首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term “mountains.” Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37° and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years.  相似文献   

2.
The origin of Titan’s atmospheric methane is a key issue for understanding the origin of the saturnian satellite system. It has been proposed that serpentinization reactions in Titan’s interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan’s planetesimals before its formation. Here, we point out that serpentinization reactions in Titan’s interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan’s water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan’s interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite’s planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan’s interior can be up to ∼1300 times the current mass of atmospheric methane.  相似文献   

3.
G.J. Black  D.B. Campbell 《Icarus》2011,212(1):300-320
We have observed Titan with the Arecibo Observatory’s 12.6 cm wavelength radar system during the last eight oppositions of the Saturn system with sufficient sensitivity to characterize its scattering properties as a function of sub-Earth longitude. In a few sessions the Green Bank Telescope was used as the receiving instrument in a bistatic configuration to boost sub-radar track length and integration time. Radar echo spectra have been obtained for a total of 92 viewing geometries with sub-Earth locations scattered through all longitudes and at latitudes between 7.6°S and 26.3°S, close to the maximum southern excursion of the sub-Earth track. We find Titan to have globally average radar albedos at this wavelength of 0.161 in the opposite circular polarization sense as that transmitted (OC) and 0.074 in the same sense (SC), giving a polarization ratio SC/OC of 0.46. These values are intermediate between lower reflectivity rocky surfaces and higher reflectivity clean icy surfaces. The variations with longitude in general mirror the surface brightness variations seen through the infrared atmospheric windows. Xanadu Regio’s radar reflectivity and polarization ratio are higher than the global averages, and suggest that its composition is relatively cleaner water ice or, possibly, some other material with low propagation loss at radio wavelengths. For all echo spectra most of the power is in a broad diffuse component but with a specular component whose strength and narrowness is highly variable as a function of surface location. For all data we fit a sum of the standard Hagfors scattering law describing the specular component and an empirical diffuse radar scattering model to extract bulk parameters of the surface. Many areas exhibit very narrow specular reflections implying terrain that are quite flat on centimeter to meter scales over spans of tens to perhaps hundreds of kilometers. The proportion of spectra showing these narrow specular echoes has fallen significantly over the observational time span, indicating either a latitudinal effect related to terrain differences or changing surface conditions over the past several years. A few radar tracks, especially those from the 2008 session, overlap some high resolution Cassini RADAR imagery swaths to allow a direct comparison with terrain.  相似文献   

4.
Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan’s surface imaged by Cassini’s high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan’s craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan’s surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan’s atmosphere in destroying most but not all small projectiles.  相似文献   

5.
M.A. Janssen  A. Le Gall 《Icarus》2011,212(1):321-328
Since Cassini arrived at Saturn in 2004, its moon Titan has been thoroughly mapped by the RADAR instrument at 2-cm wavelength, in both active and passive modes. Some regions on Titan, including Xanadu and various bright hummocky bright terrains, contain surfaces that are among the most radar-bright encountered in the Solar System. This high brightness has been generally attributed to volume scattering processes in the inhomogeneous, low-loss medium expected for a cold, icy satellite surface. We can test this assumption now that the emissivity has been obtained from the concurrent radiometric measurements for nearly all the surface, with unprecedented accuracy (Janssen et al., and the Cassini RADAR Team [2009]. Icarus 200, 222-239). Kirchhoff’s law of thermal radiation relates the radar and radiometric properties in a way that has never been fully exploited. In this paper we examine here how this law may be applied in this case to better understand the nature of Titan’s radar-bright regions. We develop a quantitative model that, when compared to the observational data, allows us to conclude that either the reflective characteristics of the putative volume scattering subsurface must be highly constrained, or, more likely, organized structure on or in the surface is present that enhances the backscatter.  相似文献   

