首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbonatite lava and tephra are now well known. The only modern eruptive carbonatites, from Oldoinyo Lengai, Tanzania, are of alkali carbonatite, whereas all of the pre-modern examples are of calcite or dolomite. Chemical and stable isotope analyses were made of separate phases of Pliocene carbonatite tuffs of the Laetolil Beds in Tanzania and of Miocene carbonatite tuffs of the Kaiserstuhl in Germany in order to understand the reasons for this major difference.The Laetolil Beds contain numerous carbonatite and melilitite-carbonatite tuffs. It is proposed that the carbonatite ash was originally of alkali carbonate composition and that the alkali component was dissolved, leaving a residuum of calcium carbonate. The least recrystallized melilitite-carbonatite tuff contains early-deposited calcite cement and calcite pseudomorphs after nyerereite (?) that have contents of strontium and barium and 18O and 13C values suggestive of incomplete chemical and isotopic exchange during alteration and replacement of alkali carbonatite ash.Carbonatite tuffs of the Kaiserstuhl contain globules composed of calcite phenocrysts and microphenocrysts in a groundmass of calcite with a small amount of clay, apatite, and magnetite. The SrO contents of phenocrysts, microphenocrysts, and groundmass calcite average 0.90, 1.42, and 0.59 percent, respectively. The average 18O and 13C values of globules (+14.3 and –9.0, respectively) fall between those of coarse-grained intrusive Kaiserstuhl carbonatite (avg. +6.6, –5.8) and those of low-temperature calcite cement in the carbonatite tuffs (+21.8, –14.9). The phenocrysts and microphenocrysts are primary magmatic calcite, but several features indicate that the groundmass has been recrystallized and altered in contact with meteoric water, resulting in weathering of silicate to clay, leaching of strontium, and isotopic exchange. The weight of evidence favors an original high content of alkali carbonatite in the groundmass, with recrystallization following leaching of the alkalies.  相似文献   

2.
The carbonatite at Magnet Cove, Arkansas, USA contains a great variety and abundance of magmatic and hydrothermal inclusions that provide an informative, though fragmentary, record of the original carbonatite melt and of late hydrothermal solutions which permeated the complex in postmagmatic time. These inclusions were studied by optical and scanning electron microscopy. Primary magmatic inclusions in monticellite indicate that the original carbonatite melt contained approximately 49.7 wt% CaO, 16.7% CO2, 15.7% SiO2, 11.4% H2O, 4.4% FeO+Fe2O3, 1.1% P2O5 and 1.0% MgO. The melt was richer in SiO2 and iron oxides than the carbonatite as now exposed; this is attributed to crystal settling and relative enrichment of calcite at shallower levels. The density of the carbonatite melt as revealed by the magmatic inclusions was approximately 2.2–2.3 g/cc. Such a light melt should separate rapidly from any denser parent material and could be driven forcibly into overlying crustal rocks by buoyant forces alone. Fluid inclusions in apatite suggest that a separate (immiscible) phase composed of supercritical CO2 fluid of low density coexisted with the carbonatite magma, but the inclusion record in this mineral is inconclusive with respect to the nature of any other coexisting fluids. Maximum total pressure during CO2 entrapment was about 450 bars, suggesting depths of 1.5 km or less for apatite crystallization and supporting earlier proposals of a shallow, subvolcanic setting for the complex. Numerous secondary inclusions in the Magnet Cove calcite contain an intriguing variety of daughter minerals including some 19 alkali, alkaline earth and rare earth carbonates, sulfates and chlorides few of which are known as macroscopic phases in the complex. The exotic fluids from which the daughter minerals formed are inferred to have cooled and diluted through time by progressive mixing with local groundwaters. These fluids may be responsible for certain late veins and elemental enrichments associated with the complex.  相似文献   

