首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III   总被引:1,自引:0,他引:1  
Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA’s planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module’s close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.  相似文献   

2.
Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph we have obtained for the first time spatially resolved 2000-3000 Å spectra of Io's Prometheus plume and adjoining regions on Io's anti-jovian hemisphere in the latitude range 60° N-60° S, using a 0.1″ slit centered on Prometheus and tilted roughly 45° to the spin axis. The SO2 column density peaked at 1.25×1017 cm−2 near the equator, with an additional 5×1016 cm−2 enhancement over Prometheus corresponding to a model volcanic SO2 output of 105 kg s−1. Apart from the Prometheus peak, the SO2 column density dropped fairly smoothly away from the subsolar point, even over regions that included potential volcanic sources. At latitudes less than ±30°, the dropoff rate was consistent with control by vapor pressure equilibrium with surface frost with subsolar temperature 117.3±0.6 K, though SO2 abundance was higher than predicted by vapor pressure control at mid-latitudes, especially in the northern hemisphere. We conclude that, at least at low latitudes on the anti-jovian hemisphere where there are extensive deposits of optically-thick SO2 frost, the atmosphere is probably primarily supported by sublimation of surface frost. Although the 45° tilt of our slit prevents us from separating the dependence of atmospheric density on solar zenith angle from its dependence on latitude, the pattern is consistent with a sublimation atmosphere regardless of which parameter is the dominant control. The observed drop in gas abundance towards higher latitudes is consistent with the interpretation of previous Lyman alpha images of Io as indicating an atmosphere concentrated at low latitudes. Comparison with previous disk-resolved UV spectroscopy, Lyman-alpha images, and mid-infrared spectroscopy suggests that Io's atmosphere is denser and more widespread on the anti-jovian hemisphere than at other longitudes. SO2 gas temperatures were in the range of 150-250 K over the majority of the anti-jovian hemisphere, consistent with previous observations. SO was not definitively detected in our spectra, with upper limits to the SO/SO2 ratio in the range 1-10%, roughly consistent with previous observations. S2 gas was not seen anywhere, with an upper limit of 7.5×1014 cm−2 for the Prometheus plume, confirming that this plume is significantly poorer in S2 than the Pele plume (S2 /SO2<0.005, compared to 0.08-0.3 at Pele). In addition to the gas absorption signatures, we have observed continuum emission in the near ultraviolet (near 2800 Å) for the first time. The brightness of the observed emission was directly correlated with the SO2 abundance, strongly peaking in the equatorial region over Prometheus. Emission brightness was modestly anti-correlated with the jovian magnetic latitude, decreasing when Io intersected the torus centrifugal equator.  相似文献   

3.
The SMART-1 lunar impact   总被引:1,自引:0,他引:1  
The SMART-1 spacecraft impacted the Moon on 3rd September 2006 at a speed of 2 km s−1 and at a very shallow angle of incidence (∼1°). The resulting impact crater is too small to be viewed from the Earth; accordingly, the general crater size and shape have been determined here by laboratory impact experiments at the same speed and angle of incidence combined with extrapolating to the correct size scale to match the SMART-1 impact. This predicts a highly asymmetric crater approximately 5.5-26 m long, 1.9-9 m wide, 0.23-1.5 m deep and 0.71-6.9 m3 volume. Some of the excavated mass will have gone into crater rim walls, but 0.64-6.3 m3 would have been ejecta on ballistic trajectories corresponding to a cloud of 2200-21,800 kg of lunar material moving away from the impact site. The shallow Messier crater on the Moon is similarly asymmetric and is usually taken as arising from a highly oblique impact. The light flash from the impact and the associated ejecta plume were observed from Earth, but the flash magnitude was not obtained, so it is not possible to obtain the luminous efficiency of the impact event.  相似文献   

4.
We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing the presence of dusty plasma near Enceladus’ South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 102 cm−3 before the closest approach to 105 cm−3 just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature, we show that the power law size distribution must hold down to at least 0.03 μm such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus’ plume is of the order of 102 cm−3 reducing to 1 cm−3 in the E-ring. The dust density for micrometer and larger sized grains is estimated to be about 10−4 cm−3 in the plume while it is about 10−6-10−7 cm−3 in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 μm sized grains. The effective dusty plasma Debye length is estimated and compared with inter-grain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 μm sized grains just 1 min before the closest approach. The charging time decreases substantially in the plume where it is only a fraction of a second for 1 μm sized grains, 1 s for 0.1 μm sized grains and about 10 s for 0.03 μm sized grains.  相似文献   

