共查询到20条相似文献,搜索用时 15 毫秒
1.
A mineralogical assessment of 3:1 Kirkwood Gap Asteroids (3760) Poutanen and (974) Lioba, has been carried out from spectral data obtained May 21, 2008 (974) and May 25, 2009 (3760) UT using the NASA Infrared Telescope Facility. Results indicate (3760) Poutanen as a spinel-bearing asteroid. The spinel contained within this asteroid appears to be embedded in calcium aluminum inclusions (CAIs) much like that of the CV3 chondrite Allende. The preservation of the CAIs implies a lack of igneous processing and places further constraints on the heating that occurred within the early Solar System. This analysis suggests (3760) Poutanen originated in the general formation zone of the CV3 meteorites, but in a sub-region depleted in iron-rich matrix material and enriched in pyroxene-bearing clasts. Analysis of (974) Lioba indicates it is an S(IV) asteroid with a surface silicate assemblage consisting of olivine and orthopyroxene, (Fs21(±5)Wo8(±3)), consistent with measured band centers, (0.96 ± 0.01 μm; 1.95 ± 0.02 μm), and the band area ratio (0.59 ± 0.15). The location, delivery efficiency ((24.5%) Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C. [1993]. Icarus 101, 174-187), calculated mineralogy, and BAR strongly suggest (974) Lioba is a plausible parent body for the LL- or L-ordinary chondrites. 相似文献
2.
Julie Ziffer Humberto Campins Matthew E. Walker Beth Ellen Clark Ellen Howell 《Icarus》2011,213(2):538-546
We compare 13 near-infrared (0.8-2.4 μm) spectra of two low albedo C complex outer-belt asteroid families: Themis and Veritas. The disruption ages of these two families lie at opposite extremes: 2.5 ± 1.0 Gyr and 8.7 ± 1.7 Myr, respectively. We found striking differences between the two families, which show a range of spectral shapes and slopes. The seven Themis family members (older surfaces) have “red” (positive) slopes in the 1.6-2.4 μm region; in contrast, the six Veritas members (younger surfaces) have significantly “flatter” slopes at these same wavelengths. Moreover, the two families are characterized by different concavity at shorter (1.0-1.5 μm) wavelengths with the Themis group being consistently flat or concave up (smile) and the Veritas group being consistently concave down (frown). Each family contains a broad range of diameters, suggesting our results are not due to comparisons of asteroids of different sizes. The statistically significant clustering of the two spectral groups could be explained by one of the following three possibilities or a combination of them: (1) space weathering effects, (2) differences in original composition, or (3) differences in thermal history perhaps as a result of the difference in parent body sizes. As a result of our analyses, we propose a new method to quantify broad and shallow structures in the spectra of primitive asteroids. We found reasonable matches between the observed asteroids and individual carbonaceous chondrite meteorites. Because these meteoritic fits represent fresh surfaces, space weathering is neither necessary nor ruled out as an explanation of spectral differences between families. The six Veritas family near-infrared (NIR) spectra represent the first NIR analysis of this family, thus significantly increasing our understanding of this family over these wavelengths. 相似文献
3.
Michael J. Gaffey 《Icarus》2010,209(2):564-574
Lunar-style space weathering is well understood, but cannot be extended to asteroids in general. The two best studied Asteroids (433 Eros and 243 Ida) exhibit quite different space weathering styles, and neither exhibits lunar-style space weathering. It must be concluded that at this time the diversity and mechanisms of asteroid space weathering are poorly understood. This introduces a significant unconstrained variable into the problem of analyzing asteroid spectral data. The sensitivity of asteroid surface material characterizations to space weathering effects - whatever their nature - is strongly dependent upon the choice of remote sensing methodology. The effects of space weathering on some methodologies such as curve matching are potentially devastating and at the present time essentially unmitigated. On other methodologies such as parametric analysis (e.g., analyses based on band centers and band area ratios) the effects are minimal. By choosing the appropriate methodology(ies) applied to high quality spectral data, robust characterizations of asteroid surface mineralogy can be obtained almost irrespective of space weathering. This permits sophisticated assessments of the geologic history of the asteroid parent bodies and of their relationships to the meteorites. Investigations of the diversity of space weathering processes on asteroid surfaces should be a fruitful area for future efforts. 相似文献
4.
