首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sr–Nd isotope data are reported for the early Precambrian sub-alkaline mafic igneous rocks of the southern Bastar craton, central India. These mafic rocks are mostly dykes but there are a few volcanic exposures. Field relationships together with the petrological and geochemical characteristics of these mafic dykes divide them into two groups; Meso-Neoarchaean sub-alkaline mafic dykes (BD1) and Paleoproterozoic (1.88 Ga) sub-alkaline mafic dykes (BD2). The mafic volcanics are Neoarchaean in age and have very close geochemical relationships with the BD1 type. The two groups have distinctly different concentrations of high-field strength (HFSE) and rare earth elements (REE). The BD2 dykes have higher concentrations of HFSE and REE than the BD1 dykes and associated volcanics and both groups have very distinctive petrogenetic histories. These rocks display a limited range of initial 143Nd/144Nd but a wide range of apparent initial 87Sr/86Sr. Initial 143Nd/144Nd values in the BD1 dykes and associated volcanics vary between 0.509149 and 0.509466 and in the BD2 dykes the variation is between 0.510303 and 0.510511. All samples have positive ? Nd values; the BD1 dykes and associated volcanics have ? Nd values between +0.3 and +6.5 and the BD2 dykes between +1.9 to +6.0. Trace element and Nd isotope data do not suggest severe crustal contamination during the emplacement of the studied rocks. The positive ? Nd values suggest their derivation from a depleted mantle source. Overlapping positive ? Nd values suggest that a similar mantle source tapped by variable melt fractions at different times was responsible for the genesis of BD1 (and associated volcanics) and BD2 mafic dykes. The Rb–Sr system is susceptible to alteration and resetting during post-magmatic alteration and metamorphism. Many of the samples studied have anomalous apparent initial 87Sr/86Sr suggesting post-magmatic changes of the Rb–Sr system which severely restricts the use of Rb–Sr for petrogenetic interpretation.  相似文献   

2.
This study explores the possibility of establishing Nd isotopic variations in seawater over geologic time. Calcite, aragonite and apatite are examined as possible phases recording seawater values of ?Nd. Modern, biogenic and inorganically precipitated calcite and aragonite from marine environments were found to have Nd concentrations of from 0.2 to 70 ppb, showing that primary marine CaCO3 contains little REE and that Nd/Ca is not greatly enhanced relative to seawater during carbonate precipitation. Very young marine limestone and dolomite containing no continental detritus have ~200 ppb Nd. All the carbonates are LREE enriched (?0.16 ≤fSmNd≤?0.45). Modern and very young Atlantic and Pacific carbonates have ?Nd in the range of shallow Atlantic and Pacific seawater respectively, implying that they derive their REE from local seawater. The Nd in well preserved carbonate fossils is ≤4 × 104 ppb, much greater than in their modern counterparts but like the high values found for carbonates in other studies. We believe the high REE contents (at the 500 ppb level) in some detritusfree carbonates are due to REE-rich Fe-hydroxide in/on the carbonate. In favorable cases, such material may record seawater ?Nd values, however introduction of extraneous REE may obscure the original isotopic composition of pure CaCO3 because of its very low intrinsic primary REE abundance.Modern biogenic apatite is also shown to have very low REE content (<150 ppb Nd) but appears to quickly scavenge REE from seawater. Inorganically precipitated apatite from phosphorites has high concentrations of seawater-derived REE. Young phosphorite apatite from the Atlantic and Pacific oceans has ?Nd in the range of the seawater from these oceans. Older apatite samples of similar age from different localities bordering common oceans record similar values of ?Nd(T). Sedimentary apatite has ?Sr(T) values in good agreement with the curves for 87Sr86Sr of seawater as a function of time. Individual conodonts from a single formation yield the same ?Sr(T) and ?Nd(T). Other workers have shown that sedimentary apatite preserves seawater REE patterns. These characteristics suggest that sedimentary apatite can be used to determine ?Nd(T) in ancient seawater. The seawater values so inferred range between ?1.7 and ?8.9 over the last 700 my and lie in the range of modern seawater, showing no evidence for drastic changes. High values of seawater ?Nd(T) in the Triassic and latest Precambrian may correlate with the breakup of large continental landmasses. The initial ?Nd(T) =?15.0 of a 2 AE old phosphorite implies the presence of ~ 1.5 AE old continental crust at 2 AE ago. The approach outlined here can be used to constrain the age of the exposed crust as a function of time.  相似文献   

