首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the latitudinal changes in atmospheric transport of organic matter to the western Pacific and Southern Ocean (27.58°N-64.70°S). Molecular distributions of lipid compound classes (homologous series of C15 to C35n-alkanes, C8 to C34n-alkanoic acids, C12 to C30n-alkanols) and compound-specific stable isotopes (δ13C of C29 and C31n-alkanes) were measured in marine aerosol filter samples collected during a cruise by the R/V Hakuho Maru. The geographical source areas for each sample were estimated from air-mass back-trajectory computations. Concentrations of TC and lipid compound classes were several orders of magnitude lower than observations from urban sites in Asia. A stronger signature of terrestrial higher plant inputs was apparent in three samples collected under conditions of strong terrestrial winds. Unresolved complex mixtures (UCM) showed increasing values in the North Pacific, highlighting the influence of the plume of polluted air exported from East Asia. n-Alkane average chain length (ACL) distribution had two clusters, with samples showing a relation to latitude between 28°N and 47°S (highest ACL values in the tropics), whilst a subset of southern samples had anomalously high ACL values. Compound-specific carbon isotopic analysis of the C29 (−25.6‰ to −34.5‰) and C31n-alkanes (−28.3‰ to −37‰) revealed heavier δ13C values in the northern latitudes with a transition to lighter values in the Southern Ocean. By comparing the isotopic measurements with back-trajectory analysis it was generally possible to discriminate between different source areas. The terrestrial vegetation source for a subset of the southernmost Southern Ocean is enigmatic; the back-trajectories indicate eastern Antarctica as the only intercepted terrestrial source area. These samples may represent a southern hemisphere background of well mixed and very long range transported higher plant organic material.  相似文献   

2.
We analyzed hydrogen isotope ratios of high-molecular weight n-alkanes (δDl) and oxygen isotope ratios of α-cellulose (δ18OC) for C3 and C4 grasses grown in the field and in controlled-environment growth chambers. The relatively firm understanding of 18O-enrichment in leaf water and α-cellulose was used to elucidate fractionation patterns of δDl signatures. In the different relative humidity environments of the growth chambers, we observed clear and predictable effects of leaf-water enrichment on δ18OC values. Using a Craig-Gordon model, we demonstrate that leaf water in the growth chamber grasses should have experienced significant D-enriched due to transpiration. Nonetheless, we found no effect of transpirational D-enrichment on the δDl values. In field samples, we saw clear evidence of enrichment (correlating with relative humidity of the field sites) in both δ18OC and δDl. These seemingly contrasting results could be explained if leaf waxes are synthesized in an environment that is isotopically similar to water entering plant roots due to either temporal or spatial isolation from evaporatively enriched leaf waters. For grasses in the controlled environment, there was no enrichment of source water, whereas enrichment of grass source water via evaporation from soils and/or stems was likely for grass samples grown in the field.Based on these results, evaporation from soils and/or stems appears to affect δDl, but transpiration from leaves does not. Further evidence for this conclusion is found in modeling expected net evapotranspirational enrichment. A Craig-Gordon model applied to each of the field sites yields leaf water oxygen isotope ratios that can be used to accurately predict the observed δ18OC values. In contrast, the calculated leaf water hydrogen isotope ratios are more enriched than what is required to predict observed δDl values. These calculations lend support to the conclusion that while δ18OC reflects both soil evaporation and transpiration, δDl appears to only record evaporation from soils and/or stems. Therefore, the δD of n-alkanes can likely be used to reconstruct the δD of water entering a leaf, supporting the soil-enrichment model of Smith and Freeman (2006). In both the field and controlled studies, we found significant photosynthetic pathway effects on n-alkane δD suggesting that biochemical pathways or plant phylogeny have a greater effect on leaf wax δD than leaf-water enrichment in grasses.  相似文献   