We present a mineralogical assessment of near-Earth Asteroid, (1036) Ganymed, using data obtained May 18, 2006 UT combined with 24 Color Asteroid Survey data to cover the spectral interval of 0.3-2.45 μm. Results of the analysis indicate (1036) Ganymed is an S (VI) asteroid with a surface silicate assemblage consisting primarily of orthopyroxene, (Fs23(±5)Wo3(±3)), consistent with calculated band centers and band area ratios (BAR). (1036) Ganymed appears to be once part of a large mesosiderite containing howardite, eucrite, and diogenite (HED) pyroxenes mixed with metal that was broken apart and dispersed. The calculated composition of the average pyroxenes in the surface material of (1036) Ganymed is consistent with mesosiderite pyroxenes, in particular the diogenites. A second possibility could be (1036) Ganymed is not yet represented in the meteorite collection. Our investigation has confirmed Ganymed is not a parent body of the ordinary chondrites and is not genetically related to (433) Eros. 相似文献
5.
We present the thermal infrared (5-35 μm) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph (“IRS”; Houck, J.R. et al. [2004]. Astrophys. J. Suppl. 154, 18-24) together with new groundbased lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 ± 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (HV) at that rotational phase to be 12.58 ± 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 ± 0.4 km with a visible albedo pV = 0.142 ± 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 ± 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 ± 2.8 K and beaming parameter η = 1.16 ± 0.05. Thermophysical modeling places a lower limit of on the thermal inertia of the asteroid’s surface layer (if the surface is very smooth) but more likely values fall between 30 and depending on the sense of rotation.The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 μm reststrahlen band, the 15-16.5 μm Si-O-Si stretching region, and the 16-25 μm reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range Wo2±1En74±2Fs24±1. Spectral deconvolution of the 9-12 μm reststrahlen features indicates that up to ≈20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non-cumulate eucrite as the major component on the surface of 956 Elisa, although cumulate eucrite material may be present at abundances lower than that of the diogenite component.Analysis of new near-IR spectra of 956 Elisa with the Modified Gaussian Model (MGM; Sunshine, J.M., Pieters, C.M., Pratt, S.F. [1990]. J. Geophys. Res. 95 (May), 6955-6966) results in two pyroxene compositions: 75% magnesian low-Ca pyroxene and 25% high-Ca pyroxene. High-Ca pyroxene is not evident in the mid-IR data, but may belong to a component that is underrepresented in the mid-IR spectrum either because of its spatial distribution on the asteroid or because of its particle size. High-Ca pyroxenes that occur as exsolution lamellae may also be more evident spectrally in the NIR than in the mid-IR. In any case, we find that the mid-IR spectrum of 956 Elisa is dominated by emission from material of diogenite-like composition, which has very rarely been observed among asteroids. 相似文献
6.
P. Beck J.-A. Barrat F. Grisolle E. Quirico B. Schmitt F. Moynier P. Gillet C. Beck 《Icarus》2011,216(2):560-571
The Howardite–Eucrite–Diogenite (HED) suite is a family of differentiated meteorites that provide a unique opportunity to study the differentiation of small bodies. The likely parent-body of this meteorite group, (4) Vesta is presently under study by the Dawn mission, scrutinizing its surface in the visible and NIR infrared range. Here, we discuss how well the magmatic trends observed in HED might be retrieved from NIR spectroscopy, by studying laboratory spectra of 10 HED meteorites together with spectra from the RELAB database. We show that although an exsolution process did occur for most eucrites (i.e. decomposition of a primary calcic pyroxene into a high-Ca and low-Ca pyroxene), it does not affect the “bulk pyroxene” trend retrieved from the location of the pyroxene crystal field bands (Band I with a maximum of absorption around at about 1 μm and Band II around 2 μm). Absolute values of the chemical composition appears however to deviate from the expected chemical composition. We show that mechanical mixture (i.e. impact gardening) will produce a linear mixing in the pyroxenes band position diagram (Band I position vs Band II position). This diagram also reveals that howardite are not pure mixtures of an average eucrite and average diogenite. Because asteroid surfaces are expected to show topography, we also study the effect of observation geometry on the NIR spectra of an eucrite and a diogenite by measuring the bi-directional reflectance spectra from 0.4 to 4.6 μm. Results show that these meteorites tend to act as forward scatterers, leading to a decrease of integrated band area (relative to the continuum) at high phase angles. The position of the two strong crystal field bands shows only small variability with observation geometry. Retrieval of the magmatic trends from the Band I vs Band II diagram should not be affected by observation geometry effects. Finally we performed NIR reflectance measurement on olivine diogenites. The presence of olivine can be suggested by using the Band Area Ratio vs Band I diagram, but this phase might affect the retrieval of pyroxene composition from the position of Band I and Band II. 相似文献
7.