3.
Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the 143Nd/144Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo143Nd/144Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 101-103 are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, εNd values are often similar within one εNd unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing εNd values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic 143Nd/144Nd incorporated post mortem during diagenesis. Unlike REE patterns, 143Nd/144Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the εNd value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of ±1 εNd unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil sites have a total range of εNd values from -13.0 to 4.9 (n = 80), often matching the composition of the embedding sediment. This implies that the surrounding sediment is the source of Nd in the fossil bones and that the specimens of this study seem not to have been reworked. Differences in εNd values between skeletal remains and embedding sediment may either indicate reworking of fossils and/or a REE-uptake from a diagenetic fluid with non-sediment derived εNd values. The latter often applies to fossil shark teeth, which may preserve paleo-seawater values. Complementary to εNd values, 87Sr/86Sr can help to further constrain the fossil provenance and reworking.  相似文献   

4.
Nd, Sr and U-Pb isotopic data for the late Triassic West Coast Province batholiths and Permian to Triassic East Coast Province batholiths of Peninsular Malaysia allow estimates of the ages of the crustal fragments comprising the peninsula to be made. Initial ?Nd and ?Sr values for granitoids from the West Coast Province range from ?6 to ?10 and +160(0.716) to +660(0.751) respectively. Nd model ages calculated based on a depleted mantle evolution model (TDMNd) range from 1300 Ma to 1800 Ma and are in general agreement with the mid-Proterozoic upper intersection ages of U-Pb zircon reverse discordia (1500–1700 Ma). Initial ?Nd and ?Sr values for granitoids from the East Coast Province range from ?0.8 to ?6 and +10(0.705) to +130(0.714) respectively. Calculated TDMNd ages of 900–1400 Ma for these granitoids are comparable to two U-Pb zircon reverse discordia intercepts that yield 800 Ma and 1350 Ma. The general agreement of U-Pb zircon inheritance ages and TDMNd ages are interpreted to correspond to the Proterozoic ‘crust formation’ ages of the continental fragments represented by the West Coast and East Coast batholithic provinces. Mid-Proterozoic (~ 1300–1900 Ma) ‘crust formation’ ages are commonly shown by other Phanerozoic continental margin plutonic and volcanic belts. The ubiquitous mid-Proterozoic ‘crust formation’ ages and the absence of Archaean signatures suggest voluminous juvenile additions to the continental crust in the mid-Proterozoic. Such ages at continental margins would imply that many continental blocks had achieved very much their present-day extent by the mid-Proterozoic.  相似文献   

5.
Current methods for evaluating Sm-Nd isochron data determine initial ?Nd (?Ndi) values by extrapolation to 147Sm144Nd = 0, resulting in unnecessarily large uncertainties. It is shown that values of ?Ndi can be optimised by determining the present 143Nd144Nd composition of a hypothetical sample having chrondritic SmNd. This method of determination requires only a simple data translation for its implementation using standard line-fitting techniques, and is particularly advantageous in providing precise ?Ndi values for sample suites of limited compositional range close to chondritic SmNd.A method of constructing error (uncertainty) polygons appropriate to the optimised (?Ndi, T) values is discussed, and optimum?Ndi values are tabulated for all published Precambrian Sm-Nd isochrons.  相似文献   