6.
Dune-forming winds on Titan and the influence of topography   总被引:1,自引:0,他引:1  
Tetsuya Tokano 《Icarus》2008,194(1):243-262
Numerous extended dunes on Saturn's moon Titan detected by the Cassini RADAR constrain the long-term pattern of surface winds. We analyse the statistics of surface wind speed and direction and their spatial and temporal variability predicted by a general circulation model (GCM) in order to constrain surface wind predictions of this GCM by dune observations. The model shows that modern winds are sufficient for saltation and dune formation at low latitudes, in agreement with the presence of dunes there. The best condition for the dune-forming wind occurs with a threshold friction speed of 0.02 m s−1 or slightly less. The equatorial region is conducive to longitudinal dunes because of a combined effect of a high sand drift potential and obtuse bimodal wind pattern oblique to the equator caused by the seasonal reversal of the Hadley circulation. The cross-equatorial wind is steady, and is characterised by a high Weibull shape parameter (k∼4). The wind pattern at higher latitudes is more complex and gusty, and neither longitudinal nor transversal dunes would be able to form. Putative large-scale topography is found to have a profound influence on the near-surface wind pattern. Generally mountains cause a convergence and speeding up on the flank, while basins weaken the wind and cause a divergent flow. Longitudinal dunes can be deflected on the foot of mountains by up to 90°. If Xanadu is a hypothetical large mountain, a wind pattern converging in Xanadu that entirely disagrees with the dune observations is predicted. If instead Xanadu is a large basin, the wind arcs clockwise north of Xanadu and anti-clockwise west and southwest of Xanadu, in agreement with the dune orientations in the vicinity of Xanadu. The albedo pattern has comparatively little influence on the wind field. Isolated mountain chains cause only local-scale change in the wind pattern. However, the persistent surface easterlies in Belet, which are in conflict with the dune orientations, do not disappear by any combination of large-scale topography.  相似文献   

7.
Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ±30° of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes.  相似文献   

8.
We calculate the D/H ratio of CH4 from serpentinization on Titan to determine whether Titan’s atmospheric CH4 was originally produced inside the giant satellite. This is done by performing equilibrium isotopic fractionation calculations in the CH4-H2O-H2 system, with the assumption that the bulk D/H ratio of the system is equivalent to that of the H2O in the plume of Enceladus. These calculations show that the D/H ratio of hydrothermally produced CH4 would be markedly higher than that of atmospheric CH4 on Titan. The implication is that Titan’s CH4 is a primordial chemical species that was accreted by the moon during its formation. There are two evolutionary scenarios that are consistent with the apparent absence of endogenic CH4 in Titan’s atmosphere. The first is that hydrothermal systems capable of making CH4 never existed on Titan because Titan’s interior has always been too cold. The second is that hydrothermal systems on Titan were sufficiently oxidized so that C existed in them predominately in the form of CO2. The latter scenario naturally predicts the formation of endogenic N2, providing a new hypothesis for the origin of Titan’s atmospheric N2: the hydrothermal oxidation of 15N-enriched NH3. A primordial origin for CH4 and an endogenic origin for N2 are self-consistent, but both hypotheses need to be tested further by acquiring isotopic data, especially the D/H ratio of CH4 in comets, and the 15N/14N ratio of NH3 in comets and that of N2 in one of Enceladus’ plumes.  相似文献   

9.
A large, circular marking ∼1800 km across is seen in near-infrared images of Titan. The feature is centered at 10°S, 120°W on Titan, encompasses much of Titan’s western Xanadu region, and has an off-center, quasi-circular, inner margin about 700 km across, with lobate outer margins extending 200-500 km from the inner margin. On the feature’s southern flank is Tui Regio, an area that has very high reflectivity at 5 μm, and is hypothesized to exhibit geologically recent cryovolcanic flows (Barnes, J.W. et al. [2006]. Geophys. Res. Lett. 33), similar to flows seen in Hotei Regio, a cryovolcanic area whose morphology may be controlled by pre-existing, crustal fractures resulting from an ancient impact (Soderblom, L.A. et al. [2009]. Icarus, 204). The spectral reflectivity of the large, circular feature is quite different than that of its surroundings, making it compositionally distinct, and radar measurements of its topography, brightness temperature and volume scattering also suggest that the feature is quite distinct from its surroundings. These and several other lines of evidence, in addition to the feature’s morphology, suggest that it may occupy the site of an ancient impact.  相似文献   