3.
Three different types of carbonatite magma may be recognized in the Cambrian Fen complex, S.E. Norway: (1) Peralkaline calcite carbonatite magma derived from ijolitic magma; (2) Alkaline magnesian calcite carbonatite magma which yielded biotite-amphibole søvite and dolomite carbonatite; and (3) ferrocarbonatite liquids, related to (2) and/or to alkaline lamprophyre magma (damjernite). Apatite formed during the pre-emplacement evolution of (2) contains inclusions of calcite and dolomite, devitrified mafic silicate glass and aqueous fluid. All of these inclusions have a magmatic origin, and were trapped during a mid-crustal fractionation event (P4 kbars, T625° C), where apatite and carbonates precipitated from a carbonatite magma which coexisted with a mafic silicate melt. The fluid inclusions contain water, dissolved ionic species (mainly NaCl, with minor polyvalent metal salts) and in some cases CO2. Two main groups of fluid inclusions are recognized: Type A: CO2-bearing inclusions, of approximate molar composition H2O 88–90 CO 27-5 NaCl 5 (d=0.85–0.87 g/ cm3). Type B: CO2-free aqueous inclusions with salinities from 1 to 24 wt% NaCleq and densities betwen 0.7 and 1.0 g/cm3. More strongly saline type B inclusions (salinity ca. 35wt%, d=1.0 to 1.1 g/cm3) contain solid halite at room temperature and occur in overgrowths on apatite. Type A inclusions probably contain the most primitive fluid, from which type B fluids have evolved during fractionation of the magmatic system. Type B inclusions define a continuous trend from low towards higher salinities and densities and formed as a result of cooling and partitioning of alkali chloride components in the carbonatite system into the fluid phase. Available petrological data on the carbonatites show that the fluid evolution in the Fen complex leads from a regime dominated by juvenile CO2 + H2O fluids during the magmatic stage, to groundwater-derived aqueous fluids during post-magmatic reequilibration.  相似文献   

4.
Chemical composition of rock-forming minerals in Appalachian Siluro-Devonian granitoid intrusions, southwestern New Brunswick, was systematically determined by electron microprobe. The mineral chemical data together with petrographic examination was used to test magmatic equilibration and to constrain crystallization conditions, volatile exsolution, and fluorine-chlorine activity of fluids associated with these intrusions. Mineralogical distinction between Late Silurian to Early Devonian granodioritic to monzogranitic series (GMS) and Late Devonian granitic series (GS) rocks is evident, although both are subsolvus I-type to evolved I-type granitoids. Oxidized to reduced GMS rocks consist of quartz, plagioclase (An>10), K-feldspar, biotite, apatite, titanite, zircon, monazite, ± hornblende, ± pyroxene, ± magnetite, ± ilmenite, and ± sulfide. GS rocks comprise quartz, K-feldspar, plagioclase (An<10), mica group minerals, zircon, monazite, apatite, sulfide, ± ilmente, ± magnetite, ± topaz, ± columbite, and ± xenotime. Inter-intrusion and intra-intrusion variations in mineral chemistry are interpreted to reflect petrogenetic processes (e.g., assimilation and fractional crystallization) during granitoid evolution. Although magmatic equilibration among rock-forming minerals are disturbed by subsolidus hydrothermal processes, GMS rocks appear to have higher magmatic temperatures, variable levels of emplacement, a range of (i.e., reduced intrusions 10−16.7∼10−13.4 and oxidized intrusions 10−14.0∼10−10.5 bars), and relatively low f HF/f HCl ratios (10−3.0∼10−1.0) in exsolved fluids, compared to GS rocks. Reduced GMS intrusions bear higher gold potential and thus may be prospective targets for intrusion-related gold systems. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

5.
陕西省华阳川铀铌铅矿床是小秦岭成矿带中成矿特征最为独特的矿床,碳酸岩脉的破碎带是重要的成矿空间。未矿化的碳酸岩中矿物以方解石为主,其他矿物很少;发育铀矿化的碳酸岩脉中矿物种类繁多,大部分为方解石,其次为角闪石、金云母、榍石、褐帘石、铌钛铀矿、重晶石、磷灰石、石英、磁铁矿、碱性长石等矿物。碳酸岩的LREE含量异常高,δ13CV-PDB和δ18OV-SMOW值显示典型的火成碳酸岩特征。基于碳酸岩脉的Sr、Nd、Pb同位素比值(87Sr/86Sr-206Pb/204Pb、207Pb/204Pb-206Pb/204Pb-143Nd/144Nd-87Sr/86Sr)的关系图,初步判断华阳川铀铌铅碳酸岩脉是源于EMI的碱性硅酸盐-碳酸盐熔体-溶液结晶分异的产物。  相似文献   