6.
http://www.sciencedirect.com/science/article/pii/S1674987113000820   总被引:1,自引:1,他引:0  
The combined use of Hf,Nd and Sr isotopes is more useful in understanding the supercontinent cycle than the use of only Hf isotopic data from detrital zircons.Sr and Nd seawater isotopes,although not as precise as εNd and εHf distributions,also record input from ocean ridge systems.Unlike detrital zircons where sources cannot be precisely located because of crustal recycling,both the location and tectonic setting often can be constrained for whole-rock Nd isotopic data.Furthermore,primary zircon sources may not reside on the same continent as derivative detrital zircons due to supercontinent breakup and assembly.Common to all of the isotopic studies are geographic sampling biases reflecting outcrop distributions,river system sampling,or geologists,and these may be responsible for most of the decorrelation observed between isotopic systems.Distributions between 3.5 and 2 Ga based on εHf median values of four detrital zircon databases as well as our compiled εNd database are noisy but uniformly distributed in time,whereas data between 2 and 1 Ga data are more tightly clustered with smaller variations.Grouped age peaks suggest that both isotopic systems are sampling similar types of orogens.Only after 1 Ga and before 3.5 Ga do we see wide variations and significant disagreement between databases,which may partially reflect variations in both the number of sample locations and the number of samples per location.External and internal orogens show similar patterns in εNd and εHfwith age suggesting that both juvenile and reworked crustal components are produced in both types of orogens with similar proportions.However,both types of orogens clearly produce more juvenile isotopic signatures in retreating mode than in advancing mode.Many secular changes in εHf and εNd distributions correlate with the supercontinent cycle.Although supercontinent breakup is correlated with short-lived decreasing εHf and εNd (≤ 100 Myr) for most supercontinents,there is no isotopic evidence for the breakup of the Paleoproterozoic supercontinent Nuna.Assembly of supercontinents by extroversion is recorded by decreasing εNd in granitoids and metasediments and decreasing εHf in zircons,attesting to the role of crustal reworking in external orogens in advancing mode.As expected,seawater Sr isotopes increase and seawater Nd isotopes decrease during supercontinent assembly by extroversion.Pangea is the only supercontinent that has a clear isotopic record of introversion assembly,during which median εNd and εHf rise rapidly for ≤ 100 Myr.Although expected to increase,radiogenic seawater Sr decreases (and seawater Nd increases) during assembly of Pangea,a feature that may be caused by juvenile input into the oceans from new ocean ridges and external orogens in retreating mode.The fact that a probable onset of plate tectonics around 3 Ga is not recorded in isotopic distributions may be due the existence of widespread felsic crust formed prior to the onset of plate tectonics in a stagnant lid tectonic regime,as supported by Nd and Hf model ages.  相似文献   