10.
During Cassini’s T44 flyby of Titan (May 28, 2008), the Cassini SAR (synthetic aperture radar) revealed sinuous channels in the Southwest of Xanadu. These channels feature very large radar cross-sections, up to 5 dB, whereas the angle of incidence was relatively high, ∼20°. This backscatter is larger than allowed by the coherent backscatter model considered to explain the unusual reflective and polarization properties of the icy satellites and only a few radar scattering mechanisms can be responsible for such high radar returns. The presence of rounded (icy) pebbles with size larger than the radar wavelength (2.18 cm) is proposed to explain the large radar cross-sections measured in these units. The radar-bright channels are thus interpreted as riverbeds, where debris, likely shaped and transported by fluvial activity, have been deposited. Similar debris were observed in the landing site of the Huygens probe. This work may point the way to an explanation for the enhanced brightness of other fluvial regions of Titan.  相似文献   

11.
The leading face of Saturn’s moon Iapetus, Cassini Regio, has an albedo only one tenth that on its trailing side. The origin of this enigmatic dichotomy has been debated for over 40 years, but with new data, a clearer picture is emerging. Motivated by Cassini radar and imaging observations, we investigate Soter’s model of dark exogenous dust striking an originally brighter Iapetus by modeling the dynamics of the dark dust from the ring of the exterior retrograde satellite Phoebe under the relevant perturbations. In particular, we study the particles’ probabilities of striking Iapetus, as well as their expected spatial distribution on the Iapetian surface. We find that, of the long-lived particles (?5 μm), most particle sizes (?10 μm) are virtually certain to strike Iapetus, and their calculated distribution on the surface matches up well with Cassini Regio’s extent in its longitudinal span. The satellite’s polar regions are observed to be bright, presumably because ice is deposited there. Thus, in the latitudinal direction we estimate polar dust deposition rates to help constrain models of thermal migration invoked to explain the bright poles (Spencer, J.R., Denk, T. [2010]. Science 327, 432-435). We also analyze dust originating from other irregular outer moons, determining that a significant fraction of that material will eventually coat Iapetus—perhaps explaining why the spectrum of Iapetus’ dark material differs somewhat from that of Phoebe. Finally we track the dust particles that do not strike Iapetus, and find that most land on Titan, with a smaller fraction hitting Hyperion. As has been previously conjectured, such exogenous dust, coupled with Hyperion’s chaotic rotation, could produce Hyperion’s roughly isotropic, moderate-albedo surface.  相似文献   

12.
Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002–August 2009) and the beginning of spring, allowing a detailed monitoring of Titan’s cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan’s clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60°N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4 years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1 year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30°S and 60°S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached.We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n = 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn’s tides.Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan’s poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan’s northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a ‘sudden’ shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan’s surface higher than previously expected.  相似文献   

13.
Aegaeon (Saturn LIII, S/2008 S1) is a small satellite of Saturn that orbits within a bright arc of material near the inner edge of Saturn’s G-ring. This object was observed in 21 images with Cassini’s Narrow-Angle Camera between June 15 (DOY 166), 2007 and February 20 (DOY 051), 2009. If Aegaeon has similar surface scattering properties as other nearby small saturnian satellites (Pallene, Methone and Anthe), then its diameter is approximately 500 m. Orbit models based on numerical integrations of the full equations of motion show that Aegaeon’s orbital motion is strongly influenced by multiple resonances with Mimas. In particular, like the G-ring arc it inhabits, Aegaeon is trapped in the 7:6 corotation eccentricity resonance with Mimas. Aegaeon, Anthe and Methone therefore form a distinctive class of objects in the Saturn system: small moons in corotation eccentricity resonances with Mimas associated with arcs of debris. Comparisons among these different ring-arc systems reveal that Aegaeon’s orbit is closer to the exact resonance than Anthe’s and Methone’s orbits are. This could indicate that Aegaeon has undergone significant orbital evolution via its interactions with the other objects in its arc, which would be consistent with the evidence that Aegaeon’s mass is much smaller relative to the total mass in its arc than Anthe’s and Methone’s masses are.  相似文献   