F. Marchis V. Lainey P. Descamps J. Berthier M. Van Dam I. de Pater B. Macomber M. Baek D. Le Mignant H.B. Hammel M. Showalter F. Vachier 《Icarus》2010,210(2):635-643
We present the first dynamical solution of the triple asteroid system (45) Eugenia and its two moons Petit–Prince (diameter ∼ 7 km) and S/2004 (45) 1 (diameter ∼ 5 km). The two moons orbit at 1165 and 610 km from the primary, describing an almost-circular orbit (e ∼ 6 × 10−3 and e ∼ 7 × 10−2 respectively). The system is quite different from the other known triple systems in the main belt since the inclinations of the moon orbits are sizeable (9° and 18° with respect to the equator of the primary respectively). No resonances, neither secular nor due to Lidov–Kozai mechanism, were detected in our dynamical solution, suggesting that these inclinations are not due to excitation modes between the primary and the moons. A 10-year evolution study shows that the orbits are slightly affected by perturbations from the Sun, and to a lesser extent by mutual interactions between the moons. The estimated J2 of the primary is three times lower than the theoretical one, calculated assuming the shape of the primary and an homogeneous interior, possibly suggesting the importance of other gravitational harmonics. 相似文献
8.
Michael Mueller Franck Marchis Joshua P. Emery Stefano Mottola Jérome Berthier 《Icarus》2010,205(2):505-515
We present mid-infrared observations of the binary L5-Trojan system (617) Patroclus-Menoetius before, during, and after two shadowing events, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we effectively observe changes in asteroid surface temperature in real time, allowing the thermal inertia to be determined very directly. A new detailed binary thermophysical model is presented which accounts for the system’s known mutual orbit, arbitrary component shapes, and thermal conduction in the presence of eclipses.We obtain two local thermal-inertia values, representative of the respective shadowed areas: and . The average thermal inertia is estimated to be , potentially with significant surface heterogeneity. This first thermal-inertia measurement for a Trojan asteroid indicates a surface covered in fine regolith. Independently, we establish the presence of fine-grained (<a few μm) silicates on the surface, based on emissivity features near 10 and similar to those previously found on other Trojans.We also report V-band observations and report a lightcurve with complete rotational coverage. The lightcurve has a low amplitude of peak-to-peak, implying a roughly spherical shape for both components, and is single-periodic with a period equal to the period of the mutual orbit, indicating that the system is fully synchronized.The diameters of Patroclus and Menoetius are 106±11 and , respectively, in agreement with previous findings. Taken together with the system’s known total mass, this implies a bulk mass density of , significantly below the mass density of L4-Trojan asteroid (624) Hektor and suggesting a bulk composition dominated by water ice.All known physical properties of Patroclus, arguably the best studied Trojan asteroid, are consistent with those expected in icy objects with devolatilized surface (extinct comets), consistent with what might be implied by recent dynamical modeling in the framework of the Nice Model. 相似文献
9.
Detailed near-infrared spectral observations of Asteroid 1459 Magnya reveal an asteroid that is primarily composed of pyroxene and plagioclase feldspar, confirming earlier suggestions that Magnya has a basaltic composition. The average Magnya spectrum for March 23, 2002 has a Band I center of 0.926 μm and a Band II center of 1.938 μm. Observations over hours show little variation in band center positions. The feldspar-to-pyroxene ratio is ∼0.6 on Magnya's surface. Comparing Magnya with the spectral parameters from 4 Vesta shows discordant pyroxene chemistries; Magnya's pyroxenes contain ∼10 mol% less Fs than Vesta's pyroxenes. This suggests that Magnya originated from a parent body other than 4 Vesta and that its progenitor formed in a more chemically reduced region of the solar nebula within the asteroid belt. 相似文献
10.