7.
The Sr–Nd–Hf isotopic compositions of both saprolites and parent rocks of a profile of intensively weathered Neogene basalt in Hainan, South China are reported in this paper to investigate changes of isotopic systematics with high masses. The results indicate that all these isotopic systematics show significant changes in saprolites compared to those in corresponding parent rocks. The 87Sr/86Sr system was more seriously affected by weathering processes than other isotope systems, with εSr drifts 30 to 70 away from those of the parent rocks. In the upper profile (> 2.2 m), the Sr isotopes of the saprolites show an upward increasing trend with εSr changing from ~ 50 at 2.2 m to ~ 70 at 0.5 m, accompanying a upward increasing of Sr concentrations, from ~ 10 μg/g to ~ 25 μg/g. As nearly all the Sr of the parent rock has been removed during intensive weathering in this profile, the upward increasing of Sr concentrations in the upper profile suggests import of extraneous Sr. Rainwater in this region, which enriches in Sr (up to 139 μg/L) from seawater, may be the important extraneous source. Thus, the Sr isotopes of the saprolites in the upper profile may be mainly influenced by import of extraneous materials, and the Sr isotopic characteristics may not be retained. In contrast, the εNd and εHf of the saprolites drift only 0–2.6 and 0–3.7 away from the parent rocks, respectively. The negative drifts of the εNd and εHf are coupled with Nd and Hf losses in the saprolites; i.e., larger proportions of Nd and Hf loss correspond to lower εNd and εHf. Compared with the relative high Nd and Hf concentrations of the saprolites, the contributions of extraneous Nd and Hf both from wet and dry deposits of aeolian input are negligible. Thus, the εNd and εHf changes in the profile are mainly resulted from consecutive removal of the Nd and Hf. Calculation indicates that the 143Nd/144Nd and 176Hf/177Hf ratios in saprolites are all significantly lower than their initial values in the parent rock. Simply removing part of the Nd and Hf by incongruent decomposing some of the minerals may not account for this. Fractionation should be happen, which 143Nd and 176Hf may be preferentially removed from the profile relative to 144Nd and 177Hf during intensive chemical weathering, resulting in lower 143Nd/144Nd and 176Hf/177Hf ratios in saprolites relative to the parent rock, even though details for this process is not known. A positive correlation is observed between the εNd and εHf of the saprolites. Interestingly, the saprolites with a net loss of Nd and Hf in the upper profile show good positive correlation, and the regression line parallels the terrestrial array. By contrast, saprolites with a net gain of Nd and Hf in the lower profile generally show higher εHf values at a given εNd value, and the regression line between these εNd and εHf appears to parallel the seawater array. This supports the hypothesis that the contribution of continental Hf from chemical weathering release is the key to the obliquity of the seawater array away from the terrestrial array of the global εNd and εHf correlation. Our results also indicate that caution is needed when using εSr, εNd, and εHf to trace provenances for sediments and soils.  相似文献   

8.
The subduction factories in convergent plate margins exert crucial control on recycling terrestrial components and returning to the overlying crust. The Nd and Hf isotopic systems provide potential tracers to evaluate these processes. Here we present a case where these isotopic systems are decoupled in a suite of granites from the Chinese Altai, showing a wide range of εHf(t) values(from -4.7 to +10.8) in contrast to a limited range of εNd(t) values(from -5.8 to -1.9). The zircon xenocrysts occurring frequently in these rocks show markedly negative εHf(t) values(from -34.3 to -6.5) and positive d7 Li values(from +12.5 to +18.2). We propose a model to explain the observed relationship between residual zircon and Nde Hf isotope decoupling. We suggest that the Altai granites originated from partial melting of subducted slab components under relatively low temperature conditions which aided the residual zircon from oceanic sediments to inherit and retain a significant amount of177 Hf in the source, thereby elevating the176 Hf/177 Hf ratio of the melt, and decoupling from the143 Nd/144 Nd ratio during the subsequent magmatic processes. Our study illustrates a case where sediment recycling in subduction zone contributes to decoupling of Nd and Hf isotopic systems, with former providing a more reliable estimate of the source characteristics of granitic magmas.  相似文献   

9.
The neodymium concentration, CNd, and isotopic composition, εNd, in seawater have been determined in the water column at five sites in the Barents Sea-Fram Strait area where most of the water exchange between the Arctic Ocean and the North Atlantic takes place. In the main Arctic Ocean inflow branch across the Barents Sea the concentration and isotopic composition (CNd = 15.5 pmol/kg and εNd = −10.8) are similar to those reported for the northeastern Nordic Seas, which is consistent with this region being a source area for the Arctic inflow. Due to the addition of Nd from Svalbard shelf sediments, the CNd in the surface waters above 150 m, in the Fram Strait inflow branch is higher by a factor of 2 and the εNd is shifted to lower values (−11.8).In the stratified Nansen Basin, where cold low salinity water overlies warmer Atlantic water the CNd and εNd do not vary with the vertical temperature-salinity structure but are essentially constant and similar to those of the Atlantic inflow throughout the entire water column, down to 3700 m depth, which indicates that the Nd is to a large extent of Atlantic origin.Compared to the Atlantic inflow water, the Nd in the major Arctic Ocean outflow, the Fram Strait, show higher CNd in the surface waters above 150 m, and a higher εNd (−9.8) throughout the entire water column down to 1300 m depth. Sources for the more radiogenic Nd isotopic composition in deep water of the Fram Strait outflow most likely involve boundary exchange with sediments on the shelf and slope as the water passes along the Canadian archipelago. River water is a possible source in the surface water but it also seems likely that Pacific water Nd, modified by interactions on the shelf, is an important component in the Fram Strait surface outflow. Changes in the relative proportions of inflow of river water and flow of Pacific water through the Arctic Ocean could thus influence the isotopic composition of Nd in the North Atlantic.  相似文献   