3.
Controls on the D/H ratios of plant leaf waxes in an arid ecosystem   总被引:1,自引:0,他引:1  
The extent to which leaf water D-enrichment (transpiration) and soil water D-enrichment (evaporation) affect the D/H ratio of plant leaf waxes remains a contentious issue, with important implications for paleohydrologic reconstructions. In this study we measure δD values of precipitation (δDp), groundwater (δDgw), plant xylem water (δDxw) and leaf water (δDlw) to understand their impact on the δD values of plant leaf wax n-alkanes (δDwax) in an arid ecosystem. Our survey includes multiple species at four sites across an aridity gradient (80-30% relative humidity) in southern California.We find that many species take up groundwater or precipitation without significant fractionation. D-enriched soil water is a minor source even in species known to perform and utilize waters from hydraulic lift, such as Larrea tridentata (+10‰). Measurements of leaf water isotopic composition demonstrate that transpiration is an important mechanism for D-enrichment of leaf waters (+74 ± 20‰, 1σ), resulting in the smallest net fractionation yet reported between source water and leaf waxes (L. tridentata −41‰; multi-species mean value is −94 ± 21‰, 1σ). We find little change in leaf water D-enrichment or net fractionation across the climatic gradient sampled by our study, suggesting that a net fractionation of ca. −90‰ may be appropriate for paleohydrologic reconstructions in semi-arid to arid environments. Large interspecies offsets in net fractionations (1σ = 21‰) are potentially troublesome, given the observed floristic diversity and the likelihood of species assemblage changes with climate shifts.  相似文献   

4.
In Permian shales of the Sydney Basin, Australia, n-alkane distributions have been compared with effective coalification temperatures (ECTs) estimated from vitrinite reflectivities. The upper, non-marine part of the section shows evidence of progressive cracking (shift of n-alkane maximum toward shorter chains and tendency to eliminate longer chains) as depth and ECT increase; but this trend is not maintained in the underlying marine section.All samples show lack of a maximum in the longer-chain n-alkane distribution. Possible reasons discussed are (i) a cracking rate of long chains greater than their formation rate; (ii) a need for higher temperatures than the rock has so far undergone to produce a new crop of long chains; or (iii) exhaustion of the straight-chain generating potential of the kerogen. Pyrolysis experiments may be effective in testing these possibilities.The linking of ECTs to alteration stages of sediment hydrocarbons opens the possibility of comparing these stages among formations which differ in age and organic and inorganic composition, and among basins of diverse geological history.  相似文献   

5.
何大双  侯读杰  黄海平 《沉积学报》2018,36(5):1049-1058
通过对泥炭正构烷烃和正烷酮的地球化学特征的系统分析,以探讨阿萨巴斯卡地区Mildred泥炭沼泽的物源输入特征,以及正构烷烃和正烷酮的内在成因关系,从而揭示研究区泥炭记录的生物信息和植被演化特征。结果表明:Mildred泥炭正构烷烃和正烷酮均以高分子量C23~C33为主,呈后峰型分布,奇碳优势明显,物源以原地堆积的陆源高等植物为主,少量苔藓类、水生植物也有一定程度的贡献。根据主成分分析和正构烷烃指标,Mildred泥炭分子指示物源输入具有分段性,上段(地表至-17 cm)成炭植物以锈色泥炭藓为主,中段(-17 cm至-41 cm)沉积有机质主要来源于木质树根、杜鹃花科、黑云杉和莎草科等,下段(-41 cm至底部)莎草科类富集,少量松柏、杜鹃花科等木质植物发育。正构烷烃和正烷酮的分布极具相似性,同奇碳数正构烷烃与正烷酮极高的相关性论证了两者的内在成因联系。泥炭中正烷酮类化合物主要来源于相应正构烷烃的微生物氧化作用,剖面上部锈色泥炭藓的富集对正烷酮有一定程度的贡献;结合FT-MS资料,脂肪酸的微生物β-氧化和脱羧基作用是形成正烷酮的另一种有效路径,但不是主要的成因路径。  相似文献   