The apparent strength of absorptions due to H2O near 1.9 and 3 μm in reflectance spectra is strongly affected by sample albedo. This study uses experimental and analytical approaches to quantify the effects of albedo on estimating the water content of hydrated minerals using various band parameters. We compare spectral band parameters for a series of low-albedo physical and numerical mixtures to measured water contents. Physical experiments consist of montmorillonite, clinoptilolite, and palagonite mixed with lesser amounts of carbon black and ilmenite, whereas numerical mixtures are composed of these host minerals mixed with a material of constant, low albedo. We find the effective single-particle absorption-thickness parameter provides the best correlation to water content, independent of composition and albedo, when derived from continuum-removed single scattering albedo spectra. Uncertainties in estimated water content are on the order of ±1 wt% using this method. The normalized optical path length parameter provides the best correlation to water content when using reflectance spectra, yielding estimates within ±1.6 wt% H2O. The accuracy of these models is related to the physical nature of the darkening material. Scattering and absorption efficiencies are easier to model for intimate mixtures containing relatively large, dark grains than mixtures dominated by coatings of a fine-grained, strongly absorbing material. This suggests the physical properties that give rise to the albedo of a material are an important factor for accurate estimates of absolute water content. 相似文献
11.
Michael W. Busch Steven J. Ostro Lance A.M. Benner Jon D. Giorgini Daniel J. Scheeres Michael C. Nolan Patrick A. Taylor Walter Brisken 《Icarus》2011,212(2):649-660
We observed the near-Earth ASTEROID 2008 EV5 with the Arecibo and Goldstone planetary radars and the Very Long Baseline Array during December 2008. EV5 rotates retrograde and its overall shape is a 400 ± 50 m oblate spheroid. The most prominent surface feature is a ridge parallel to the asteroid’s equator that is broken by a concavity about 150 m in diameter. Otherwise the asteroid’s surface is notably smooth on decameter scales. EV5’s radar and optical albedos are consistent with either rocky or stony-iron composition. The equatorial ridge is similar to structure seen on the rubble-pile near-Earth asteroid (66391) 1999 KW4 and is consistent with YORP spin-up reconfiguring the asteroid in the past. We interpret the concavity as an impact crater. Shaking during the impact and later regolith redistribution may have erased smaller features, explaining the general lack of decameter-scale surface structure. 相似文献
12.
F. Tosi A. Coradini G. Filacchione M.C. De Sanctis M.A. Barucci S. Mottola E. Dotto The VIRTIS Team 《Planetary and Space Science》2010,58(9):1066-1076
On 5 September 2008, the Rosetta spacecraft encountered the asteroid 2867 Steins on its way to the comet 67P/Churyumov-Gerasimenko. This was the first of two planned asteroid fly-bys performed by the probe, the second fly-by being with the much larger asteroid 21 Lutetia in July 2010. The VIRTIS imaging spectrometer (IFOV 0.250 mrad, overall spectral range 0.25-5.1 μm) onboard Rosetta acquired data of Steins already before the closest approach phase, when the target was spatially unresolved, in order to obtain a light curve of the asteroid in the infrared spectral range extending up to 5 μm, that was never explored before. The VIRTIS light curve campaign started at 11:30 UTC onboard time, when the spacecraft was about 221,377 km away from the target, and ended at 17:58 UTC, at a distance of 20,741 km away from Steins. During this timeframe, the solar phase angle of the asteroid was roughly constant, ranging from 38.2° to 36.3°.Assuming the most recent value derived for the rotational period of Steins (Lamy et al., 2008), the VIRTIS observations covered slightly more than one rotation of the asteroid. In this interval, VIRTIS collected 8 hyperspectral cubes where Steins was captured 119 times, both in the visual and in the infrared range. Given the low signal and the unresolved appearance of the source, for which the instrument was not designed, only a small subset of wavelengths turned out to be suitable to sample the light curve. Nevertheless, in both the VIS and NIR ranges we find a similar trend, with two different maxima and minima during one rotational period, and amplitudes consistent with the results in the visual range obtained in previous works, including the data set acquired by the OSIRIS camera onboard Rosetta. We also report the presence of a new broad feature centered at approximately 0.81-0.82 μm, which is seen in the visual data throughout the rotation of the asteroid. 相似文献
13.
