首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. This article builds on the existing body of literature by (1) demonstrating the utility of continuous (i.e., hourly measurements for ~1 month) ambient wellbore flow monitoring and (2) presenting results from a field experiment where relatively large wellbore flows (up to 4 L/min) were induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an electromagnetic borehole flowmeter allowed these effects to be evaluated in concert with continuously monitored river-stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multilevel well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth.  相似文献   

2.
Spane FA  Mackley RD 《Ground water》2011,49(6):794-807
Many contaminated unconfined aquifers are located in proximity to river systems. In groundwater studies, the physical presence of a river is commonly represented as a transient-head boundary that imposes hydrologic responses within the intersected unconfined aquifer. The periodic fluctuation of river-stage height at the boundary produces associated responses within the adjacent aquifer system, the magnitude of which is a function of the existing well, aquifer, boundary conditions, and characteristics of river-stage fluctuations. The presence of well responses induced by the river stage can significantly limit characterization and monitoring of remedial activities within the stress-impacted area. This article demonstrates the use of a time-domain, multiple-regression, convolution (superposition) method to develop well/aquifer river response function (RRF) relationships. Following RRF development, a multiple-regression deconvolution correction approach can be applied to remove river-stage effects from well water-level responses. Corrected well responses can then be analyzed to improve local aquifer characterization activities in support of optimizing remedial actions, assessing the area-of-influence of remediation activities, and determining mean groundwater flow and contaminant flux to the river system.  相似文献   

3.
River stage fluctuations drive surface water-groundwater exchanges within river corridors. This study evaluates how repeated daily stage fluctuations, representative of hydropeaking conditions, influence aerobic respiration of river-sourced dissolved organic carbon (DOC) in the riparian exchange zone using reactive flow and transport simulations. Over 50 hypothetical scenarios were modelled to evaluate how the duration of the daily flood signal, river DOC concentration, aquifer hydraulic conductivity and ambient groundwater flow condition affect the fate and transport of DOC and DO in the riparian aquifer. Time series subsurface snapshots highlight how the various factors influence the subsurface distribution of DOC and DO. The total mass of DOC respired per meter of river had a wide range depending on the parameters, spanning from 1.4 to 71 g over 24-h, with high hydraulic conductivity and losing ambient groundwater flow conditions favouring the largest amount of DOC respired. The ratio of DOC mass entering the riparian zone with the mass returning to the river showed that as little as 5% to as much as 76% of the DOC that enters the bank during stage fluctuations returns to the river. This return ratio is dependent on river DOC concentration, hydraulic conductivity and ambient groundwater flow. The results illustrate that stage variations due to river regulation can be a significant control on aerobic respiration in riparian exchange zones.  相似文献   

4.
This study examined the effects of river stage and waste water discharge on the unconfined aquifer near the N nuclear reactor on the U.S. Department of Energy-operated Hanford site in Washington State. River levels were statistically correlated with water-level data from 12 wells.
During the course of this study, water table elevations declined in the study area primarily as a result of a significant decrease in discharge to waste water disposal facilities, A minor contributing factor was the regional decline of the water table caused by decreasing waste water discharges upgradient of the study area.
High-frequency river-level fluctuations (e.g., short-term daily fluctuations) had good correlation with water-level variations in a well approximately 750 feet inland. Low-frequency river-level fluctuations (e.g., long-term seasonal fluctuations) had good correlation with water-level variations in a well approximately 1000 feet from the river shore. Time lags and attenuation generally increased with distance from the river as expected, with the exception of two northern wells. These two wells were relatively more responsive to river-level fluctuations at a greater distance inland from the river. This suggests that hydraulic properties (e.g., hydraulic conductivity) are a control on the aquifer reponses.
During peak river stage in June, the river level rose above water table elevations in several wells implying a temporary reversal in ground water flow direction near the river.  相似文献   

