首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lime softening produces an estimated 10,000 metric tons of dry drinking water treatment wastes (DWTW) per year, costing an estimated one billion dollars annually for disposal worldwide. Lime softening wastes have been investigated for reuse as internal curing agents or supplementary cementitious materials in concrete as well as a high-capacity sorbent for heavy metal removal. Lead, cadmium, and zinc are common heavy metals in groundwater contaminated by mine tailings. Cement-based filter media (CBFM) are a novel material-class for heavy metal remediation in groundwater. This study investigated the incorporation of DWTW as a recycled, low-cost additive to CBFM for the removal of lead, cadmium, and zinc. Jar testing at three different metal concentrations and breakthrough column testing using synthetic groundwater were performed to measure removal capacity and reaction kinetics. Jar testing results show as DWTW content increases at low concentrations, removal approaches 100% but at high metal concentrations removal decreases due to saturation or exhaustion of the removal mechanisms. Removal occurs through the formation of metal carbonate precipitates, surface sorption, and ion exchange with calcium according to the preferential series Pb+2 > Zn+2 > Cd2+. Removal kinetics were also measured through column testing and exceeded estimated calculations derived from batch jar testing isotherms due to the large formation of oolitic metal carbonates. Lead, cadmium, and zinc was concentrated in the column precipitates from 0.29, 0.23, and 20.0 μg/g in the influent solution to approximately 200, 130, 14,000 μg/g in the reacted DWTW-CBFM. The control and DWTW-CBFM columns had statically similar removal for zinc and lead. In the DWTW-CBFM, cadmium had decreased removal of approximately 25% due to proportionately decreased hydroxide content from cement replacement with 25% DWTW. This study shows the potential for DWTW as an enhancement to CBFM, thereby valorizing an otherwise waste material. Furthermore, the concentrative abilities of CBFM through precipitate and oolitic mineral formation could provide a minable waste product and close the waste-product cycle for DWTW.  相似文献   

2.
The effectiveness of different remediation procedures for decreasing the amount of TPH (total petroleum hydrocarbons) in contaminated groundwater was evaluated at the site of a former refinery. The investigations were carried out on samples taken from several gravel based HSSF (horizontal subsurface flow) constructed wetlands (CW) which differed in relation to their filter material additives (no additive, charcoal, and ferric oxides additives) and examined the potential effect of these additives on the overall treatment efficiency. Samples of the following gravel based HSSF CW were investigated. No filter additive (system A), 0.1% activated carbon (system B), 0.5% iron(III) hydroxide (system C), and the reference (system D). Systems A–C were planted with common reed (Phragmites australis), whereas system D remained unplanted. In addition, the influence of seasonal conditions on the reduction of these hydrocarbons and the correlation between the amounts of TPH and BTEX (benzene, toluene, ethylbenzene, and xylene isomers), on the one hand, and methyl tert‐butyl ether, on the other, was investigated. The study was carried out by using a modified GC‐FID approach and multivariate methods. The investigations carried out in the first year of operation demonstrated that the effectiveness of the petroleum hydrocarbon removal was highest and reached a level of 93 ± 3.5% when HSSF filters with activated carbon as a filter additive were used. This remediation method allowed the petroleum hydrocarbon content to be reduced independently of seasonal conditions. The correlation between the reduction of TPH and BTEX was found to be R = 0.8824. Using this correlation coefficient, the time‐consuming determination of the BTEX content was no longer necessary.  相似文献   

3.
A new probabilistic remediation simulation package, PREMChlor, was used to simulate the effect of contaminant source and plume remediation at a site contaminated by trichloroethylene (TCE). First, the PREMChlor model was calibrated to the plume using a deterministic approach to represent the site conditions prior to remediation activities, which occurred in 1999. The calibrated model was then used in a probabilistic mode to conduct a simulation of the effects of field source and plume remediation activities during the period after 1999. This probabilistic simulation considers uncertainties in seven key parameters: the initial source mass and concentration, the relationship between source mass removal and source concentration, the effectiveness of the source remediation, the groundwater velocity, the background plume degradation rate, and the plume treatment effectiveness. The simulation results compare favorably with the observed data collected after 1999, and show the influence of the remediation efforts on the plume.  相似文献   