5.
We obtained longitudinally resolved thermal infrared spectra (8-13 μm and 17-25 μm) of Jupiter’s impact debris at the Gemini South Telescope on July 24, 2009; five days after the July 19th collision. These were used to study the mechanisms responsible for the redistribution of thermal energy and material (ammonia and stratospheric particulates) following the impact. Upwelling of (8.5 ± 4.1) × 1014 g of tropospheric air was sufficient to deposit (6.7 ± 4.1) × 1012 g of NH3 over a 6° longitude range above the impact core. The NH3 was distributed over the 20-80 mbar region with a peak abundance of 1.0 ± 0.6 ppm at 45 mbar. Only a 10th of this abundance was observed over the western ejecta, and it is unlikely that these observations were sensitive to NH3 entrained in the ballistic plume itself. The pattern of excess thermal energy was markedly different from that of Shoemaker-Levy 9 (SL9), with a localized tropospheric perturbation of 2.0 ± 1.0 K at 200-300 mbar and a broader stratospheric warming of up to 3.5 ± 2.0 K at 10-30 mbar. We find no evidence of residual warmth at p < 1 mbar five days after the impact. The excess thermal energy places lower limits on the total energy of the impact (1.8-15.7 × 1026 ergs), which limits the impactor diameter to 70-510 m (depending on the bulk density chosen for the material).The models of the Gemini spectra required three distinct aerosol features, indicative of the mineralogy of the dark particulate debris, centred at 9.1, 10.0 and 18.5 μm. The retrieved opacities for each of these features were distributed over a larger area (9-10° longitude) and at higher altitudes (above the 10-mbar level) than the stratospheric NH3, and they are more spatially inhomogeneous. This implies the particulates were either entrained with the rising hot plume or created upon plume re-entry and are subsequently redistributed by stratospheric winds. The three particulate features were consistent with a mixture of amorphous iron and magnesium-rich silicates and silicas in the debris field. A broad 10-μm signature was coincident with peaks expected from material rich in amorphous olivines (but poor in pyroxenes), and similar to silicate features observed during SL9. A narrow 9.1-μm signature was interpreted as a combination of amorphous and crystalline silica. Finally, a broad 18.5-μm emitter was not adequately reproduced by a mixture of simple olivines and pyroxenes and remains to be identified.  相似文献   

6.
The eclipse mosaic (PIA08329) of the Saturn system, taken on September 15, 2006 when Cassini was in Saturn’s shadow, contains numerous color images of the Enceladus plume and the E ring at phase angles ranging from 173° to 179°. These forward-scattering observations sample the diffraction peak for particle radii in the 1–5 μm range. The phase angle dependence and total brightness are sensitive indicators of the total mass of solid material in the plume. We fit the data with a variety of particle shapes and size distributions, and find that the median radius of the equivalent-volume sphere is 3.1 μm, with an uncertainty of ±0.5 μm. The total mass of particles in the plume is (1.45 ± 0.5) × 105 kg. We have not considered variations with altitude in the particle size and shape distribution, and we leave that for another paper. We find that the brightness of the E ring varies with position in the orbit, not only because of the viewing geometry, e.g., variations in phase angle, but also because of some unknown intrinsic variability. The total mass of solid material in the E ring is (12 ± 5.5) × 108 kg. For the plume, the production rate of particles – the mass per unit time leaving the vents is 51 ± 18 kg s−1. We estimate that 9% of these particles are escaping from Enceladus, implying lifetimes of ∼8 years for the E ring particles. Based on three comparisons with vapor amounts from ultraviolet spectroscopy, the ice/vapor ratio is in the range 0.35–0.70. This high ratio poses a problem for theories in which particles form by condensation from the gas phase, and could indicate that particles are formed as spray from a liquid reservoir.  相似文献   