6.
In order to improve understanding of the stratigraphy of the Lake Turkana Basin, one of the important sites in the evolution of early man, this study evaluates the usefulness of organic biological marker compounds, n-alkanes and fatty acids, for correlation of isolated sedimentary strata.Eighty-five paleosol samples were collected from well-defined sedimentary horizons in two regions (Area 103 and Area 130) of the Koobi Fora area of Lake Turkana. Results indicate that most of the organic matter present was derived from terrestrial plant waxes. In sediments where extensive diagenesis has occurred, microbial input of organic matter may have been substantial. Algae were either not an important source of organic matter, or their marker compounds have been removed or altered by degradative processes.The fate of the original paleosol organic matter has been governed to some extent by weathering processes, especially in Area 130. Weathering decreased the amount of extractable lipids, particularly fatty acids and the low molecular weight alkanes (C17C20); produced or retained relatively large amounts of alkanes greater than C21 within a unimodal distribution; and lowered CPI values. Consequently, stratigraphic correlation by unique alkane and fatty acid distributions has been confined to short distances (many meters).Both n-alkanes and fatty acids have been retained better by association with clay minerals than by sand matrices. The alkane distribution of sandstones differs from that of clay organics in having a narrower carbon chain length distribution and lower CPI values. In Area 103, where weathering was less severe, compositional variations with stratigraphic position indicate that lipid material has been retained within each of the facies examined.  相似文献   

7.
We investigated the influence of thermal maturity on the hydrogen isotope ratios of sedimentary hydrocarbons to prove that the isotope ratio of hydrocarbons mirrors paleoclimate signatures. δD values from n-alkanes and acyclic isoprenoids of two sediment sections (Kupferschiefer [KS], 258 Ma, and Posidonienschiefer [PS], 184 Ma) with different maturation history were investigated. Both covered thermal maturity from 0.48 to 1.3 Rc (vitrinite reflectance and reflectance calculated from MPI1). Sediment burial up to 4500 m caused thermal maturation of organic matter in the KS horizon from the Early Zechstein basin of Poland, whereas contact metamorphic thermal maturation originated in the Early Toarcian PS (Posidonienschiefer) of the North German Vlotho Massif. The δD values of the extracted n-alkanes positively correlate with thermal maturity in the KS (y = 56‰ × MPI1[x] − 160‰ [VSMOW]) and in the PS (y = 104‰ × MPI1[x] − 200‰ [VSMOW]). The δD values of isoprenoids (i.e., pristane, phytane) were even more enriched with increasing maturity (y = 179‰ × MPI1[x] − 341‰ [VSMOW] in the KS; y = 300‰ × MPI1[x] − 415‰ [VSMOW] in PS).These results explain why isotope ratios of n-alkanes and isoprenoids in mature sediments are generally enriched in D and do not have the expected isotopic difference between n-alkanes and isoprenoids of ∼190‰. Moreover, the correlation between sediment maturity parameters and δD values suggests that after correction the δD values of n-alkanes can be used to reconstruct climate and environment in the geological past.  相似文献   

8.
The presence of elevated As in ground waters exploited for drinking water and irrigation in South-East Asia is causing serious impacts on human health. A key mechanism that causes the mobilization of As in these waters is microbially mediated reductive transformation of As-bearing Fe(III) hydrated oxides and the role of degradable organic matter (OM) in this process is widely recognized. A number of different types of OM that drive As release in these aquifers have been suggested, including petroleum derived hydrocarbons naturally seeping into shallow sediments from deeper thermally mature source rocks. However, the amount of information on the characteristics of the OM in South-East Asian aquifers is limited. Here the organic geochemical analyses of the saturated hydrocarbon fractions and radiocarbon analysis, of two additional sites in SE Asia are reported. The results show that the OM in a given sedimentary horizon likely derives from multiple sources including naturally occurring petroleum. The importance of naturally occurring petroleum as one of the sources was clearly indicated by the n-alkane CPI of approximately 1, the presence of an unresolved complex mixture, and hopane (dominated by 17α(H),21β(H) hopanes) and sterane distribution patterns. The results also indicate that the OM in these aquifers varies tremendously in content, character and potential bioavailability. Furthermore, the presence of petroleum derived OM in sediments at both sites doubles the number of locations where their presence has been observed in association with As-rich, shallow aquifers, suggesting that the role of petroleum derived OM in microbially mediated As release might occur over a wider range of geographical locations than previously thought.  相似文献   

9.
Chemistry dependence of D of chlorites is inferred from data for natural chlorites. D of water equilibrated with those chlorites is estimated to be –2–8.  相似文献   