6.
Summary The Speewah fluorite deposit (>2.28Mt at 25.5% CaF2) is sited adjacent to the crustal-scale Greenvale Fault on the western side of the Halls Creek Orogen, in the East Kimberley region of Western Australia. Host rocks are Palaeoproterozoic sedimentary rocks, dolerite and granophyre, Early Cambrian basalt, and the Yungul carbonatite. The deposit comprises mainly fluorite–quartz veins associated with lesser barite, sulfides and calcite, controlled by NNE–SSW and N–S brittle faults and fractures. Cross-cutting field relationships indicate that the fluorite veins were deposited post Early Cambrian.Fluorite–quartz vein textures, including colloform banding and comb texture, combined with microthermometric data from primary fluid inclusions, indicate that fluorite was deposited by the incremental infill of open-space structures in an epizonal, and probably epithermal, environment (<160°C) from complex, Li–Ca–Mg-rich, highly saline ore-fluids.The Yungul carbonatite and intimately-associated replacement-type fluorite have similar levels of REE enrichment and identical chondrite-normalised HREE patterns. Samarium and neodymium isotopic analyses of the fluorite indicate extreme differentiation of the 147Sm/144Nd ratio, from 0.0709 to 0.6918. These Sm–Nd isotopic data correspond to a mineral isochron with an age of 122±24Ma, interpreted to represent the age of fluorite deposition.Based on the potentially magmatic fluid composition, the replacement-type fluorite within the carbonatite, the similar HREE patterns of fluorite and carbonatite, and direct, if imprecise, isotopic dating of the fluorite, which confirms that fluorite mineralization is younger than the Early Cambrian basalts, the Speewah fluorite deposit is interpreted to be genetically related to the Yungul carbonatite. The large fluorite resource cannot have been derived from the exposed, low-volume carbonatite dyke. Rather, it must have been sourced from a larger carbonatite body at depth, whose presence is implied from basement-derived xenocrystic zircons in the Yungul carbonatite.  相似文献   

7.
The variant rock types of an Alkaline-Carbonatite Complex (ACC) comprising alkali pyroxenite, nepheline syenite, phoscorite, carbonatite, syenitic fenite and glimmerite along with REE and Nb-mineralization are found at different centres along WNW-ESE trending South Purulia Shear Zone (SPSZ) in parts of Singhbhum Crustal Province. The ACC occurs as intrusions within the Mesoproterozoic Singhbhum Group of rocks. Alkali pyroxenite comprises of aegirine augite, magnesiotaramite, magnesiokatophorite as major constituents. Pyrochlore and eucolite are ubiquitous in nepheline syenite. Phoscorite contains fluorapatite, dahllite, collophane, magnetite, hematite, goethite, phlogopite, calcite, sphene, monazite, pyrochlore, chlorite and quartz. Coarse fluorapatite shows overgrowth of secondary apatite (dahllite). Secondary apatite is derived from primary fluorapatite by solution and reprecipitation. The primary fluorapatite released REE to crystallize monazite grains girdling around primary apatite. Carbonatite is composed dominantly of Srcalcite along with dolomite, tetraferriphlogopite, phlogopitic biotite, aegirine augite, richterite, fluorapatite, altered magnetite, sphene and monazite. The minerals comprising of the carbonatite indicate middle stage of carbonatite development. Fenite is mineralogically syenite. Glimmerite contains 50–60% tetraferriphlogopite. An alkali trend in the evolution of amphiboles (magnesiotaramite-magnesiokatophorite-richterite) and chinopyroxenes (aegirine augite, aegirine) during the crystallization of the suite of rocks is noted. Monazite is the source of REE in phoscorite and carbonatite. Fluorapatite has low contents of REE, PbO, ThO2 and UO2. Pyrochlore reflects Nb-mineralization in nepheline syenite and it is enriched in Na2O, CaO, TiO2, PbO and UO2. Pyrochlore containing UO2 (6.605%) and PbO (0.914%) in nepheline syenite has been chemically dated at 948 ± 24 Ma by EPMA.  相似文献   

