above the clouds. The value of 1−a agrees with the refractive index of H2SO4 (85%) and the particle radius of 1 μm. The absorbing layer is similar to that observed by the UV spectrometer at the Pioneer Venus orbiter. However, its nature is puzzling. CO2 was measured using its R32 and R34 lines. The retrieved product of the CO2 abundance and airmass is constant at 1.9 km-atm along the instrument slit in the latitude range of ± 60°. The CO mixing ratio (measured using the P21 line) is rather constant at 70 ppm, and its variations of ∼10% may be caused by atmospheric dynamics. The observed value is higher than the 50 ppm retrieved previously from a spectrum of the full disk, possibly, because of some downward extension of the mesospheric morningside bulge of CO. The observations of the HF R3 line reveal a constant HF mixing ratio of 3.5±0.5 ppb within ± 60° of latitude, which is within the scatter in the previous measurements of HF. OCS has been detected for the first time at the cloud tops by summing 17 lines of the P-branch. The previous detections of OCS refer to the lower atmosphere at 30-35 km. The retrieved OCS mixing ratio varies with a scale height of 1 to 3 km. The mean OCS mixing ratio is ∼2 ppb at 70 km and ∼14 ppb at 64 km. Vertical motions in the atmosphere may change the OCS abundance. The detected OCS should significantly affect Venus' photochemistry. A sensitive search for H2S using its line at 2688.93 cm−1 results in a 3 sigma upper limit of 23 ppb, which is more restrictive than the previous limit of 100 ppb.  相似文献   

6.
While CO, HCl, and HF, that were considered in the first part of this work, have distinct absorption lines in high-resolution spectra and were detected four decades ago, the lines of HDO, OCS, and SO2 are either very weak or blended by the telluric lines and have not been observed previously by ground-based infrared spectroscopy at the Venus cloud tops. The H2O abundance above the Venus clouds is typically below the detection limit of ground-based IR spectroscopy. However, the large D/H ratio on Venus facilitates observations of HDO. Converted to H2O with D/H ≈ 200, our observations at 2722 cm−1 in the Venus afternoon show a H2O mixing ratio of ∼1.2 ppm at latitudes between ±40° increasing to ±60° by a factor of 2. The observations in the early morning reveal the H2O mixing ratio that is almost constant at 2.9 ppm within latitudes of ±75°. The measured H2O mixing ratios refer to 74 km. The observed increase in H2O is explained by the lack of photochemical production of sulfuric acid in the night time. The recent observations at the P-branch of OCS at 4094 cm−1 confirm our detection of OCS. Four distributions of OCS along the disk of Venus at various latitudes and local times have been retrieved. Both regular and irregular components are present in the variations of OCS. The observed OCS mixing ratio at 65 km varies from ∼0.3 to 9 ppb with the mean value of ∼3 ppb. The OCS scale height is retrieved from the observed limb darkening and varies from 1 to 4 km with a mean value of half the atmospheric scale height. SO2 at the cloud tops has been detected for the first time by means of ground-based infrared spectroscopy. The SO2 lines look irregular in the observed spectra at 2476 cm−1. The SO2 abundances are retrieved by fitting by synthetic spectra, and two methods have been applied to determine uncertainties and detection limits in this fitting. The retrieved mean SO2 mixing ratio of 350 ± 50 ppb at 72 km favors a significant increase in SO2 above the clouds since the period of 1980-1995 that was observed by the SOIR occultations at Venus Express. Scale heights of OCS and SO2 may be similar, and the SO2/OCS ratio is ∼500 and may be rather stable at 65-70 km under varying conditions on Venus.  相似文献   

7.
The vertical profile of H2SO4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H2O and H2SO4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H2SO4 vapor mixing ratio is ∼10−12 at 70 and 110 km with a deep minimum of 3 × 10−18 at 88 km. The H2O-H2SO4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H2SO4 is 1.6 × 105 cm−2 s−1 at 70 km and 23 cm−2 s−1 at 90 km. The calculated abundance of H2SO4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 106 and 109, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H2SO4 (impossible for a source of SOX), and cross sections for H2SO4·H2O (impossible above the pure H2SO4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SOX at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SOX on Venus remains unclear and probably does not exist.  相似文献   