10.
For modelling isotopic variations in oils it is convenient to differentiate the effects of oil generation ( 100–150°C) from the effects of oil to gas cracking ( 150–180°C). During generation, δ13C of kerogen may increase by up to 1% due to release of isotopically light oil and gas, although most kerogens show little or no chan δ13C of the generated oil increases by between 0 and 1% (av. 0.5%) due to mixing of isotopically heavy oil with an initial isotopically light unbound fraction, possibly of bacterial origin. The change occurs mostly over the first 20% of generation. During oil to gas cracking, kinetic isotope effects become important and the effect on δ13C of the remaining oil can be modelled as a Rayleigh process. δ13C increases by 1.5% by 50% cracking. Insufficient data are available to calibrate the effects at higher levels of cracking, and modelling these variations is hindered by a lack of understanding of the mechanism of pyrobitumen formation. However, increases greater than about 4% are unlikely to be observed. With increasing maturity, the low molecular weight fractions become isotopically heavy faster than the high molecular weight fractions. As a result, any separation of the low molecular weight fraction into a gas phase (“condensate formation”) will produce an isotopic difference between oil and condensate that depends on maturity. In the early stages of generation the condensate may be up to 1% lighter than the remaining oil. With increasing maturity, this difference at first decreases and then increases in the opposite sense. By half way through oil to gas cracking the condensate may be 1.5% heavier than the residual liquid. More subtle rearrangement reactions may result in small, but significant, changes to the shape of the isotope “type-curves” when different oil fractions are compared.  相似文献   

11.
 Complete chemical analyses, including ferric and ferrous iron, H2O contents and δD values for 16 phlogopite and biotite and 2 hornblende separates are presented. Samples were obtained from volcanic rocks from four localities: (1) phlogopite phenocrysts from minette lavas from the western Mexico continental arc, (2) biotite and hornblende phenocrysts from andesite lavas from Mono Basin, California, (3) phlogopite and biotite from clinopyroxenite nodules entrained in potassic lavas from the East African Rift, Uganda, and (4) phlogopite phenocrysts from a wyomingite lava in the Leucite Hills, Wyoming. The Fe2O3 contents in the micas range from 0.8 to 10.5 wt%, corresponding to 0.09 to 1.15 Fe3+ per formula unit (pfu). Water contents vary from 1.6 to 3.0 wt%, corresponding to 1.58 to 3.04 OH pfu, significantly less than would be expected for a site fully occupied by hydroxyl. Cation- and anion-based normalization procedures provide accurate mineral formulae with respect to most cations and anions, but are unable to generate accurate estimates of Fe3+/FeT, and overestimate OH at the expense of O on the hydroxyl site. These inaccuracies are present despite acceptable adjusted totals and stoichiometric calculated site occupancies. The phlogopite and biotite phenocrysts in arc-related lavas from western Mexico and eastern California have the highest Fe3+/FeT ratios (56–87%), reflecting high magmatic oxygen fugacities (ΔNNO = +2 to +5), in contrast to those from Uganda (25–40%) and the Leucite Hills (23%). There is no correlation between the OH content and the Fe3+/FeT ratio in the micas. Values of KMg/Fe2+D (± 2σ errors) were calculated for three phlogopite-olivine pairs (0.12 ± 0.12, 0.26 ± 0.14, 0.09 ± 0.12), two biotite-hornblende pairs (0.73 ± 0.08 and 1.22 ± 0.10) and a single phlogopite-augite pair (1.15 ± 0.12). Values of KF/OHD for two biotite and hornblende pairs could not be determined without significant error because of the extremely low F contents (< 0.2 wt%) of the four phases. The δD values obtained in this study encompass a large range (−137 to −43‰). The phlogopite and biotite separates from Uganda have δD values of −70 to −49‰, which overlap those believed to represent “primary” mantle. There is a larger range in δD values (−137 to −43‰) for phlogopite phenocrysts from western Mexico minette lavas, although their range in δ18O values (5.2–6.2‰) is consistent with “normal” mantle. It is unlikely, therefore, that the variable δD values reflect heterogeneity in the mantle source region of the minette magmas. Nor can the extremely low δD values reflect degassing of H2 or H2O since almost 100% loss of dissolved water in the magma is required, an unrealistic scenario given the stability of the hydrous phenocrysts. The very low δD values of the Mascota minette phlogopites require that the hydrogen be introduced from an external source (e.g., meteoric water). Whatever the process responsible for the observed hydrogen isotope composition, it had no effect on the δ18O value, f O 2, a H 2O or bulk composition of the host magmas. Received: 5 January 1995 / Accepted: 19 March 1996  相似文献   