10.
An internal isochron determined for a gabbro from the Stillwater complex by the Sm-Nd method yields a precise age of 2701 ± 8 Myr and initial 143Nd/144Nd = 0.508248 ± 12. The initial is close to the CHUR evolution curve but clearly displaced below it by ?Nd = ?2.8 ± 0.2. A spectrum of total rocks in the Stillwater complex ranging from anorthosite to pyroxenite were found to lie on the same isochron to within experimental error indicating the same age and initial. These data demonstrate that some ancient mantle-derived rocks have initial 143Nd/144Nd which deviate substantially from the CHUR evolution curve at the time of their formation. This implies that there was early layering in the mantle with substantial REE fractionation (~6–12% Nd/Sm enrichment) or that the Stillwater complex was highly contaminated with REE from much older continental crust during emplacement. The results show the necessity of high-precision ages and initial 143Nd/144Nd values in order to properly describe REE fractionation in the mantle. While the Sm-Nd age results show no indication of any irregularities, we have confirmed that the Rb-Sr data for the Stillwater are highly disturbed. This comparison indicates that the Sm-Nd parent-daughter system may be much less susceptible to element redistribution during metamorphism, therefore permitting wide application of this technique to rocks of complex histories.  相似文献   

11.
146Sm–142Nd and 147Sm–143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The study of Finsch inclusions was conducted on a composite sample of 50 peridotitic pyropes with a Nd model age of 3.3 Ga. Analysis of the Jack Hills zircons was performed on 790 grains with ion microprobe 207Pb/206Pb spot ages from 3.95 to 4.19 Ga. Finsch pyropes yield 100 × ?142Nd = ? 6 ± 12 ppm, ?143Nd = ? 32.5, and 147Sm/144Nd = 0.1150. These results do not confirm previous claims for a 30 ppm 142Nd excess in South African cratonic mantle. The lack of a 142Nd anomaly in these inclusions suggests that isotopic heterogeneities created by early mantle differentiation were remixed at a very fine scale prior to isolation of the South African lithosphere. Alternatively, this result may indicate that only a fraction of the mantle experienced depletion during the first 400 Myr of its history. Analysis of the Jack Hills zircon composite yielded 100 × ?142Nd = 8 ± 10 ppm, ?143Nd = 45 ± 1, and 147Sm/144Nd = 0.5891. Back-calculation of this present-day ?143Nd yields an unrealistic estimate for the initial ?143Nd of ? 160 ?-units, clearly indicating post-crystallization disturbance of the 147Sm–143Nd system. Examination of 146,147Sm–142,143Nd data reveals that the Nd budget of the Jack Hills sample is dominated by non-radiogenic Nd, possibly contained in recrystallized zircon rims or secondary subsurface minerals. This secondary material is characterized by highly discordant U–Pb ages. Although the mass fraction of altered zircon is unlikely to exceed 5–10% of total sample, its high LREE content precludes a reliable evaluation of 146Sm–142Nd systematics in Jack Hills zircons.  相似文献   