Andreas Nathues 《Icarus》2010,208(1):252-275
Reflectance spectra in visible and near-infrared wavelengths of 97 nominal members of the Eunomia asteroid family have been obtained and analyzed. According to these investigations, 94% of the observed dynamic family members belong to the Tholen S-class, only 4% to the C-class and 2% to the M-class. The S-asteroids are believed to be “genetic” members of the Eunomia family and thus are fragments of 15 Eunomia. The fragments show different 1- and 2-μm absorption band characteristics, which are likely attributed to their place of origin within the parent body. The major volume fraction of the investigated members seems to originate from the “crust” of the parent body while the volume fraction of “mantle” material is less. Previous spectral investigations (Nathues, A., Mottola, S., Kaasalainen, M., Neukum, G. [2005], Icarus 175 (2), 452-463) of the family’s main body, 15 Eunomia, revealed variations of olivine and pyroxene on a hemispherical scale. These findings, together with the conclusion that the major mineral component of 15 Eunomia and its fragments is olivine, suggest that a large fraction of the original pyroxene-enriched crust layer has been lost due to a major collision that created the asteroid family. Significant spectral evidences consistent with high concentrations of metals have not been found in the rotational resolved spectra of 15 Eunomia and in its fragments. This led to the conclusion that either a core, which consists mainly of metals, does not exist or that an eventual one has not yet been unearthed by an impact. The absence of V-type asteroids, the low number of M-types among the dynamic family members and the lack of distinct feldspar absorption features in the S-asteroid spectra suggest that the parent body of the Eunomia family was partially differentiated rather than fully differentiated. 相似文献
14.
The Agnia asteroid family, a cluster of asteroids located near semimajor axis a=2.79 AU, has experienced significant dynamical evolution over its lifetime. The family, which was likely created by the breakup of a diameter D∼50 km parent body, is almost entirely contained within the high-order secular resonance z1. This means that unlike other families, Agnia's full extent in proper eccentricity and inclination is a byproduct of the large-amplitude resonant oscillations produced by this resonance. Using numerical integration methods, we found that the spread in orbital angles observed among Agnia family members would have taken at least 40 Myr to create; this sets a lower limit on the family's age. To determine the upper bound on Agnia's age, we used a Monte Carlo model to track how the small members in the family evolve in semimajor axis by Yarkovsky thermal forces. Our results indicate the family is no more than 140 Myr old, with a best-fit age of 100+30−20 Myr. Using two independent methods, we also determined that the D∼5 km fragments were ejected from the family-forming event at a velocity near 15 m/s. This velocity is consistent with results from numerical hydrocode simulations of asteroid impacts and observations of other similarly sized asteroid families. Finally, we found that 57% of known Agnia fragments were initially prograde rotators. The reason for this limited asymmetry is unknown, though we suspect it is a fluke produced by the stochastic nature of asteroid disruption events. 相似文献
15.
Michael K. Shepard Alan W. Harris Beth Ellen Clark Michael C. Nolan Christopher Magri Lance A.M. Benner 《Icarus》2011,215(2):547-551
We report new radar observations of E-class Asteroid 64 Angelina and M-class Asteroid 69 Hesperia obtained with the Arecibo Observatory S-band radar (2480 MHz, 12.6 cm). Our measurements of Angelina’s radar bandwidth are consistent with reported diameters and poles. We find Angelina’s circular polarization ratio to be 0.8 ± 0.1, tied with 434 Hungaria for the highest value observed for main-belt asteroids and consistent with the high values observed for all E-class asteroids (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus 198, 294-304; Shepard, M.K., Kressler, K.M., Clark, B.E., Ockert-Bell, M.E., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J. [2008b]. Icarus 195, 220-225). Our radar observations of 69 Hesperia, combined with lightcurve-based shape models, lead to a diameter estimate, Deff = 110 ± 15 km, approximately 20% smaller than the reported IRAS value. We estimate Hesperia to have a radar albedo of , consistent with a high-metal content. We therefore add 69 Hesperia to the Mm-class (high metal M) (Shepard, M.K., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J., Harris, A.W., Warner, B.D., Stephens, R.D., Mueller, M. [2010]. Icarus 208, 221-237), bringing the total number of Mm-class objects to eight; this is 40% of all M-class asteroids observed by radar to date. 相似文献
16.