8.
The well known mixing length theory of convection is revised for times shorter than the effective time of relaxation into diffusion.Using the Cattaneo equation for the heat flux, we show that the revised theory predicts, before relaxation, a convective flux which is quite different from the flux obtained with the Maxwell-Fourier law.Implications of this result in the outcome of some astrophysical processes are commented upon.  相似文献   

9.
Using the SPICAV-UV spectrometer aboard Venus Express in nadir mode, we were able to derive spectral radiance factors in the middle atmosphere of Venus in the 170-320 nm range at a spectral resolution of R ? 200 during 2006 and 2007 in the northern hemisphere. By comparison with a radiative transfer model of the upper atmosphere of Venus, we could derive column abundance above the visible cloud top for SO2 using its spectral absorption bands near 280 and 220 nm. SO2 column densities show large temporal and spatial variations on a horizontal scale of a few hundred kilometers. Typical SO2 column densities at low latitudes (up to 50°N) were found between 5 and 50 μm-atm, whereas in the northern polar region SO2 content was usually below 5 μm-atm. The observed latitudinal variations follow closely the cloud top altitude derived by SPICAV-IR and are thought to be of dynamical origin. Also, a sudden increase of SO2 column density in the whole northern hemisphere has been observed in early 2007, possibly related to a convective episode advecting some deep SO2 into the upper atmosphere.  相似文献   

10.
The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat flux from a recently presented new hypothesis for the formation of Aram Chaos (Zegers, T.E., Oosthoek, J.H.P., Rossi, A.P., Blom, J.K., Schumacher, S. [2010]. Earth Planet. Sci. Lett. 297, 496-504. doi:10.1016/j.epsl.2010.06.049.). In this hypothesis the chaotic terrain is thought to have formed by melting of a buried ice sheet. The slow sedimentation and burial of the ice sheet led to an increased thermal insulation of the ice and subsequently to a temperature increase high enough to trigger melting and the formation of the subsurface lake. As these processes highly depend on the thermal properties of the subsurface and especially on the surface heat flux, it is possible to constrain the latter by using numerical simulations. Based on the hypothesis for the formation of Aram Chaos, we conducted an extensive parameter study to determine the parameter settings leading to sufficient melting of the buried ice sheet. We find that the surface heat flux in the Aram Chaos region during the Hesperian was most likely between 20 and 45 mW m−2 with a possible maximum value of up to 60 mW m−2.  相似文献   

11.
Fast rotating giant planets such as Jupiter and Saturn possess alternate prograde and retrograde zonal winds which are stable over long periods of time. We consider a compressible model of convection in a spherical shell with rapid rotation, using the anelastic approximation, to explore the parameter range for which such zonal flows can be produced.We consider models with a large variation in density across the layer. Our models are based only on the molecular H/He region above the metallic hydrogen transition at about 2 Mbar, and we do not include the hydromagnetic effects which may be important if the electrical conductivity is significant. We find that the convective velocities are significantly higher in the low density regions of the shell, but the zonal flow is almost independent of the z-coordinate parallel to the rotation axis. We analyse how this behaviour is consistent with the Proudman-Taylor theorem.We find that deep prograde zonal flow near the equator is a very robust feature of our models. Prograde and retrograde jets alternating in latitude can occur inside the tangent cylinder in compressible as well as Boussinesq models, particularly at lower Prandtl numbers. However, the zonal jets inside the tangent cylinder are suppressed if a no-slip condition is imposed at the inner boundary. This suggests that deep high latitude jets may be suppressed if there is significant magnetic dissipation.Our compressible calculations include the viscous dissipation in the entropy equation, and we find this is comparable to, and in some cases exceeds, the total heat flux emerging from the surface. For numerical reasons, these simulations cannot reach the extremely low Ekman number found in giant planets, and they necessarily also have a much larger heat flux than planets. We therefore discuss how our results might scale down to give solutions with lower dissipation and lower heat flux.  相似文献   

12.
The treatment of the overstable zone by Langer, Sugimoto &38; Fricke is extended so that the effects of radiative heat loss from convective elements and of the mixing length are included. As the overstability investigated by Kato arises because of the radiative heat loss from the convective element, this loss may play a role in the heat flux. In the formulation presented in this work, the diffusion coefficient depends on the mixing length when the mixing length is very small. In calculations with the method of Langer et al., the efficiency factor of the diffusion coefficient of chemical species is sometimes much smaller than 1. This exceedingly small efficiency factor may be explained by the dependence of the diffusion coefficient on the mixing length. We find that the neutral condition of Kato's overstable zone is ∇ rad = ∇ ad.  相似文献   