12.
13.
An Early Permian volcanic assemblage is well exposed in the central-western part of the Apuseni Mountains (Romania). The rocks are represented by rhyolites, basalts and subordinate andesites suggesting a bimodal volcanic activity that is intimately associated with a post-orogenic (Variscan) syn-sedimentary intra-basinal continental molasse sequences. The mafic and mafic-intermediate rocks belong to sub-alkaline tholeiitic series were separated in three groups (I–III) showing a high Th and Pb abundances, depletion in Nb, Ta and Sr, and slightly enriched in LREE patterns (LaN/YbN = 1.4–4.4). Isotopically, the rocks of Group I have the initial ratios 87Sr/86Sr(i) = 0.709351–0.707112, 143Nd/144Nd(i) = 0.512490–0.512588 and high positive ?Nd270 values from 3.9 to 5.80; the rocks of Group II present for the initial ratios values 87Sr/86Sr(i) = 0.709434–0.710092, 143Nd/144Nd(i) = 0.512231–0.512210 and for ?Nd270 the negative values from −1.17 to −1.56; the rocks of Group III display for the initial ratios the values 87Sr/86Sr(i) = 0.710751–0.709448, 143Nd/144Nd(i) = 0.512347–0.512411 and for ?Nd270 the positive values from 1.64 to 2.35. The rocks resembling continental tholeiites, suggest a mantle origin and were further affected by fractionation and crustal contamination. In addition, the REE geochemistry (1 > SmN/YbN < 2.5; 0.9 > LaN/SmN < 2.5) suggests that these rocks were generated by high percentage partial melting of a metasomatized mantle in the garnet peridotite facies. The felsic rocks are enriched in Cs, Rb Th and U and depleted in Nb, Ta, Sr, Eu, and Ti. The REE fractionation patterns show a strong negative Eu anomaly (Eu/Eu* = 0.23–0.40). The felsic rocks show the initial ratios the values: 87Sr/86Sr(i) = 0.704096–0.707805, 143Nd/144Nd(i) = 0.512012–0.512021 and for ?Nd270 the negative values from −5.27 to −5.44. They suggest to be generated within the lower crust during the emplacement of mantle-derived magmas that provided necessary heat to crustal partial melting.  相似文献   

14.
Strontium (Sr), neodymium (Nd), and hafnium (Hf) isotopic analyses of different size-fractions of sediments collected from the Heihe River in the North Qilian Orogen (NQO) were carried out to trace the sediment sources and to determine the relationships between the Sr–Nd–Hf isotopic behaviors, and the grain-size and hydraulic sorting effects during fluvial transport. Our results demonstrate that the sand and suspended load samples collected from the same site have different Nd isotopic compositions, while their 87Sr/86Sr ratios are only slightly different. These features indicate that contributions to the sediments from different sources with different grain sizes vary greatly. Coarse-grained sand may more intuitively reflect the variations in local sources than the suspended load. The suspended load samples are distributed along the Clay Array on the ԐHf vs. ԐNd diagram due to zircon sorting. A similar NdHf decoupling phenomenon is widespread in the global oceans and large river systems, indicating that the NdHf isotopic behavior depends on the hydrodynamic sorting of minerals during fluvial transport. Moreover, the crustal accretion of the NQO from the depleted mantle occurred in the Proterozoic based on the constraints provided by the TDM values of the river sediments. The Nd isotopic compositional characteristics of the river sediments indicate that the NQO has an affinity with the Yangtze Craton. The determination of the basement tectonic affinity of the NQO significantly contributes to our understanding of the Neoproterozoic evolution of the Gondwana continental margin.  相似文献   

15.
We report an optimized method for extracting neodymium (Nd) from fossil fish teeth with a single-stage column (125 µl stem volume; LN Resin, Eichrom Industries, Darien Illinois) for isotopic analysis by multi-collector inductively coupled mass spectrometry (MC-ICMPS). Three reference materials (basalt: BCR-2, BHVO-2; phosphate: fossil bone composite) and splits of fossil fish teeth samples previously processed with existing two-stage column methods were processed using the single-stage column method. 143Nd/144Nd values of reference materials agree within error with published values, and the values for fish teeth correspond with sample splits processed with two-stage columns. Precision to ±  0.23 εNd was achieved for 30 ng Nd samples of reference materials, and Nd isotope measurements of fossil fish tooth sample replicates as small as 7 ng Nd were reproducible within long term instrumental uncertainty. We demonstrate the utility of the new method with the first high resolution Nd isotope record spanning the ~ 40.0 Ma middle Eocene Climatic Optimum, which shows an excursion of 0.65 εNd during the peak warming at the study site (Ocean Drilling Program Leg 119, Site 738; 30 kyr sample spacing from 40.3 to 39.6 Ma). LN Resin is already used in standard methods for separating Nd, and Nd isotopes are routinely measured by MC-ICPMS with high efficiency inlet systems. Our innovation is a single, small volume LN Resin column for Nd separation. The streamlined approach results in a 10× increase in sample throughput.  相似文献   