The first verifiable near-infrared absorption features in the ∼0.9-μm spectral region are reported for Asteroids 16 Psyche, 69 Hesperia, 110 Lydia, 125 Liberatrix, 201 Penelope, and 216 Kleopatra. These weak features (∼1-3%) are attributed to orthopyroxenes present on the surfaces of these asteroids. 16 Psyche and 125 Liberatrix have full rotational coverage while 69 Hesperia, 110 Lydia, 201 Penelope, and 216 Kleopatra have ∼75% rotational coverage. Qualitative ∼2-μm absorption features are present, but are very weak (<1%). Absorption band positions suggest relatively low abundances of calcium and iron in the pyroxenes. This indicates relatively reducing redox conditions for these asteroids, their parent bodies, and the nebular regions in which they formed. Four potential interpretations for these asteroids include: (1) they are exposed metallic cores or core fragments of differentiated parent bodies with residual orthopyroxene mantle material, (2) they are the result of a smelting-like reaction that converts olivine to pyroxene and metallic iron in the presence of carbon at high temperatures, (3) they are analogs to the primitive metal-rich Bencubbinite meteorites, or (4) they represent metallic surfaces which have accumulated silicate debris from external sources. Of the two original interpretations for the M-asteroids, the enstatite chondrite interpretation (Chapman and Salisbury, 1973, Icarus 19, 507-522; Gaffey and McCord, 1979, Mineralogical and petrological characterizations of asteroids. In: Gehrels T. (Ed.), Asteroids. Univ. of Arizona Press, Tucson, pp. 688-723) can be eliminated for these asteroids because the pyroxene in enstatite chondrites is iron-free and does not exhibit such absorption features. The iron meteorite interpretation remains valid, but with modification. For M-Asteroids 16 Psyche and 216 Kleopatra, these spectral results combined with previous determinations of high radar albedos indicate that these bodies are most probably exposed core fragments of differentiated bodies. M-Asteroids 69 Hesperia, 110 Lydia, 125 Liberatrix, and 201 Penelope exhibit similar spectral features consistent with exposed core fragments, but radar observations would be needed to confirm a high metal abundance. Observations of M-Asteroids 136 Austria and 325 Heidelberga suggest the absence of absorption features in the ∼0.4- to ∼2.5-μm region within the scatter of the data. Verification of the presence or absence of features across the surfaces of these two asteroids requires full rotational coverage. The interpretations for these “featureless” M-asteroids are not well-constrained, but remain consistent with the iron meteorite and enstatite chondrite interpretations. 相似文献
17.
We measured the chemical composition of Comet C/2007 W1 (Boattini) using the long-slit echelle grating spectrograph at Keck-2 (NIRSPEC) on 2008 July 9 and 10. We sampled 11 volatile species (H2O, OH∗, C2H6, CH3OH, H2CO, CH4, HCN, C2H2, NH3, NH2, and CO), and retrieved three important cosmogonic indicators: the ortho-para ratios of H2O and CH4, and an upper-limit for the D/H ratio in water. The abundance ratios of almost all trace volatiles (relative to water) are among the highest ever observed in a comet. The comet also revealed a complex outgassing pattern, with some volatiles (the polar species H2O and CH3OH) presenting very asymmetric spatial profiles (extended in the anti-sunward hemisphere), while others (e.g., C2H6 and HCN) showed particularly symmetric profiles. We present emission profiles measured along the Sun-comet line for all observed volatiles, and discuss different production scenarios needed to explain them. We interpret the emission profiles in terms of release from two distinct moieties of ice, the first being clumps of mixed ice and dust released from the nucleus into the sunward hemisphere. The second moiety considered is very small grains of nearly pure polar ice (water and methanol, without dark material or apolar volatiles). Such grains would sublimate only very slowly, and could be swept into the anti-sunward hemisphere by radiation pressure and solar-actuated non-gravitational jet forces, thus providing an extended source in the anti-sunward hemisphere. 相似文献
18.