13.
We present results of a simple two-dimensional model investigating the observable effects that convective motions and gravity waves can have on the condensational Venus cloud. Gravity waves have been observed in the Venus atmosphere in the form of temperature scintillations in the Magellan and Pioneer Venus occultation data. Multiple in situ probes and long-duration remote observations indicate the presence of convective motions in the Venus clouds. Dynamical studies by others have suggested that gravity waves can exist in the stable regions of the Venus atmosphere above the middle clouds and beneath the middle clouds, and likely are triggered by flow past sub-cloud plumes caused by convective overshooting. We find that a simplified treatment of convective kinematics generates variation in the Venus condensational cloud consistent with the observed variability of optical depth and brightness temperature. Specifically, we find that the downdraft regions in our simulated convective cell exhibit a decrease in cloud optical depth of around Δτ∼10. The brightness temperature ranges from about 460 K in the downdraft regions of the simulated convective cells, to about 400 K in the simulated updrafts. We also find that gravity waves launched by obstacles (such as overshooting convective plumes) near the cloud base exhibit horizontal wavelengths comparable to the separation between convective cells, and generate variations in brightness temperature that should be observable by instruments such as VIRTIS on Venus Express. However, a more robust treatment of the atmospheric dynamics is needed to address adequately these interactions between the clouds and the mesoscale dynamics.  相似文献   

14.
The Hadley mechanism is adopted to describe the axisymmetric four day superrotation in the Venus atmosphere, with solar driven meridional winds redistributing energy and momentum, and eddy diffusion describing the actions of three dimensional transient eddies. We address the question how the eddy diffusion coefficients are related to the properties of the circulation. For the atmosphere of a slowly rotating planet such as Venus, we show that a form of the non-linear closure is suggested by the mixing length hypothesis, which constrains the magnitude of the eddy diffusion coefficients. Combining this constraint with the concept of the Rossby radius of deformation yields zonal velocities on the order of 100 m sec–1. A steady state, non-linear, one-layer spectral model is used for a parametric study to find a relationship between heat source, meridional circulation and eddy diffusion coefficients, which yields the large zonal velocities observed. This analysis leads to the following conclusions: (1) Proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. (2) The meridional velocity is virtually constant for large eddy diffusion coefficients. (3) Below a threshold in the diffusion rate, the meridional velocity decreases, commensurate with the mixing length hypothesis. Eddy heat conduction becomes important and shares with the Hadley cell advection in balancing the solar heating. The zonal velocities then reach large values near 100 m sec–1. (4) For large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates. However, under condition (3), the zonal velocities are independent of the planetary rotation rate. Ramifications are discussed for related parameterizations in GCMs, emphasizing that eddy diffusion coefficients are governed by solar forcing and cannot be chosen independently.  相似文献   

15.
Laboratory simulations using the Arizona State University Vortex Generator (ASUVG) were run to simulate sediment flux in dust devils in terrestrial ambient and Mars-analog conditions. The objective of this study was to measure vortex sediment flux in the laboratory to yield estimations of natural dust devils on Earth and Mars, where all parameters may not be measured. These tests used particles ranging from 2 to 2000 μm in diameter and 1300 to 4800 kg m−3 in density, and the results were compared with data from natural dust devils on Earth and Mars. Typically, the cores of dust devils (regardless of planetary environment) have a pressure decrease of ∼0.1-1.5% of ambient atmospheric pressure, which enhances the lifting of particles from the surface. Core pressure decreases in our experiments ranged from ∼0.01% to 5.00% of ambient pressure (10 mbar Mars cases and 1000 mbar for Earth cases) corresponding to a few tenths of a millibar for Mars cases and a few millibars for Earth cases. Sediment flux experiments were run at vortex tangential wind velocities of 1-45 m s−1, which typically correspond to ∼30-70% above vortex threshold values for the test particle sizes and densities. Sediment flux was determined by time-averaged measurements of mass loss for a given vortex size. Sediment fluxes of ∼10−6-100 kg m−2 s−1 were obtained, similar to estimates and measurements for fluxes in dust devils on Earth and Mars. Sediment flux is closely related to the vortex intensity, which depends on the strength of the pressure decrease in the core (ΔP). This study found vortex size is less important for lifting materials because many different diameters can have the same ΔP. This finding is critical in scaling the laboratory results to natural dust devils that can be several orders of magnitude larger than the laboratory counterparts.  相似文献   