16.
Spinifex-textured.magnesian(MgO 25 wt.%) komatiites from Mesoarchean Banasandra greenstone belt of the Sargur Group in the Dharwar craton,India were analysed for major and trace elements and~(147,146)Sm-~(143,142)Nd systematics to constrain age,petrogenesis and to understand the evolution of Archean mantle.Major and trace element ratios such as CaO/Al_2O_3.Al_2O_3/TiO_2,Gd/Yb,La/Nb and Nb/Y suggest aluminium undepleted to enriched compositional range for these komatiites.The depth of melting is estimated to be varying from 120 to 240 km and trace-element modelling indicates that the mantle source would have undergone multiple episodes of melting prior to the generation of magmas parental to these komatiites.Ten samples of these komatiites together with the published results of four samples from the same belt yield ~(147)Sm-~(143)Nd isochron age of ca.3.14 Ga with an initial ε_(Nd)(f) value of+3.5.High precision measurements of ~(142)Nd/~(144)Nd ratios were carried out for six komatiite samples along with standards AMES and La Jolla.All results are within uncertainties of the terrestrial samples.The absence of~(142)Nd/~(144)Nd anomaly indicates that the source of these komatiites formed after the extinction of ~(146)Sm,i.e.4.3 Ga ago.In order to evolve to the high ε_(Nd)(t) value of +3.5 by 3.14 Ga the time-integrated ratio of~(147)Sm/~(144)Nd should be 0.2178 at the minimum.This is higher than the ratios estimated,so far,for mantle during that time.These results indicate at least two events of mantle differentiation starting with the chondritic composition of the mantle.The first event occurred very early at ~4.53 Ga to create a global early depleted reservoir with superchondritic Sm/Nd ratio.The source of Isua greenstone rocks with positive ~(142)Nd anomaly was depleted during a second differentiation within the life time of ~(146)Sm,i.e.prior to 4.46 Ga.The source mantle of the Banasandra komatiite was a result of a differentiation event that occurred after the extinction of the ~(146)Sm,i.e.at 4.3 Ga and prior to 3.14 Ga.Banasandra komatiites therefore provide evidence for preservation of heterogeneities generated during mantle differentiation at4.3 Ga.  相似文献   

17.
Geochemical methods (major elements and Sr, Nd isotopes) have been used to (1) characterize Lake Le Bourget sediments in the French Alps, (2) identify the current sources of the clastic sediments and estimate the source variability over the last 600 years. Major element results indicate that Lake Le Bourget sediments consist of 45% clastic component and 55% endogenic calcite. In addition, several individual flood levels have been identified during the Little Ice Age (LIA) on the basis of their higher clastic content (> 70%).Potential sources of Lake Le Bourget clastic sediments have been investigated from Sr and Nd isotope compositions. The sediments from the Sierroz River and Leysse River which are mainly derived from the Mesozoic Calcareous Massifs are characterised by lower 87Sr/86Sr ratios and slightly lower ?Nd(0) ratios than the Arve River sediments which are derived from the Palaeozoic Mont-Blanc External Crystalline Massifs. The Rhône River appears to have been the main source of clastic sediments into the lake for the last 600 years, as evidenced by a similar Sr and Nd isotopic compositions analyzed in core B16 sediments (87Sr/86Sr = 0.719, ?Nd(0) = − 10) and in the sediments of the Rhône River (87Sr/86Sr = 0.719, ?Nd(0) = − 9.6).The isotopic signatures of flood events and background samples from core B16 in Lake Le Bourget are also similar. This indicates that prior to ∼ 1800, the inputs into the lake have remained relatively homogeneous with the proportion of clastic component mainly being a function of the palaeohydrology of the Rhone River. Early human modification (deforestation and agriculture) of the lake catchment before the 1800s appears to have had little influence on the source of clastic sediments.  相似文献   