Disruptive collisions in the main belt can liberate fragments from parent bodies ranging in size from several micrometers to tens of kilometers in diameter. These debris bodies group at initially similar orbital locations. Most asteroid-sized fragments remain at these locations and are presently observed as asteroid families. Small debris particles are quickly removed by Poynting-Robertson drag or comminution but their populations are replenished in the source locations by collisional cascade. Observations from the Infrared Astronomical Satellite (IRAS) showed that particles from particular families have thermal radiation signatures that appear as band pairs of infrared emission at roughly constant latitudes both above and below the Solar System plane. Here we apply a new physical model capable of linking the IRAS dust bands to families with characteristic inclinations. We use our results to constrain the physical properties of IRAS dust bands and their source families. Our results indicate that two prominent IRAS bands at inclinations ≈2.1° and ≈9.3° are byproducts of recent asteroid disruption events. The former is associated with a disruption of a ≈30-km asteroid occurring 5.8 Myr ago; this event gave birth to the Karin family. The latter came from the breakup of a large >100-km-diameter asteroid 8.3 Myr ago that produced the Veritas family. Using an N-body code, we tracked the dynamical evolution of ≈106 particles, 1 μm to 1 cm in diameter, from both families. We then used these results in a Monte Carlo code to determine how small particles from each population undergo collisional evolution. By computing the thermal emission of particles, we were able to compare our results with IRAS observations. Our best-fit model results suggest the Karin and Veritas family particles contribute by 5-9% in 10-60-μm wavelengths to the zodiacal cloud's brightness within 50° latitudes around the ecliptic, and by 9-15% within 10° latitudes. The high brightness of the zodiacal cloud at large latitudes suggests that it is mainly produced by particles with higher inclinations than what would be expected for asteroidal particles produced by sources in the main belt. From these results, we infer that asteroidal dust represents a smaller fraction of the zodiacal cloud than previously thought. We estimate that the total mass accreted by the Earth in Karin and Veritas particles with diameters 20-400 μm is ≈15,000-20,000 tons per year (assuming 2 g cm−3 particles density). This is ≈30-50% of the terrestrial accretion rate of cosmic material measured by the Long Duration Exposure Facility. We hypothesize that up to ≈50% of our collected interplanetary dust particles and micrometeorites may be made up of particle species from the Veritas and Karin families. The Karin family IDPs should be about as abundant as Veritas family IDPs though this ratio may change if the contribution of third, near-ecliptic source is significant. Other sources of dust and/or large impact speeds must be invoked to explain the remaining ≈50-70%. The disproportional contribution of Karin/Veritas particles to the zodiacal cloud (only 5-9%) and to the terrestrial accretion rate (30-50%) suggests that the effects of gravitational focusing by the Earth enhance the accretion rate of Karin/Veritas particles relative to those in the background zodiacal cloud. From this result and from the latitudinal brightness of the zodiacal cloud, we infer that the zodiacal cloud emission may be dominated by high-speed cometary particles, while the terrestrial impactor flux contains a major contribution from asteroidal sources. Collisions and Poynting-Robertson drift produce the size-frequency distribution (SFD) of Karin and Veritas particles that becomes increasingly steeper closer to the Sun. At 1 AU, the SFD is relatively shallow for small particle diameters D (differential slope exponent of particles with D?100 μm is ≈2.2-2.5) and steep for D?100 μm. Most of the mass at 1 AU, as well as most of the cross-sectional area, is contributed by particles with D≈100-200 μm. Similar result has been found previously for the SFD of the zodiacal cloud particles at 1 AU. The fact that the SFD of Karin/Veritas particles is similar to that of the zodiacal cloud suggests that similar processes shaped these particle populations. We estimate that there are ≈5×1024 Karin and ≈1025 Veritas family particles with D>30 μm in the Solar System today. The IRAS observation of the dust bands may be satisfactorily modeled using ‘averaged’ SFDs that are constant with semimajor axis. These SFDs are best described by a broken power-law function with differential power index α≈2.1-2.4 for D?100 μm and by α?3.5 for 100 μm?D?1 cm. The total cross-sectional surface area of Veritas particles is a factor of ≈2 larger than the surface area of the particles producing the inner dust bands. The total volumes in Karin and Veritas family particles with 1 μm<D<1 cm correspond to D=11 km and D=14 km asteroids with equivalent masses ≈1.5×1018 g and ≈3.0×1018 g, respectively (assuming 2 g cm−3 bulk density). If the size-frequency and radial distribution of particles in the zodiacal cloud were similar to those in the asteroid dust bands, we estimate that the zodiacal cloud represents ∼3×1019 g of material (in particles with 1 μm<D<1 cm) at ±10° around the ecliptic and perhaps as much as ∼1020 g in total. The later number corresponds to about a 23-km-radius sphere with 2 g cm−3 density. 相似文献
19.