16.
Knowledge of the earliest evolution of Earth and Venus is extremely limited, but it is obvious from their dramatic contrasts today that at some point in their evolution conditions on the two planets diverged. In this paper we develop a geophysical systems box model that simulates the flux of carbon through the mantle, atmosphere, ocean, and seafloor, and the degassing of water from the mantle. Volatile fluxes, including loss to space, are functions of local volatile concentration, degassing efficiency, tectonic plate speed, and magnetic field intensity. Numerical results are presented that demonstrate the equilibration to a steady state carbon cycle, where carbon and water are distributed among mantle, atmosphere, ocean, and crustal reservoirs, similar to present-day Earth. These stable models reach steady state after several hundred million years by maintaining a negative feedback between atmospheric temperature, carbon dioxide weathering, and surface tectonics. At the orbit of Venus, an otherwise similar model evolves to a runaway greenhouse with all volatiles in the atmosphere. The influence of magnetic field intensity on atmospheric escape is demonstrated in Venus models where either a strong magnetic field helps the atmosphere to retain about 60 bars of water vapor after 4.5 Gyr, or the lack of a magnetic field allows for the loss of all atmospheric water to space in about 1 Gyr. The relative influences of plate speed and degassing rate on the weathering rate and greenhouse stability are demonstrated, and a stable to runaway regime diagram is presented. In conclusion, we propose that a stable climate-tectonic-carbon cycle is part of a larger coupled geophysical system where a moderate surface climate provides a stabilizing feedback for maintaining surface tectonics, the thermal cooling of the deep interior, magnetic field generation, and the shielding of the atmosphere over billion year time scales.  相似文献   

17.
Cassini-Huygens observations have shown that Titan and Enceladus are geologically active icy satellites. Mitri and Showman [Mitri, G., Showman, A.P., 2005. Icarus 177, 447-460] and McKinnon [McKinnon, W.B., 2006. Icarus 183, 435-450] investigated the dynamics of an ice shell overlying a pure liquid-water ocean and showed that transitions from a conductive state to a convective state have major implications for the surface tectonics. We extend this analysis to the case of ice shells overlying ammonia-water oceans. We explore the thermal state of Titan and Enceladus ice-I shells, and also we investigate the consequences of the ice-I shell conductive-convective switch for the geology. We show that thermal convection can occur, under a range of conditions, in the ice-I shells of Titan and Enceladus. Because the Rayleigh number Ra scales with δ3/ηb, where δ is the thickness of the ice shell and ηb is the viscosity at the base of the ice-I shell, and because ammonia in the liquid layer (if any) strongly depresses the melting temperature of the water ice, Ra equals its critical value for two ice-I shell thicknesses: for relatively thin ice shell with warm, low-viscosity base (Onset I) and for thick ice shell with cold, high-viscosity base (Onset II). At Onset I, for a range of heat fluxes, two equilibrium states—corresponding to a thin, conductive shell and a thick, convective shell—exist for a given heat flux. Switches between these states can cause large, rapid changes in the ice-shell thickness. For Enceladus, we demonstrate that an Onset I transition can produce tectonic stress of ∼500 bars and fractures of several tens of km depth. At Onset II, in contrast, we demonstrate that zero equilibrium states exist for a range of heat fluxes. For a mean heat flux within this range, the satellite experiences oscillations in surface heat flux and satellite volume with periods of ∼50-800 Myr even when the interior heat production is constant or monotonically declining in time; these oscillations in the thermal state of the ice-I shell would cause repeated episodes of extensional and compressional tectonism.  相似文献   

18.
Although it is mostly accepted that the lower part of the ice shell of Europa is actively convective, there is still much uncertainty about the flow mechanism dominating the rheology of this convective layer, which largely depends on the grain size of the ice. In this work, we examined thermal equilibrium states in a tidally heated and strained convective shell, for two rheologies sensitive to grain size, grain boundary sliding and diffusion creep. If we take a lower limit of 70 mW m−2 for the surface heat flow, according to some geological features observed, the ice grain size should be less than 2 or 0.2 mm for grain boundary sliding or diffusion creep respectively. If in addition the thickness of the ice shell is constrained to a few tens of kilometers and it is assumed that the thickness of the convective layer is related to lenticulae spacing, then grain sizes between 0.2 and 2 mm for grain boundary sliding, and between 0.1 and 0.2 mm for diffusion creep are obtained. Also, local convective layer thicknesses deduced from lenticulae spacing are more similar to those here derived for grain boundary sliding. Our results thus favor grain boundary sliding as the dominant rheology for the water ice in Europa's convective layer, since this flow mechanism is able to satisfy the imposed constraints for a wider range of grain sizes.  相似文献   