8.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

9.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

10.
Oxygen isotope ratios of well-preserved brachiopod calcite and conodont apatite were used to reconstruct the palaeotemperature history of the Middle and Late Devonian. By assuming an oxygen isotopic composition of –1 V-SMOW for Devonian seawater, the oxygen isotope values of Eifelian and early Givetian brachiopods and conodonts give average palaeotemperatures ranging from 22 to 25 °C. Late Givetian and Frasnian palaeotemperatures calculated from 18O values of conodont apatite are close to 25 °C in the early Frasnian and increase to 32 °C in the latest Frasnian and early Famennian. Oxygen isotope ratios of late Givetian and Frasnian brachiopods are significantly lower than equilibrium values calculated from conodont apatite 18O values and give unrealistically warm temperatures ranging from 30 to 40 °C. Diagenetic recrystallization of shell calcite, different habitats of conodonts and brachiopods, as well as non-equilibrium fractionation processes during the precipitation of brachiopod calcite cannot explain the 18O depletion of brachiopod calcite. Moreover, the 18O depletion of brachiopod calcite with respect to equilibrium 18O values calculated from conodont apatite is too large to be explained by a change in seawater pH that might have influenced the oxygen isotopic composition of brachiopod calcite. The realistic palaeotemperatures derived from 18O apatite may suggest that biogenic apatite records the oxygen isotopic composition and palaeotemperature of Palaeozoic oceans more faithfully than brachiopod calcite, and do not support the hypothesis that the 18O/16O ratio of Devonian seawater was significantly different from that of the modern ocean.  相似文献   

11.
Summary The Shillong Plateau of northeastern India hosts four Early Cretaceous (105–107Ma) ultramafic-alkaline-carbonatite complexes (UACC), which have been associated with the Kerguelen plume igneous activity. Petrological and geochemical characteristics of one of these UACC, the Sung Valley, are presented. The Sung Valley UACC was emplaced in to the Proterozoic Shillong Group of rocks and consists of ultramafics (serpentinized peridotite, pyroxenite, and melilitolite), alkaline rocks (ijolite and nepheline syenite), and carbonatites. Serpentinized peridotite, pyroxenite, and ijolitic rocks form the major part of the complex, the others constitute less than 5% of the total volume. Ijolite and melilitolite intrude peridotite and pyroxenite, while nepheline syenite and carbonatite intrude the ultramafic rocks as well as ijolite. Mineralogically, the carbonatites are classified as calcite carbonatite with minor apatite, phlogopite, pyrochlore and ilmenite. The serpentinized peridotites are wehrlitic. Chemical compositions of the silicate rocks do not show a distinct co-genetic relationship amongst them, nor do they show any geochemical relationships with the carbonatites. No noticeable fractionation trend is observed on the chemical variation diagrams of these rocks. It is difficult to establish the genetic evolution of the Sung Valley UACC through fractional crystallization of nephelinitic magma or through immiscible liquids. On the basis of petrological and geochemical data and previously published isotopic results from these rocks, it is suggested that they have been derived from a primary carbonate magma generated by the low-degree melting of a metasomatized mantle peridotite.  相似文献   