7.
8.
Up to now, there has been no corroboration from Cassini CIRS of the Voyager IRIS-discovery of cyanoacetylene (HC3N) ice in Titan’s thermal infrared spectrum. We report the first compelling spectral evidence from CIRS for the ν6 HC3N ice feature at 506 cm−1 at latitudes 62°N and 70°N, from which we derive particle sizes and column abundances in Titan’s lower stratosphere. We find mean particle radii of 3.0 μm and 2.3 μm for condensed HC3N at 62°N and 70°N, respectively, and corresponding ice phase molecular column abundances in the range 1-10 × 1016 mol cm−2. Only upper limits for cloud abundances can be established at latitudes of 85°N, 55°N, 30°N, 10°N, and 15°S. Under the assumption that cloud tops coincide with the uppermost levels at which HC3N vapor saturates, we infer geometric thicknesses for the clouds equivalent to 10-20 km or so, with tops at 165 km and 150 km at 70°N and 62°N, respectively.  相似文献   

9.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

10.
Impacts of comets and asteroids play an important role in volatile delivery on the Moon. We use a novel method for tracking vapor masses that reach escape velocity in hydrocode simulations of cometary impacts to explore the effects of volatile retention. We model impacts on the Moon to find the mass of vapor plume gravitationally trapped on the Moon as a function of impact velocity. We apply this result to the impactor velocity distribution and find that the total impactor mass retained on the Moon is approximately 6.5% of the impactor mass flux. Making reasonable assumptions about water content of comets and the comet size-frequency distribution, we derive a water flux for the Moon. After accounting for migration and stability of water ice at the poles, we estimate a total 1.3×108-4.3×109 metric tons of water is delivered to the Moon and remains stable at the poles over 1 Ga. A factor of 30 uncertainty in the estimated cometary impact flux is primarily responsible for this large range of values. The calculated mass of water is sufficient to account for the neutron fluxes poleward of 75° observed by Lunar Prospector. A similar analysis for water delivery to the Moon via asteroid impacts shows that asteroids provide six times more water mass via impacts than comets.  相似文献   

11.
We measured the velocity distributions of impact ejecta with velocities higher than ∼100 m s−1 (high-velocity ejecta) for impacts at variable impact angle α into unconsolidated targets of small soda-lime glass spheres. Polycarbonate projectiles with mass of 0.49 g were accelerated to ∼250 m s−1 by a single-stage light-gas gun. The impact ejecta are detected by thin aluminum foils placed around the targets. We analyzed the holes on the aluminum foils to derive the total number and volume of ejecta that penetrated the aluminum foils. Using the minimum velocity of the ejecta for penetration, determined experimentally, the velocity distributions of the high-velocity ejecta were obtained at α=15°, 30°, 45°, 60°, and 90°. The velocity distribution of the high-velocity ejecta is shown to depend on impact angle. The quantity of the high-velocity ejecta for vertical impact (α=90°) is considerably lower than derived from a power-law relation for the velocity distribution on the low-velocity ejecta (less than 10 m s−1). On the other hand, in oblique impacts, the quantity of the high-velocity ejecta increases with decreasing impact angle, and becomes comparable to those derived from the power-law relation. We attempt to scale the high-velocity ejecta for oblique impacts to a new scaling law, in which the velocity distribution is scaled by the cube of projectile radius (scaled volume) and a horizontal component of impactor velocity (scaled ejection velocity), respectively. The high-velocity ejecta data shows a good correlation between the scaled volume and the scaled ejection velocity.  相似文献   

12.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

13.
We present new wind measurements in Venus’ lower mesosphere from visible spectroscopy during the 2007 worldwide coordinated ground campaign in support of ESA's Venus Express mission. These observations consisted of high-resolution spectra of Fraunhofer lines in the entire visible range (0.37-1.05 μm) to measure the winds near 68 km using the Doppler shift of solar radiation scattered by clouds toward the observer's direction. The observations included various points of the dayside hemisphere at a phase angle of ∼109°. We took advantage of two symmetrical elongations in July and September 2007 at Canada-France-Hawaii's 3.6-m telescope. Kinematical fits to the Doppler winds provide a mean equatorial velocity of (104±10) m s−1 for the zonal retrograde flow. This velocity agrees quite well with the mean value obtained by tracking the UV markings from several spacecraft.  相似文献   