14.
Priyanka Sharma  Shane Byrne 《Icarus》2010,209(2):723-737
Titan’s north polar hydrocarbon lakes offer a unique opportunity to indirectly characterize the statistical properties of Titan’s landscape. The complexity of a shoreline can be related to the complexity of the landscape it is embedded in through fractal theory. We mapped the shorelines of 290 of the north polar titanian lakes in the Cassini synthetic aperture radar dataset. Out of these, we used a subset of 190 lake shorelines for our analysis. The fractal dimensions of the shorelines were calculated via two methods: the divider/ruler method and the box-counting method, at length scales of (1-10) km and found to average 1.27 and 1.32, respectively. The inferred power-spectral exponent of Titan’s topography (β) from theoretical and empirical relations is found to be ?2, which is lower than the values obtained from the global topography of the Earth or Venus. Some of the shorelines exhibit multi-fractal behavior (different fractal dimensions at different scales), which we interpret to signify a transition from one set of dominant surface processes to another. We did not observe any spatial variation in the fractal dimension with latitude; however we do report significant spatial variation of the fractal dimension with longitude. A systematic difference between the dimensions of orthogonal sections of lake shorelines is also noted, which signifies possible anisotropy in Titan’s topography. The topographic information thus gleaned can be used to constrain landscape evolution modeling to infer the dominant surface processes that sculpt the landscape of Titan.  相似文献   

15.
The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section σ0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties.  相似文献   

16.
Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan’s north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ∼6700-10,000 Titan years (∼2.0-3.0 × 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ∼27,000-41,000 Titan years (∼8.0-12.0 × 105 Earth years) when flows in the north polar region are restricted to summer months.  相似文献   

17.
We use data from the VIMS instrument on board the Cassini spacecraft to construct high sensitivity and high spatial-resolution maps of the locations of tropospheric clouds on Titan in the late northern winter season during which the Cassini prime mission took place. These observations show that, in this season, clouds on Titan are strongly hemispherically asymmetric. Mid-latitude clouds, in particular, occur only in the southern hemisphere and have not ever been observed in the north. Such an asymmetry is in general agreement with circulation models where sub-solar surface heating controls the locations of clouds and appears in conflict with models where perennial polar hazes prevent significant summertime polar heating from affecting the circulation. The southern mid-latitude clouds appear to be distributed uniformly in longitude, in contrast to some previous observations. Southern high-latitude clouds exhibit a significant concentration, however, between about 180° and 270°E longitude. A spatially and temporally uniform cloud always appears northward of ∼50°N latitude. This cloud appears unchanged over the course of the observations, consistent with the interpretation that it is caused by continuous ethane condensation as air subsides and radiatively cools through the tropopause. The location of this cloud likely provides a direct tracer of elements of north polar atmospheric circulation, potentially allowing continuous monitoring of circulation changes as Titan passes through equinox into north polar spring and summer. We show that a similar analysis of this dataset by Rodriguez et al. (2009) contains substantial errors and should not be used.  相似文献   

18.
T.A. Cassidy  R.E. Johnson 《Icarus》2010,209(2):696-703
We describe a direct simulation Monte Carlo (DSMC) model of Enceladus’ neutral cloud and compare its results to observations of OH and O orbiting Saturn. The OH and O are observed far from Enceladus (at 3.95 RS), as far out as 25 RS for O. Previous DSMC models attributed this breadth primarily to ion/neutral scattering (including charge exchange) and molecular dissociation. However, the newly reported O observations and a reinterpretation of the OH observations (Melin, H., Shemansky, D.E., Liu, X. [2009] Planet. Space Sci., 57, 1743-1753, PS&S) showed that the cloud is broader than previously thought. We conclude that the addition of neutral/neutral scattering (Farmer, A.J. [2009] Icarus, 202, 280-286), which was underestimated by previous models, brings the model results in line with the new observations. Neutral/neutral collisions primarily happen in the densest part of the cloud, near Enceladus’ orbit, but contribute to the spreading by pumping up orbital eccentricity. Based on the cloud model presented here Enceladus maybe the ultimate source of oxygen for the upper atmospheres of Titan and Saturn. We also predict that large quantities of OH, O and H2O bombard Saturn’s icy satellites.  相似文献   