12.
Burpala is a unique peralkaline pluton known to the world. Alkaline pegmatites of the pluton contain about 70 rare-metal minerals. A new scheme of rock crystallization is offered: shonkinite → nepheline syenite → alkali syenite → quartz syenite → vein rocks: mariupolite, rare-metal pegmatite, apatite-fluorite, and alkali granite. Investigation of fluid inclusions in fluorite from the apatite-fluorite rocks established the high temperatures (520–560°C) of homogenization of multiphase salt inclusions. Fluids from inclusions are dominated by hydrocarbonates and chlorides as anions and sodium and calcium as cations; microelements include strontium, barium, boron, iron, manganese, lithium, rubidium, and cesium, i.e., components characteristic of magmatogenic fluids. These rocks are analogous to foskorites of carbonatite complexes in the high calcium content, but calcite is replaced with fluorite along with other foskorite minerals such as apatite, magnetite, mica, and pyroxene.  相似文献   

13.
The paper presents the results from a reconnaissance investigation of carbonatites in a newly discovered alkaline complex in the Kola peninsula, Russia. The Kandaguba complex differs from other carbonatite plutons of the Kola alkaline province by (a) the absence of ultrabasic rocks, (b) widespread occurrence of nepheline-, cancrinite- and nepheline–cancrinite syenites and carbonatites and (c) presence of apatite–calcite ijolites and feldspar ijolites as separate intrusive phase. The Kandaguba carbonatites are notable for the predominance of late ferromagnesian varieties together with quartz and numerous accessory mineral species. The association of phosphates (monazite, gorseixite, goyazite, apatite), sulphides and tellurides (pyrite, sphalerite, galena, hessite), ilmenorutile, barite with quartz and ankerite is a remarkable feature of these carbonatites. The Kandaguba carbonatites are inferred to have been generated as the products of liquid immiscibility followed by differentiation of the carbonatite melt.  相似文献   

14.
对东秦岭地区河南嵩县一带进行地质调查,发现了一系列具有一定规模的含稀土碱性碳酸岩矿脉并在其中发现一种特殊的钡解石矿物。依据该钡解石主量元素组成,计算分子式为Ba_1._(04) Ca_0._(81)Sr_(0.14)(CO_3)_2,为锶钡解石,LA-ICP-MS分析表明其富Na、K、Mn、Pb、REE、Y等元素,稀土元素总量最高为4 080×10-6,总体表现为轻稀土元素富集、重稀土元素亏损。该矿物与常见于沉积岩中的钡解石存在显著差别。钡解石呈现出与霓辉石共生(钡解石正晶型,霓辉石围绕钡解石生长;霓辉石正晶型,钡解石围绕霓辉石生长),或与石英、方解石、磷灰石共生(它形)两种状态。早期方解石与钡解石共生,形成于碱性岩演化早期的碳酸盐与硅酸盐不混溶阶段;晚期方解石则以布丁状分布于钡解石和霓辉石中,为碳酸盐交代阶段产物。霓辉石、钾长石、钠长石、辉石、磷灰石、方解石、石英和钡解石共生的组合与已知火成碳酸岩的矿物组合相似。该区碳酸岩富集REE、Ba和Sr,与已知大型富稀土碳酸岩矿床(如牦牛坪稀土矿)特征一致。结合已发现矿脉地质特征,认为该区有较大的成矿潜力,为东秦岭地区寻找火成岩型稀土矿提供了依据。  相似文献   