In this paper, we present our study of the orbital and thermal evolutions, due to solar radiative heating, of four near-Earth asteroids (NEAs) considered as potential target candidates for sample return space missions to primitive asteroids. We used a dynamical model of the NEA population to estimate the most likely source region and orbital history of these objects. Then, for each asteroid, we integrated numerically over their entire lifetime a set of 14 initially indistinguishable orbit (clones), obtained by small variations of the nominal initial conditions. Using a thermal model, we then computed surface and sub-surface temperatures of these bodies during their dynamical history. Our aim is to determine whether these bodies are likely to have experienced high temperature level, and whether great temperature changes can be expected due to the orbital changes as well as their maximum and minimum values. Such information is important in the framework of sample return space missions whose goal is to bring back pristine materials. The knowledge of the temperature range of materials at different depth over the orbital evolution of potential targets can help defining sampling strategies that ensure the likelihood that unaltered material will be brought back. Our results suggest that for all the considered potential targets, the surface has experienced for some time temperatures greater than 400 K and at most 500 K with 50% probability. This probability drops rapidly with increasing temperature. Sub-surface materials at a depth of only 3 cm are much more protected from high temperature and generally do not reach temperatures exceeding 450 K (with 50% probability). They should thus be unaltered at this depth at least from a Sun-driven heating point of view. On the other hand, surface material for some of the considered objects can have a range of temperature which can make them less reliable as pristine materials. However, it is assumed here that the same material is constantly exposed to solar heat, while regolith turnover may occur. The latter can be caused by different processes such as seismic shaking and/or impact cratering. This would reduce the total time that materials are exposed to a certain temperature. Thus, it is very likely that a sample collected from any of the four considered targets, or any primitive NEA with similar dynamical properties, will have components that will be thermally unaltered as long as some of it comes from only 3 to 5 cm depth. Such a depth is not considered difficult to reach with some of the current designs of sampling devices. 相似文献
20.
We report the results of the Cornell Mid-IR Asteroid Spectroscopy (MIDAS) survey, a program of ground-based observations designed to characterize the 8-13 μm spectral properties of a statistically significant sample of asteroids from a wide variety of visible to near-IR spectral classes. MIDAS is conducted at Palomar Observatory using the Spectrocam-10 (SC-10) spectrograph on the 200-in Hale telescope. We have measured the mid-infrared spectra of twenty-nine asteroids and have derived temperature estimates from our data that are largely consistent with the predictions of the standard thermal model. We have also generated relative emissivity spectra for the target asteroids. On only one asteroid, 1 Ceres, have we found emissivity features with spectral contrast greater than 5%. Our spectrum of 4 Vesta suggests emissivity variation at the 2-3% level. Published spectra of several of the small number of asteroids observed with ISO (six of which are also included in our survey), which appeared to exhibit much stronger emissivity features, are difficult to reconcile with our measurements. Laboratory work on mineral and meteorite samples has shown that the contrast of mid-IR spectral features is greatly reduced at fine grain sizes. Moreover, the NEAR mission found that 433 Eros is covered by a relatively thick fine-grained regolith. If small bodies in general possess such regoliths, their mid-IR spectral features may be quite subtle. This may explain the evident absence of strong emissivity variation in the majority of the MIDAS spectra. 相似文献