5.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   

6.
Purge and pump samples from screened wells reflect concentration averaging and contaminant redistribution by wellbore flow. These issues were assessed in a screened well at the Hanford Site by investigating the vertical profile of a technetium-99 plume in a conventional well under static and pumped conditions. Specific conductance and technetium-99 concentrations were well correlated, and this enabled measurement of specific conductance to be used as a surrogate for technetium-99 concentration. Time-series measurements were collected during purging from three specific conductance probes installed in the well at 1.2, 3.1, and 4.9 m below the static water level in a 7.7-m-deep screened well. The vertical contaminant profile adjacent to the well in the aquifer was calculated using the concentration profile in the well during pumping, the pumping flow rate, and a wellbore flow and mixing model. The plume was found to be stratified in the aquifer—the highest concentrations occurred adjacent to the upper part of the screened interval. The purge and pump sample concentrations were 41% to 58% of the calculated peak concentration in the aquifer. Plume stratification in the aquifer adjacent to the well screen became more pronounced as pumping continued. Extended pumping may have partially reversed the effect of contaminant redistribution in the aquifer by wellbore flow and allowed the stratification of the plume to be more observable. It was also found that the vertical profile of contamination in the well under static (i.e., nonpumping conditions) was not representative of the profile in the aquifer. Thus, passive or micropurge sampling techniques, which sample the wellbore water at different depths, would not yield results representative of the aquifer in this well.  相似文献   

7.
Exposure from groundwater contamination to aquatic receptors residing in receiving surface water is dependent upon the rate of contaminated groundwater discharge. Characterization of groundwater fluxes is challenging, especially in coastal environments where tidal fluctuations result in transient groundwater flows towards these receptors. This can also be further complicated by the high spatial heterogeneity of subsurface deposits enhanced by anthropogenic influences such as the mixing of natural sediments and backfill materials, the presence of subsurface built structures such as sheet pile walls or even occurrence of other sources of contaminant discharge. In this study, the finite volume point dilution method (FVPDM) was successfully used to characterize highly transient groundwater flows and contaminant mass fluxes within a coastal groundwater flow system influenced by marked tides. FVPDM tests were undertaken continuously for more than 48 h at six groundwater monitoring wells, in order to evaluate groundwater flow dynamics during several tide cycles. Contaminant concentrations were measured simultaneously which allowed calculating contaminant mass fluxes. The study highlighted the importance of the aquifer heterogeneity, with groundwater fluxes ranging from 10−7 to 10−3 m/s. Groundwater flux monitoring enabled a significant refinement of the conceptual site model, including the fact that inversion of groundwater fluxes was not observed at high tide. Results indicated that contaminant mass fluxes were particularly higher at a specific monitoring well, by more than three orders of magnitude, than at other wells of the investigated aquifer. This study provided crucial information for optimizing further field investigations and risk mitigation measures.  相似文献   

8.
The vertical variation of drawdown around pumping wells generates an induced flow in the observation wells. A set of governing equations is presented to couple the drawdown variation and the vertical flux distribution in observation wells. A numerical example is performed to justify the governing equations and to verify the solution methods used by the simulation software WT. The example analyzes the effect of skin loss, wellbore storage, and vertical segmentation on the drawdown and induced flow in observation well during pumping. The evaluation of the Fairborn pumping test involves a vertically homogeneous and anisotropic water table aquifer, uniform well‐face drawdown conditions in the pumping well and simulation of the drawdown evolution in the observation well with and without the effect of induced flow. The computer calibrations resulted in small differences between the measured and simulated drawdown curves.  相似文献   

9.
In the Hanford Reach of the Columbia River, a thin layer of recent alluvium overlies the sedimentary formations that comprise the unconfined groundwater aquifer. Experimental and modelling studies have demonstrated that this alluvial layer exerts significant control on the exchange of groundwater and surface water (hydrologic exchange flux), and is associated with elevated levels of biogeochemical activity. This layer is also observed to be strongly heterogeneous, and quantifying the spatial distribution of properties over the range of scales of interest is challenging. Facies are elements of a sediment classification scheme that groups complex geologic materials into a set of discrete classes according to distinguishing features. Facies classifications have been used as a framework for assigning heterogeneous material properties to grid cells of numerical models of flow and reactive transport in subsurface media. The usefulness of such an approach hinges on being able to relate facies to quantitative properties needed for flow and reactive transport modelling, and on being able to map facies over the domain of interest using readily available information. Although aquifer facies have been used in various modelling contexts, application of this concept to riverbed sediments is relatively new. Here, we describe an approach for categorizing and mapping recent alluvial (riverbed) sediments based on the integration of diverse observations with numerical simulations of river hydrodynamics. The facies have distinct distributions of sediment texture that correspond to variations in hydraulic properties, and therefore provide a useful framework for assigning heterogeneous properties in numerical simulations of hydrologic exchange flows and biogeochemical processes.  相似文献   