15.
Recent exploration work in South Morocco revealed the occurrence of several carbonatite bodies, including the Paleoproterozoic Gleibat Lafhouda magnesiocarbonatite and its associated iron oxide mineralization, recognized here as iron-oxide-apatite (IOA) deposit type. The Gleibat Lafhouda intrusion is hosted by Archean gneiss and schist and not visibly associated with alkaline rocks. Metasomatized micaceous rocks occur locally at the margins of the carbonatite outcrop and were identified as glimmerite fenite type. Rare earth element (REE) and Nb mineralization is mainly linked to the associated IOA mineralization and is represented by monazite-(Ce) and columbite-(Fe) as major ore minerals. The IOA mineralization mainly consists of magnetite and hematite that usually contain large apatite crystals, quartz and some dolomite. Monazite-(Ce) is closely associated with fluorapatite and occurs as inclusions within the altered parts of apatite and along cracks or as separate phases near apatite. Monazite shows no zonation patterns and very low Th contents (<0.4 wt%), which would be beneficial for commercial extraction of the REE and which indicates monazite formation from apatite as a result of hydrothermal volatile-rich fluids. Similar monazite-apatite mineralization and chemistry also occurs at depth within the carbonatite, although the outcropping carbonatite is barren, suggesting an irregular REE ore distribution within the carbonatite body. The barren carbonatite contains some tiny unidentified secondary Nb-Ta-U phases, synchysite and monazite. Niobium mineralization is commonly represented by anhedral minerals of columbite-(Fe) which occur closely associated with magnetite-hematite and host up to 78 wt% Nb2O5, 7 wt% Ta2O5 and 1.6 wt% Sc2O3. This association may suggest that columbite-(Fe) precipitated by an interaction of Nb-rich fluids with pre-existing Fe-rich minerals or as pseudomorphs after pre-existing Nb minerals like pyrochlore. Our results most strongly suggest that the studied mineralization is economically important and warrants both, further research and exploration with the ultimate goal of mineral extraction.  相似文献   

16.
Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na–K–Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite–monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900–1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C–O–H–S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5–10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.  相似文献   

17.
Summary Dykes of carbonate rocks, that cut gneisses in the Lowder-Mudiah area of southern Yemen, consist of dolomite and/or calcite with or without apatite, barite and monazite. Petrographic observations, mineralogical, XRF and ICP-MS analyses reveal that some of the carbonate rocks are derived from sedimentary protoliths, whereas others are magmatic calcio- and magnesio-carbonatites some of which are mineralized with barite-monazite. The interbanded occurrence and apparent contemporary emplacement of these different rock types within individual dykes, backed by Sr–Nd isotope evidence, are interpreted to show that intrusion of mantle-derived carbonatite magma was accompanied by mobilization of crustal marbles. That took place some 840Ma ago but the REE-mineralization is dated at ca. 400Ma.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s00710-004-0056-2  相似文献   

18.
The Grønnedal-Ika complex is dominated by layered nephelinesyenites which were intruded by a xenolithic syenite and a centralplug of calcite to calcite–siderite carbonatite. Aegirine–augite,alkali feldspar and nepheline are the major mineral phases inthe syenites, along with rare calcite. Temperatures of 680–910°Cand silica activities of 0·28–0·43 weredetermined for the crystallization of the syenites on the basisof mineral equilibria. Oxygen fugacities, estimated using titanomagnetitecompositions, were between 2 and 5 log units above the fayalite–magnetite–quartzbuffer during the magmatic stage. Chondrite-normalized REE patternsof magmatic calcite in both carbonatites and syenites are characterizedby REE enrichment (LaCN–YbCN = 10–70). Calcite fromthe carbonatites has higher Ba (5490 ppm) and lower HREE concentrationsthan calcite from the syenites (54–106 ppm Ba). This isconsistent with the behavior of these elements during separationof immiscible silicate–carbonate liquid pairs. Nd(T =1·30 Ga) values of clinopyroxenes from the syenites varybetween +1·8 and +2·8, and Nd(T) values of whole-rockcarbonatites range from +2·4 to +2·8. Calcitefrom the carbonatites has 18O values of 7·8 to 8·6and 13C values of –3·9 to –4·6. 18Ovalues of clinopyroxene separates from the nepheline syenitesrange between 4·2 and 4·9. The average oxygenisotopic composition of the nepheline syenitic melt was calculatedbased on known rock–water and mineral–water isotopefractionation to be 5·7 ± 0·4. Nd and C–Oisotope compositions are typical for mantle-derived rocks anddo not indicate significant crustal assimilation for eithersyenite or carbonatite magmas. The difference in 18O betweencalculated syenitic melts and carbonatites, and the overlapin Nd values between carbonatites and syenites, are consistentwith derivation of the carbonatites from the syenites via liquidimmiscibility. KEY WORDS: alkaline magmatism; carbonatite; Gardar Province; liquid immiscibility; nepheline syenite  相似文献   