19.
Chemical kinetic model for the lower atmosphere of Venus   总被引:1,自引:0,他引:1  
A self-consistent chemical kinetic model of the Venus atmosphere at 0-47 km has been calculated for the first time. The model involves 82 reactions of 26 species. Chemical processes in the atmosphere below the clouds are initiated by photochemical products from the middle atmosphere (H2SO4, CO, Sx), thermochemistry in the lowest 10 km, and photolysis of S3. The sulfur bonds in OCS and Sx are weaker than the bonds of other elements in the basic atmospheric species on Venus; therefore the chemistry is mostly sulfur-driven. Sulfur chemistry activates some H and Cl atoms and radicals, though their effect on the chemical composition is weak. The lack of kinetic data for many reactions presents a problem that has been solved using some similar reactions and thermodynamic calculations of inverse processes. Column rates of some reactions in the lower atmosphere exceed the highest rates in the middle atmosphere by two orders of magnitude. However, many reactions are balanced by the inverse processes, and their net rates are comparable to those in the middle atmosphere. The calculated profile of CO is in excellent agreement with the Pioneer Venus and Venera 12 gas chromatographic measurements and slightly above the values from the nightside spectroscopy at 2.3 μm. The OCS profile also agrees with the nightside spectroscopy which is the only source of data for this species. The abundance and vertical profile of gaseous H2SO4 are similar to those observed by the Mariner 10 and Magellan radio occultations and ground-based microwave telescopes. While the calculated mean S3 abundance agrees with the Venera 11-14 observations, a steep decrease in S3 from the surface to 20 km is not expected from the observations. The ClSO2 and SO2Cl2 mixing ratios are ∼10−11 in the lowest scale height. The existing concept of the atmospheric sulfur cycles is incompatible with the observations of the OCS profile. A scheme suggested in the current work involves the basic photochemical cycle, that transforms CO2 and SO2 into SO3, CO, and Sx, and a minor photochemical cycle which forms CO and Sx from OCS. The net effect of thermochemistry in the lowest 10 km is formation of OCS from CO and Sx. Chemistry at 30-40 km removes the downward flux of SO3 and the upward flux of OCS and increases the downward fluxes of CO and Sx. The geological cycle of sulfur remains unchanged.  相似文献   

20.
First measurements of SO2 and SO in the Venus mesosphere (70-100 km) are reported. This altitude range is distinctly above the ∼60-70 km range to which nadir-sounding IR and UV investigations are sensitive. Since July 2004, use of ground-based sub-mm spectroscopy has yielded multiple discoveries. Abundance of each molecule varies strongly on many timescales over the entire sub-Earth Venus hemisphere. Diurnal behavior is evident, with more SO2, and less SO, at night than during the day. Non-diurnal variability is also present, with measured SO2 and SO abundances each changing by up to 2× or more between observations conducted on different dates, but at fixed phase, hence identical sub-Earth Venus local times. Change as large and rapid as a 5σ doubling of SO on a one-week timescale is seen. The sum of SO2 and SO abundances varies by an order of magnitude or more, indicating at least one additional sulfur reservoir must be present, and that it must function as both a sink and source for these molecules. The ratio SO2/SO varies by nearly two orders of magnitude, with both diurnal and non-diurnal components. In contrast to the strong time dependence of molecular abundances, their altitude distributions are temporally invariant, with far more SO2 and SO at 85-100 km than at 70-85 km. The observed increase of SO2 mixing ratio with altitude requires that the primary SO2 source be upper mesospheric photochemistry, contrary to atmospheric models which assert upward transport as the only source of above-cloud SO2. Abundance of upper mesospheric aerosol, with assumption that it is composed primarily of sulfuric acid, is at least sufficient to provide the maximum gas phase (SO + SO2) sulfur reported in this study. Sulfate aerosol is thus a plausible source of upper mesospheric SO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号