10.
While recent studies have revealed that tidal fluctuations in an estuary significantly affect groundwater flows and salt transport in the riparian zone, only seawater salinity in the estuary has been considered. A numerical study is conducted to investigate the influence of estuarine salinity variations on the groundwater flow and salt dynamics in the adjacent aquifer to extend our understanding of these complex and dynamic systems. Tidal salinity fluctuations (synchronous with estuary stage) were found to alter the magnitude and distribution of groundwater discharge to the estuary, which subsequently impacted on groundwater salinity patterns and residence times, especially in the riparian zone. The effects of salinity fluctuations were not fully captured by adopting a constant, time-averaged estuarine salinity. The modelling analysis also included an assessment of the impact of a seasonal freshwater flush in the estuary, similar to that expected in tropical climates (e.g. mean estuary level during flood significantly greater than average), on adjacent groundwater flow and salinity conditions. The three-month freshwater flushing event temporarily disrupted the salt distribution and re-circulation patterns predicted to occur under conditions of constant salinity and tidal water level fluctuations in the estuary. The results indicate that the salinity variations in tidal estuaries impact significantly on estuary–aquifer interaction and need to be accounted for to properly assess salinity and flow dynamics and groundwater residence times of riparian zones.  相似文献   

11.
Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 µg/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 µg/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulic-conductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 µg/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 µg/L over a 20-year period.  相似文献   

12.
Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low‐cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%.  相似文献   

13.
Infiltrating river water carries the temperature signal of the river into the adjacent aquifer. While the diurnal temperature fluctuations are strongly dampened, the seasonal fluctuations are much less attenuated and can be followed into the aquifer over longer distances. In one-dimensional model with uniform properties, this signal is propagated with a retarded velocity, and its amplitude decreases exponentially with distance. Therefore, time shifts in seasonal temperature signals between rivers and groundwater observation points may be used to estimate infiltration rates and near-river groundwater velocities. As demonstrated in this study, however, the interpretation is nonunique under realistic conditions. We analyze a synthetic test case of a two-dimensional cross section perpendicular to a losing stream, accounting for multi-dimensional flow due to a partially penetrating channel, convective-conductive heat transport within the aquifer, and heat exchange with the underlying aquitard and the land surface. We compare different conceptual simplifications of the domain in order to elaborate on the importance of different system elements. We find that temperature propagation within the shallow aquifer can be highly influenced by conduction through the unsaturated zone and into the underlying aquitard. In contrast, regional groundwater recharge has no major effect on the simulated results. In our setup, multi-dimensionality of the flow field is important only close to the river. We conclude that over-simplistic analytical models can introduce substantial errors if vertical heat exchange at the aquifer boundaries is not accounted for. This has to be considered when using seasonal temperature fluctuations as a natural tracer for bank infiltration.  相似文献   

14.
15.
Transient storage of floodwaters in aquifers is known to attenuate peak flows in rivers and drive subsurface dissolution. Transient aquifer storage could be enhanced in watersheds overlying karst aquifers where caves facilitate surface and groundwater exchange. Few studies, however, have examined controls on, or magnitudes of, transient aquifer storage or flood peak attenuation in karstic watersheds. Here we evaluate flood peak attenuation with multiple linear regression analyses of 10 years of river and groundwater data from the Suwannee River, which flows over the karstic upper Floridan aquifer in north-central Florida and experiences frequent flooding. Regressions show antecedent river stage exerts the dominant control on magnitudes of transient aquifer storage, with recharge and time to peak having secondary controls. Specifically, low antecedent stages result in larger magnitudes of transient aquifer storage and thus greater flood attenuation than conditions of elevated antecedent stage. These findings suggest subsurface weathering, including cave formation and enlargement, caused by transient aquifer storage could occur on a more frequent basis in aquifers where groundwater table elevation is lowered due to anthropogenic or climatic influences. Our work also shows that measures of groundwater table elevation prior to an event could be used to improve predictive flood models. © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.  相似文献   