19.
Saturn’s moon Iapetus is unique in that it has apparently despun while retaining a substantial equatorial bulge. Stresses arising from such a non-hydrostatic shape should in principle cause surface deformation (tectonics). As part of a search for such a tectonic signature, lineaments (linear surface features) on Iapetus were mapped on both its bright and dark hemispheres. Lineament orientations were then compared to model stress patterns predicted for spin-down from a rotation period of 16.5 h (or less) to its present synchronous period, and for a range of lithospheric thicknesses. Many lineaments are straight segments of crater rimwalls, which may be faults or joints reactivated during complex crater collapse. Most striking are several large troughs on the bright, trailing hemisphere. These troughs appear to be extensional and are distinctive on that hemisphere, because the interior floors and walls of the troughs contain dark material. Globally, no specific evidence of strike slip or thrust offsets are seen, but this could be due to the age and degraded nature of any such features. We find that observed lineament orientations do not correlate with predicted patterns due to despinning on either hemisphere (the equatorial ridge was specifically excluded from this analysis, and is considered separately). Modest evidence for preferred orientations ±40° from north could be construed as consistent with respinning, which is not necessarily far-fetched. Assuming the rigidity of unfractured ice, predicted maximum lithospheric differential stresses from despinning range from ∼1 MPa to ∼160 MPa for the elastic spheroid and thin lithosphere limits, respectively (although it is only for thicker elastic lithospheres that we expect a nonhydrostatic state to be maintained over geologic time against lithospheric failure). The tectonic signature of despinning may have been obscured over time because the surface of Iapetus is very ancient, Iapetus’ thick lithosphere may have inhibited the full tectonic expression of despinning, or both. Several prominent lineaments strike E–W, and are thus parallel to the equatorial ridge (though not physically close to it), but a tectonic or volcanic origin for the ridge is highly problematic.  相似文献   

20.
E. Nogueira  R. Gomes 《Icarus》2011,214(1):113-130
The origin of Neptune’s large, circular but retrograde satellite Triton has remained largely unexplained. There is an apparent consensus that its origin lies in it being captured, but until recently no successful capture mechanism has been found. Agnor and Hamilton (Agnor, C.B., Hamilton, D.P. [2006]. Nature 441, 192-194) demonstrated that the disruption of a trans-neptunian binary object which had Triton as a member, and which underwent a very close encounter with Neptune, was an effective mechanism to capture Triton while its former partner continued on a hyperbolic orbit. The subsequent evolution of Triton’s post-capture orbit to its current one could have proceeded through gravitational tides (Correia, A.C.M. [2009]. Astrophys. J. 704, L1-L4), during which time Triton was most likely semi-molten (McKinnon, W.B. [1984]. Nature 311, 355-358). However, to date, no study has been performed that considered both the capture and the subsequent tidal evolution. Thus it is attempted here with the use of numerical simulations. The study by Agnor and Hamilton (Agnor, C.B., Hamilton, D.P. [2006]. Nature 441, 192-194) is repeated in the framework of the Nice model (Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461) to determine the post-capture orbit of Triton. After capture Triton is then subjected to tidal evolution using the model of Mignard (Mignard, F. [1979]. Moon Planets 20, 301-315; Mignard, F. [1980]. Moon Planets 23, 185-201). The perturbations from the Sun and the figure of Neptune are included. The perturbations from the Sun acting on Triton just after its capture cause it to spend a long time in its high-eccentricity phase, usually of the order of 10 Myr, while the typical time to circularise to its current orbit is some 200 Myr, consistent with earlier studies. The current orbit of Triton is consistent with an origin through binary capture and tidal evolution, even though the model prefers Triton to be closer to Neptune than it is today. The probability of capturing Triton in this manner is approximately 0.7%. Since the capture of Triton was at most a 50% event - since only Neptune has one, but Uranus does not - we deduce that in the primordial trans-neptunian disc there were some 100 binaries with at least one Triton-sized member. Morbidelli et al. (Morbidelli, A., Levison, H.F., Bottke, W.F., Dones, L., Nesvorný, D. [2009]. Icarus 202, 310-315) concludes there were some 1000 Triton-sized bodies in the trans-neptunian proto-planetary disc, so the primordial binary fraction with at least one Triton-sized member is 10%. This value is consistent with theoretical predictions, but at the low end. If Triton was captured at the same time as Neptune’s irregular satellites, the far majority of these, including Nereid, would be lost. This suggests either that Triton was captured on an orbit with a small semi-major axisa ? 50RN (a rare event), or that it was captured before the dynamical instability of the Nice model, or that some other mechanism was at play. The issue of keeping the irregular satellites remains unresolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号