19.
New experimental data in CaO-MgO-SiO2-CO2 at 1 GPa define the vapor-saturated silicate-carbonate liquidus field boundary involving primary minerals calcite, forsterite and diopside. The eutectic reaction for melting of model calcite (1% MC)-wehrlite at 1 GPa is at 1100 °C, with liquid composition (by weight) 72% CaCO3 (CC), 9% MgCO3 (MC), and 18% CaMgSi2O6 (Di). These data combined with previous results permit construction of the isotherm-contoured vapor-saturated liquidus surface for the calcite/dolomite field, and part of the adjacent forsterite and diopside fields. Nearly pure calcite crystals in mantle xenoliths cannot represent equilibrium liquids. We recently determined the complete vapor-saturated liquidus surface between carbonates and model peridotites at 2.7 GPa; the peritectic reaction for dolomite (25% MC)-wehrlite at 2.7 GPa occurs at 1300 °C, with liquid composition 60% CC, 29% MC, and 11% Di. The liquidus field boundaries on these two surfaces provide the road-map for interpretation of magmatic processes in various peridotite-CO2 systems at depths between the Moho and about 100 km. Relationships among kimberlites, melilitites, carbonatites and the liquidus phase boundaries are discussed. Experimental data for carbonatite liquid protected by metasomatic wehrlite have been reported. The liquid trends directly from dolomitic towards CaCO3 with decreasing pressure. The 1.5 GPa liquid contains 87% CC and 4% Di, much lower in silicate components than our phase boundary. However, the liquids contain approximately the same CaCO3 (90 ± 1 wt%) in terms of only carbonate components. For CO2-bearing mantle, all magmas at depth must pass through initial dolomitic compositions. Rising dolomitic carbonatite melt will vesiculate and may erupt as primary magmas through cracks from about ˜70 km. If it percolates through metasomatic wehrlite from 70 km toward the Moho at 35–40 km, primary calcic siliceous carbonatite magma can be generated with silicate content at least 11–18% (70–40 km) on the silicate-carbonate boundary. Received: 22 June 1998 / Accepted: 7 July 1999  相似文献   

20.
Abstract Granulite facies marbles from the Upper Calcsilicate Unit of the Reynolds Range, central Australia, contain metre-scale wollastonite-bearing layers formed by infiltration of water-rich (XCO2= 0.1–0.3) fluids close to the peak of regional metamorphism at c. 700° C. Within the wollastonite marbles, zones that contain <10% wollastonite alternate on a millimetre scale with zones containing up to 66% wollastonite. Adjacent wollastonite-free marbles contain up to 11% quartz that is uniformly distributed. This suggests that, although some wollastonite formed by the reaction calcite + quartz = wollastonite + CO2, the wollastonite-rich zones also underwent silica metasomatism. Time-integrated fluid fluxes required to cause silica metasomatism are one to two orders of magnitude higher than those required to hydrate the rocks, implying that time-integrated fluid fluxes varied markedly on a millimetre scale. Interlayered millimetre -to centimetre-thick marls within the wollastonite marbles contain calcite + quartz without wollastonite. These marls were probably not infiltrated by significant volumes of water-rich fluids, providing further evidence of local fluid channelling. Zones dominated by grandite garnet at the margins of the marl layers and marbles in the wollastonite-bearing rocks probably formed by Fe metasomatism, and may record even higher fluid fluxes. The fluid flow also reset stable isotope ratios. The wollastonite marbles have average calcite (Cc) δ18O values of 15.4 ± 1.6% that are lower than the average δ18O(Cc) value of wollastonite-free marbles (c. 17.2 ± 1.2%). δ13C(Cc) values for the wollastonite marbles vary from 0.4% to as low as -5.3%, and correlations between δ18O(Cc) and δ13C(Cc) values probably result from the combination of fluid infiltration and devolatilization. Fluids were probably derived from aluminous pegmatites, and the pattern of mineralogical and stable isotope resetting implies that fluid flow was largely parallel to strike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号