14.
P.M. Schenk  R.R. Wilson 《Icarus》2004,169(1):98-110
Stereo and photoclinometry derived topography of shield-like volcanoes on Io indicate little relief (<3 km) and very low slopes (0.2° to 0.6°). Several shield volcanoes appear to be associated with broad rises of 1 to 3 km, but only 5 shield volcanoes have been identified with steep flank slopes (between 4° and 10°). These steep slopes are restricted to within 20-30 km of the summit, but where discernable, most of the lava flows observed on these edifices occur on the outer flanks where slopes are less than a degree. Despite their abundance, ionian shield volcanoes are among the flattest in the Solar System. The steepest volcanoes on Io are most comparable to large venusian shield volcanoes. Using simplistic Bingham rheologies we estimate the viscosity and yield strengths of ionian lavas. Yield strengths are estimated at 101-102 Pa, lower than most basaltic lavas. Viscosity estimates range from 103 to 105 Pa s, although these are probably upper limits. Actual values may have been as low as 100 Pa s. Viscosity is sensitive to flow velocity, which is poorly known on Io. The best constraint on flow velocity comes from observations of the 1997 Pillan eruption, which bracket the eruptive phase to 132 day maximum, and more probably less than 50 days. Low slopes, long run-out distances and our estimated rheologic properties are consistent with (but not proof of) a low silica, low viscosity, high temperature composition for ionian lavas, supporting arguments for low-silica lava compositions such as basalt or komatiite. We cannot eliminate sulfur on rheologic grounds, however.  相似文献   

15.
K. Jockers  S. Szutowicz  T. Bonev 《Icarus》2011,215(1):153-185
Axisymmetric models of the outgassing of a cometary nucleus have been constructed. Such models can be used to describe a nucleus with a single active region. The models may include a solar zenith angle dependence of the outgassing. They retrieve the outgassing flux at distances from the nucleus where collisions between molecules are unimportant, as function of the angle with respect to the outgassing axis. The observed emissions must be optically thin. Furthermore the models assume that the outflow speed at large distance from the nucleus does not depend on direction. The value of the outflow speed is retrieved. The models are applied to CN images and HCN spectra of Comet 2P/Encke, obtained nearly simultaneously in November 2003 with the 2 m optical telescope on Mount Rozhen, Bulgaria, and with the 10 m Heinrich Hertz Submillimeter Telescope on Mount Graham, Arizona, USA. According to Sekanina (1988), Astron. J. 95, 911-924, at that time a single outgassing source was active. Input parameters to the models like the rotation period of the nucleus and a small correction to Sekanina’s rotation axis are determined from a simpler jet position angle model. The rotation is prograde with a sideric period of 11.056 ± 0.024 h, in agreement with literature values. The best fit model has an outflow speed of 0.95 ± 0.04 km s−1. The same value has been derived from the corkscrew appearing in the CN images. The location of the outgassing axis is at colatitude δa = 7.4° ± 2.9° and longitude λa = 235° ± 17° (a definition of zero longitude is provided). Comet Encke’s outgassing corresponds approximately to the longitudinally averaged solar input on a spherical nucleus (i.e. very likely comes from deeper layers) but with some deficiency of outgassing at mid-latitudes and non-zero outgassing from the dark polar cap. The presence of gas flow from the dark polar cap is explained as evidence of gas flow across the terminator. The models rely mostly on the CN images. The HCN spectra are more noisy. They provide information how to determine the best fit outflow velocity and the sense of rotation. The model HCN spectra are distinctly non-Gaussian. Within error limits they are consistent with the observations. Models based solely on the HCN spectra are also presented but, because of the lower quality of the data and the unfavorable observing geometry, yield inferior results. As a by-product we determine the CN parent life time from our CN observations. The solar EUV and Lyα radiation field at the time of our observations is taken into account.  相似文献   