18.
This paper reports isotopic and geochemical studies of eclogites from the western ultrahigh pressure (UHP) and eastern high-pressure (HP) blocks of the Kokchetav subduction-collision zone. These HP and UHP eclogites exhumed in two stages: (1) The rocks of the western block metamorphosed within the field of diamond stability (e.g., Kumdy-Kol and Barchy); (2) In contrast, the metamorphic evolution of the eastern block reached the pressure peak within the stability field of coesite (e.g., Kulet, Chaglinka, Sulu-Tyube, Daulet, and Borovoe). The eclogites vary widely in the ratios of incompatible elements and in the isotope ratios of Nd (143Nd/144Nd = 0.51137-0.513180) and Sr (87Sr/86Sr = 0.703930.78447). The Sulu-Tyube eclogites display isotope-geochemical features close to N-MORB, while those from the other sites are compositionally similar to E-type MORB or island arc basalts (IAB). The model ages TNd(DM) of eclogites vary between 1.95 and 0.67 Ga. The Sulu-Tyube eclogite yields the youngest age; it has the values of εNd(T) (7.2) and 87Sr/86Sr (0.70393) close to the depleted mantle values. The crustal input to the protolith of the Kokchetav eclogites is evident on the εNd(T)-86Sr/87Sr and εNd(T)-T plots. The eclogites make up a trend from DM to country rocks. Some eclogites from the Kulet, Kumdy-Kol, and Barchy localities display signs of partial melting, such as high Sm/Nd (0.65-0.51) and low (La/Sm)N (0.34-0.58) values. The equilibrium temperatures of these eclogites are higher than 850 °C. The geochemical features of eclogites testify to the possibility of the eclogite protolith formation in the tectonic setting of passive continental rift margin subducted to depths over 120 km.  相似文献   

19.
Nine depth-profiles of dissolved Nd concentrations and isotopic ratios (εNd) were obtained in the Levantine Basin, the Ionian, the Aegean, the Alboran Seas and the Strait of Gibraltar. Thirteen core-top sediments and Nile River particle samples were also analyzed (leached with 1 N HCl, acetic acid or hydroxylamine hydrochloride). The seawater εNd values become more radiogenic during the eastward circulation in the Mediterranean Sea. The relationship between salinity and the seawater εNd shows that the Nd isotopic signature is more conservative than salinity in the Mediterranean Sea. The water mass with the highest εNd (−4.8) is found at about 200 m in the easternmost Levantine basin. The average εNd value for deep waters is −7.0 in the eastern basin, 2.5 ε-units higher than in the western basin. By examining the sensitivity of seawater εNd to Nd inputs from the Nile, we conclude that the most significant radiogenic Nd source is partially dissolved Nile River particles. The Nd flux from the Nile River water has a minor influence on the Mediterranean seawater εNd. Except for the easternmost Levantine Basin, the leachate εNd values are consistent with the seawater values. In the easternmost Levantine Basin, the leachate εNd values obtained with HCl leaching are systematically higher than the seawater values. The relationship between leachate and residual εNd values indicates that the HCl leaching partially dissolves lithogenic Nd, so the dissolution of Nile River particles is the cause of the observed shift. Some εNd values obtained with hydroxylamine hydrochloride leaching are higher than those obtained with HCl leaching. Although the reason for this shift is not clear, 87Sr/86Sr successfully detects the presence of a nonmarine component in the leachate. Our results suggest that leaching performance may vary with the mineralogy of marine sediments, at least in the case of the Mediterranean Sea.  相似文献   

20.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号