12.
δD and δ13C analyses of cellulose nitrate from two modern Irish oak trees that form part of the 7400 year long chronology were carried out, covering a period of 123 years (1861–1983 A.D.) with a 5 year resolution so as to assess the potential of this long chronology for retrieval of palaeoenvironmental data. One of the trees (Q5293) showed significant correlations of δD, δ13 C and ring width with mean annual temperatures as recorded at the Armagh weather station nearby and the mean fall temperatures of Central England. The other tree (Q5296) did not exhibit any significant climatic correlations either because it grew utilizing a nearby permanent source of ground water or because the intra-ring isotopic variations in Irish oak are significant enough to mask the climatic signal. Whilst our results have given a positive indication of the usefulness of these trees for palaeoenvironmental information, more trees need to be analysed to confirm our findings. Even though one of the trees did not exhibit climatic correlations, both trees show a significant positive correlation of δ13C and a negative correlation of δD with ring width variations. Furthermore, two tree samples that grew during the 1620s B.C., when a volcano is thought to have erupted on the Aegean island of Santorini, show increased δD and decreased δ13C for one to two decades following the eruption, though the magnitudes of change seem to vary with site and trees. We have proposed a possible mechanism based on tree phenology to explain both the above effects.  相似文献   

13.
《Organic Geochemistry》2012,42(12):1269-1276
This study sought to characterize hydrogen isotopic fractionation during biosynthesis of leaf wax n-alkanes in succulent plants capable of crassulacean acid metabolism (CAM). The metabolic and physiological features of CAM represent crucial strategies for survival in hot and dry climates and have been hypothesized to impact hydrogen isotope fractionation. We measured the stable carbon and hydrogen isotopic compositions (δ13C and δD, respectively) of individual n-alkanes in 20 species of succulent plants from a global collection of the Huntington Botanical Gardens, San Marino, California. Greenhouse conditions and irrigation with water of constant δD value enabled determination of interspecies differences in net D/H fractionation between source water and leaf wax products. Carbon isotope ratios provide constraints on the extent of CAM vs. C3 photosynthesis and indicate a wide range of CAM use, with δ13C values ranging from −33.01‰ to −18.54‰ (C27–C33 n-alkanes) and −26.66‰ to −17.64‰ (bulk tissue). Despite the controlled growth environment, we observed ca. 90‰ interspecies range in δD values from −193‰ to −107‰. A positive correlation between δ13Cbulk and δDC31 values with R2 = 0.60 (δ13CC31 and δDC31 values with R2 = 0.41) implicates a metabolic isotope effect as the dominant cause of interspecies variation in the hydrogen isotopic composition of leaf wax n-alkanes in CAM-intermediate plants.  相似文献   

14.
15.
陈云如  田军 《第四纪研究》2016,36(3):587-597
植物利用周围环境中的水分进行光合作用合成有机质, 其叶蜡氢同位素记录了源水中的氢同位素组成, 被认为是重建古水循环的替代性指标。然而从源水(降水)到合成叶蜡脂类化合物, 降水中的氢同位素会发生多步分馏作用。本文综述了对氢同位素分馏造成影响的因素及其校正方法, 通过有效的数据处理, 叶蜡氢同位素可以比较直接地反映降水的氢同位素组成。由于在热带地区降水氢同位素受"雨量效应"影响较大, 所以可以较好地反映降水量变化, 在非洲大陆常被用于重建水循环和气候变化; 在东亚大陆,"雨量效应"不再那么显著, 水汽的来源可能在影响降水氢同位素组成的过程中也起到了重要作用。  相似文献   