16.
N. Thomas  C.J. Hansen 《Icarus》2010,205(1):296-310
The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the jet-like activity which may result from the process described by Kieffer (JGR, 112, E08005, doi:10.1029/2006JE002816, 2007) involving translucent CO2 ice. In this work, we mostly concentrate on observations of the Inca City (81°S, 296°E) and Manhattan (86°S, 99°E) regions in the southern spring of 2007. Two companion papers, [Hansen et al. this issue] and [Portyankina et al. this issue], discuss the surface features in these regions and specific models of the behaviour of CO2 slab ice, respectively. The observations indicate rapid on-set of activity in late winter initiating before HiRISE can obtain adequately illuminated images (Ls < 174° at Inca City). Most sources become active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., 2007. AGU (abstract P41A-0188)]. These deposits originate from araneiform structures (spiders), boulders on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans are observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that outgassing was in progress at the time of HiRISE image acquisition and estimate a total particulate emission rate of >30 g s−1 from a single typical jet feature. Brighter deposits at Inca City become increasingly hard to detect after Ls = 210°. In the Inca City region, the orientations of surficial deposits are topographically controlled. The deposition of dark material also appears to be influenced by local topography suggesting that the ejection from the vents is at low velocity (<10 m s−1) and that a ground-hugging flow process (a sort of “cryo-fumarole”) may be occurring. The failure up to this point to obtain a clear detection of outgassing though stereo imaging is consistent with low level transport. The downslope orientation of the deposits may result from the geometry of the vent or from catabatic winds. At many sites, more than one ejection event appears to have occurred suggesting re-charging of the sources. Around Ls = 230°, the brightness of the surface begins to drop rapidly on north-facing slopes and the contrast between the dark deposits and the surrounding surface reduces. This indicates that the CO2 ice slab is being lost completely in some areas at around this time. By Ls = 280°, at Inca City, the ice slab has effectively gone. CRISM band ratios and THEMIS brightness temperature measurements are consistent with this interpretation.  相似文献   

17.
All planetary bodies with old surfaces exhibit planetary-scale impact craters: vast scars caused by the large impacts at the end of Solar System accretion or the late heavy bombardment. Here we investigate the geophysical consequences of planetary-scale impacts into a Mars-like planet, by simulating the events using a smoothed particle hydrodynamics (SPH) model. Our simulations probe impact energies over two orders of magnitude (2 × 1027-6 × 1029 J), impact velocities from the planet’s escape velocity to twice Mars’ orbital velocity (6-50 km/s), and impact angles from head-on to highly oblique (0-75°). The simulation results confirm that for planetary-scale impacts, surface curvature, radial gravity, the large relative size of the impactor to the planet, and the greater penetration of the impactor, contribute to significant differences in the geophysical expression compared to small craters, which can effectively be treated as acting in a half-space. The results show that the excavated crustal cavity size and the total melt production scale similarly for both small and planetary-scale impacts as a function of impact energy. However, in planetary-scale impacts a significant fraction of the melt is sequestered at depth and thus does not contribute to resetting the planetary surface; complete surface resetting is likely only in the most energetic (6 × 1029 J), slow, and head-on impacts simulated. A crater rim is not present for planetary-scale impacts with energies >1029 J and angles ?45°, but rather the ejecta is more uniformly distributed over the planetary surface. Antipodal crustal removal and melting is present for energetic (>1029 J), fast (>6 km/s), and low angle (?45°) impacts. The most massive impactors (with both high impact energy and low velocity) contribute sufficient angular momentum to increase the rotation period of the Mars-sized target to about a day. Impact velocities of >20 km/s result in net mass erosion from the target, for all simulated energies and angles. The hypothesized impact origin of planetary structures may be tested by the presence and distribution of the geochemically-distinct impactor material.  相似文献   

18.
Soil from the scoop of Surveyor 3, returned to Earth by Apollo 12 astronauts, has been tested in a miniature shear box at five bulk densities, from 0.99 to 1.87 g cm–3. Cohesion increased with bulk density from 3 × 10–2 to 3 × 10–1 N cm–2; internal friction angle increased from 13° to 56°. Shear stress vs normal stress data fit a logarithmic relationship better than a linear one, at normal stresses of 3 × 10–3 to 3 x 100 N cm–2. Results of these tests, in air, show no systematic differences from those for tests made elsewhere in vacuum and nitrogen. Results agree with those obtained in remotely controlled lunar surface operations with Surveyor 3 and other spacecraft provided that the bulk density was slightly underestimated for the on-surface measurements.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.This work represents one phase of research conducted at the Jet Propulsion Laboratory, California Institute of Technology, for the National Aeronautics and Space Administration, under Contract NAS 7-100.  相似文献   