17.
Understanding the nature of communication between aquifers can be challenging when using traditional physical and geochemical groundwater sampling approaches. This study uses two multiport wells completed within Edwards and Trinity aquifers in central Texas to determine the degree of groundwater inter‐flow between adjacent aquifers. Potentiometric surfaces, hydraulic conductivities, and groundwater major ion concentrations and Sr isotope values were measured from multiple zones within three hydrostratigraphic units (Edwards and Upper and Middle Trinity aquifers). Physical and geochemical data from the multiport wells were combined with historical measurements of groundwater levels and geochemical compositions from the region to characterize groundwater flow and identify controls on the geochemical compositions of the Edwards and Trinity aquifers. Our results suggest that vertical groundwater flow between Edwards and Middle Trinity aquifers is likely limited by low permeability, evaporite‐rich units within the Upper and Middle Trinity. Potentiometric surface levels in both aquifers vary with changes in wet vs. dry conditions, indicating that recharge to both aquifers occurs through distinct recharge areas. Geochemical compositions in the Edwards, Upper, and Middle Trinity aquifers are distinct and likely reflect groundwater interaction with different lithologies (e.g., carbonates, evaporites, and siliceous sediments) as opposed to mixing of groundwater between the aquifers. These results have implications for the management of these aquifers as they indicate that, under current conditions, pumping of either aquifer will likely not induce vertical cross‐formational flow between the aquifers. Inter‐flow between the Trinity and the Edwards aquifers, however, should be reevaluated as pumping patterns and hydrogeologic conditions change.  相似文献   

18.
Variations in floodplain channel water levels and valley floor groundwater levels (measured in piezometers and boreholes) are examined at selected points along the course of the River Lambourn, a chalk river in southern England. A local alluvial gravel aquifer in the valley bottom is associated with numerous small wetlands that extend over much of the river's perennial profile. Variations in hydraulic gradient between local borehole levels and/or floodplain channel water levels are described for three sites in the seasonal section of the channel at Bockhampton, East Garston and West Shefford. The results indicate that observed groundwater levels are closely associated with flows from discrete springs at the margins of the channel and floodplain. However, as the floodplain widens and the alluvial gravel aquifer increases in size, the gravel aquifer accounts for a substantial down-valley component of groundwater flow with a diffuse vertical water flux. In the lower catchment, the exchange of flows between the gravel aquifer and the river enables some attenuation of floodplain water-table variability, providing a stable hydrological regime for valley-bottom wetlands. Catchment controls upon the local, valley-bottom, wetland regime are demonstrated with the application of a simple groundwater model developed using MODFLOW. The model is used to simulate groundwater discharge to the river in the upper and lower catchment, in addition to the water level regime at selected points in the valley bottom in the lower catchment. The results demonstrate the importance of taking catchment-scale water flow into account when managing isolated wetlands in a permeable catchment.  相似文献   

19.
Stream–aquifer interaction plays a vital role in the water cycle, and a proper study of this interaction is needed for understanding groundwater recharge, contaminants migration, and for managing surface water and groundwater resources. A model‐based investigation of a field experiment in a riparian zone of the Schwarzbach river, a tributary of the Rhine River in Germany, was conducted to understand stream–aquifer interaction under alternative gaining and losing streamflow conditions. An equivalent streambed permeability, estimated by inverting aquifer responses to flood waves, shows that streambed permeability increased during infiltration of stream water to aquifer and decreased during exfiltration. Aquifer permeability realizations generated by multiple‐point geostatistics exhibit a high degree of heterogeneity and anisotropy. A coupled surface water groundwater flow model was developed incorporating the time‐varying streambed permeability and heterogeneous aquifer permeability realizations. The model was able to reproduce varying pressure heads at two observation wells near the stream over a period of 55 days. A Monte Carlo analysis was also carried out to simulate groundwater flow, its age distribution, and the release of a hypothetical wastewater plume into the aquifer from the stream. Results of this uncertainty analysis suggest (a) stream–aquifer exchange flux during the infiltration periods was constrained by aquifer permeability; (b) during exfiltration, this flux was constrained by the reduced streambed permeability; (c) the effect of temporally variable streambed permeability and aquifer heterogeneity were found important to improve the accurate capture of the uncertainty; and (d) probabilistic infiltration paths in the aquifer reveal that such pathways and the associated prediction of the extent of the contaminant plume are highly dependent on aquifer heterogeneity.  相似文献   

20.
A new approach to locate transmissive fractures and decipher vertical borehole flow conditions in fractured crystalline bedrock wells is presented, which uses dissolved oxygen (DO) as a benign tracer. The method was tested in two fractured crystalline bedrock wells previously characterized by televiewer and flow meter logging under both ambient and stressed (slug test) conditions. The method entailed elevating wellbore DO concentrations by circulating water through showerheads or injection of compressed air. The DO dilution was used to locate inflowing fractures. Changes in the DO concentration with time were used to ascertain flow within the borehole and to locate outflowing fractures and stagnant zones. Flow rates were also estimated. Fractures detected by the method corresponded to those observed by televiewer logging and for the most part were comparable to flow meter results. Given the effectiveness, time‐efficiency and low cost, the method is a promising alternative to other methods currently in use to characterize transmissive fractures in wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号