16.
The pH and fO 2 dependences of the [Se2–]/[S2–] ratio in chloride solutions at 100°, 200° and 300°C are predicted thermodynamically. Under the high fO 2 conditions where sulfate species are dominant in solution, the [Se2–]/[S2–] ratio always increases with increasing pH and/or fO 2. Under the low fO 2 conditions where sulfide species are dominant in solution, the pH and fO 2 dependences of the [Se2–]/[S2–] ratio are seriously affected by the presence of native selenium. With native selenium present, the [Se2–]/[S2–] ratio decreases with increasing fO 2, but almost independent of pH in geologically important pH regions. When native selenium is absent, the [Se2–]/[S2–] ratio is solely a function of pH and independent of fO 2. Combining the above with the pH and fO 2 dependences of 34S value of aqueous sulfur species, we discuss the possible influences of the pH and fO 2 of ore-forming solutions on the relationship between the Se/S ratio and 34S value of hydrothermal sulfide minerals. The results are applied to some Japanese sulfide ore deposits.  相似文献   

17.
Stable hydrogen and oxygen isotope ratios are presented for carbon-bound hydrogen and for oxygen in chitin-derived substrates from 57 arthropod species collected in 50 different locations or grown under controlled conditions in the laboratory. No systematic isotopic differences were found among Insecta, Crustacea, and Merostomata. The determination of infra- and interindividual isotopic variabilities in a lobster and among individuals of crustacean populations yielded small variances of about ±3 per mil for δD values and ±0.3 per mil for δ18O values. Molting stage and sex of crustaceans showed no systematic effects on isotopic composition. The δD and δ18O values of ambient water showed only weak correlations with the respective δ values of chitin-derived substrates. Positive correlation was observed between δD values and trophic level. No temperature effects on δ18O and δD values from marine crustaceans were found that exceed the natural isotopic noise level. Taken together, these observations indicate that reconstruction of water isotopic composition from arthropod chitin δD and δ18O values will require specific information about the habits and habitats of the species involved in the analysis.  相似文献   

18.
The water content and D/H ratio of pairs of phlogopite and richterite in kimberlite samples were measured. The water contents of both minerals were lower than the formula content. On the basis of D/H ratios of the pair, phlogopite and richterite can not be regarded as a simple equilibrium product with respect to hydrogen isotope exchange. It seems impossible to estimate D/H ratio of the mantle water through D/H ratios of the hydrous silicate pairs.  相似文献   

19.
Silicon isotope ratios (δ30Si) of bulk mineral materials in soil integrate effects from both silicon sources and processing. Here we report δ30Si values from a climate gradient of Hawaiian soils developed on 170 ka basalt and relate them to patterns of soil chemistry and mineralogy. The results demonstrate informative relationships between the mass fraction of soil Si depletion and δ30Si. In upper (<1 m deep) soil horizons along the climate gradient, Si depletion correlates with decreases of residual δ30Si values in low rainfall soils and increases in high rainfall soils. Strong positive correlation between soil δ30Si and dust-derived quartz and mica content show that both trends are largely controlled by the abundance of these weathering-resistant minerals. The data also lend support to the idea that fractionation of Si isotopes in secondary phases is controlled by partitioning of silicon between dissolved and precipitated products during the initial weathering of primary basalt. Secondary mineral δ30Si values from lower (>1 m deep) soil horizons generally correlate with the isotope fractionation predicted by a study of dissolved Si in basalt-watershed rivers and driven by preferential 28Si removal from the dissolved phase during precipitation. In contrast, after correcting for the influence of dust, secondary mineral Si depletion and δ30Si values in shallow (<1 m deep) soil horizons showed evidence of biocycling induced Si redistribution and substantially lower δ30Si values than predicted. Low δ30Si values in shallow soil horizons compared to predictions can be attributed to repeated fractionation as secondary minerals undergo additional cycles of dissolution and precipitation. Primary mineral weathering, secondary mineral weathering, dust accumulation, and biocycling are major processes in terrestrial Si cycling and these results demonstrate that each can be traced by δ30Si values interpreted in conjunction with mineralogy and measures of Si depletion.  相似文献   

20.
The δ O18 and δ Si30 analyses of the Luna 20 soil sample are +6.18 and +0.22, respectively, relative to the SMOW and Rose Quartz standards. However, an anomalous δ O18 value of +8.13 was obtained on one aliquot of the Luna 20 sample. Possible reasons for this apparently erroneous result are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号