19.
Venus nightglow was observed at NASA IRTF using a high-resolution long-slit spectrograph CSHELL at LT = 21:30 and 4:00 on Venus. Variations of the O2 airglow at 1.27 μm and its rotational temperature are extracted from the observed spectra. The mean O2 nightglow is 0.57 MR at 21:30 at 35°S-35°N, and the temperature increases from 171 K near the equator to ∼200 K at ±35°. We have found a narrow window that covers the OH (1-0) P1(4.5) and (2-1) Q1(1.5) airglow lines. The detected line intensities are converted into the (1-0) and (2-1) band intensities of 7.2 ± 1.8 kR and <1.4 kR at 21:30 and 15.5 ± 2 kR and 4.7 ± 1 kR at 4:00. The f-component of the (1-0) P1(4.5) line has not been detected in either observation, possibly because of resonance quenching in CO2. The observed Earth’s OH (1-0) and (2-1) bands were 400 and 90 kR at 19:30 and 250 and 65 kR at 9:40, respectively. A photochemical model for the nighttime atmosphere at 80-130 km has been made. The model involves 61 reactions of 24 species, including odd hydrogen and chlorine chemistries, with fluxes of O, N, and H at 130 km as input parameters. To fit the OH vibrational distribution observed by VEX, quenching of OH (v > 3) in CO2 only to v ? 2 is assumed. According to the model, the nightside-mean O2 emission of 0.52 MR from the VEX and our observations requires an O flux of 2.9 × 1012 cm−2 s−1 which is 45% of the dayside production above 80 km. This makes questionable the nightside-mean O2 intensities of ∼1 MR from some observations. Bright nightglow patches are not ruled out; however, the mean nightglow is ∼0.5 MR as observed by VEX and supported by the model. The NO nightglow of 425 R needs an N flux of 1.2 × 109 cm−2 s−1, which is close to that from VTGCM at solar minimum. However, the dayside supply of N at solar maximum is half that required to explain the NO nightglow in the PV observations. The limited data on the OH nightglow variations from the VEX and our observations are in reasonable agreement with the model. The calculated intensities and peak altitudes of the O2, NO, and OH nightglow agree with the observations. Relationships for the nightglow intensities as functions of the O, N, and H fluxes are derived.  相似文献   

20.
In July 1994, the Shoemaker-Levy 9 (SL9) impacts introduced hydrogen cyanide (HCN) to Jupiter at a well confined latitude band around −44°, over a range of specific longitudes corresponding to each of the 21 fragments (Bézard et al. 1997, Icarus 125, 94-120). This newcomer to Jupiter's stratosphere traces jovian dynamics. HCN rapidly mixed with longitude, so that observations recorded later than several months after impact witnessed primarily the meridional transport of HCN north and south of the impact latitude band. We report spatially resolved spectroscopy of HCN emission 10 months and 6 years following the impacts. We detect a total mass of HCN in Jupiter's stratosphere of 1.5±0.7×1013 g in 1995 and 1.7±0.4×1013 g in 2000, comparable to that observed several days following the impacts (Bézard et al. 1997, Icarus 125, 94-120). In 1995, 10 months after impact, HCN spread to −30° and −65° latitude (half column masses), consistent with a horizontal eddy diffusion coefficient of Kyy=2-3×1010 cm2 s−1. Six years following impact HCN is observed in the northern hemisphere, while still being concentrated at 44° south latitude. Our meridional distribution of HCN suggests that mixing occurred rapidly north of the equator, with Kyy=2-5×1011 cm2 s−1, consistent with the findings of Moreno et al. (2003, Planet. Space Sci. 51, 591-611) and Lellouch et al. (2002, Icarus 159, 112-131). These inferred eddy diffusion coefficients for Jupiter's stratosphere at 0.1-0.5 mbar generally exceed those that characterize transport on Earth. The low abundance of HCN detected at high latitudes suggests that, like on Earth, polar regions are dynamically isolated from lower latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号