4.
5.
6.
7.
Private wells are the source of drinking water for approximately 15% of households in the United States, but these wells are not regulated or monitored by government agencies. The well waters can contain arsenic, a known carcinogen that occurs in groundwater throughout the nation at concentrations that can exceed the Maximum Contaminant Level defined by the U.S. Environmental Protection Agency (10 ppb). In order to reduce arsenic exposure, homeowners can either rely on bottled water for drinking or install in-house water treatment systems for arsenic removal. Here, we document the arsenic levels associated with these options. We examined 24 different major bottled water brands and found that all have arsenic levels <1.5 parts per billion (ppb), and more than half have levels below our measurement detection limit of 0.005 ppb. For in-house treatment systems, we examined the performance of arsenic removal by point-of-use reverse osmosis filtration, and by whole-house and point-of-use filters containing granulated ferric oxide. Our results show that long-term (2 years) filtration with granulated ferric oxide reduced arsenic in well water from an initial concentration of 4 to 9 ppb down to <0.005 ppb, validating this technology as an effective form of arsenic remediation for private homes.  相似文献   

8.
Groundwater contamination with iron (Fe) and manganese (Mn) is directly related to drink water safety. It remains challenging to simultaneously remove Fe and Mn from groundwater by conventional physical and chemical methods. Willows (Salix spp.) show promise for co-phytofiltration of Mn and Fe from groundwater. Here, a floating culture system was developed using willows for co-phytofiltration of Mn and Fe from simulated groundwater. Genotypic differences of willows were evaluated in terms of their tolerance to and accumulation of a mixture of Fe and Mn. The results showed that the growth responses of eight genotypes significantly differed to a mixture of Fe and Mn, ranging from growth inhibition to enhancement. Tolerance index analysis further indicated wide variation in the responses of willows. Tissue-specific analysis also revealed genotypic variation in the capacity of willows for translocation and accumulation of Fe and Mn. Compared with other genotypes, SB7 (Salix babylonica) and J842 (S. babylonica × Salix alba) demonstrated higher co-phytofiltration potentials for Fe and Mn based on tolerance, tissue metal concentrations, and shoot metal contents. Thus, both SB7 and J842 are candidates for co-phytofiltration of Fe and Mn from groundwater.  相似文献   

9.
It is often necessary to collect core samples that are not accommodated by standard sampling protocols, This paper describes innovative techniques using existing technology that enables researchers to collect samples at upgradient and downgradient interfaces from a zero-valent iron wall so that the most active zone of chromium remediation and biologic activity can be studied. It describes the methodology used and how the direct-push technology was adapted so that the desired samples could be collected. It also explains why new methods were needed and demonstrates the results of these efforts.  相似文献   

10.
11.
Recently, increased industrial and agriculture activities have resulted in toxic metal ions, which has increased public concern about the quality of surface and groundwater. Various types of physical, biological, and chemical approaches have been developed to remove surface and groundwater metal ions contaminants. Among these practices, zero‐valent iron (ZVI) is the most studied reactive material for environmental clean‐up over the last two decade and so. Although ZVI can remove the contaminants even more efficiently than any other reactive materials. However, low reactivity due to its intrinsic passive layer, narrow working pH, and the loss of hydraulic conductivity due to the precipitation of metal hydroxides and metal carbonates limits its wide‐scale application. The aim of this work is to document properties, synthesis, and reaction mechanism of ZVI for the treatment of metal ions from the surface and groundwater in recent 10 years (2008–2018). So far, different modified techniques such as conjugation with support, bimetal alloying, weak magnetic field, and ZVI/oxidant coupling system have been developed to facilitate the use of ZVI in various environmental remediation scenarios. However, some challenges still remain to be addressed. Therefore, development and research in this field are needed to overcome or mitigate these limitations.  相似文献   

12.
A critical analysis of in situ chemical oxidation (ISCO) projects was performed to characterize situations in which ISCO is being implemented, how design and operating parameters are typically employed, and to determine the performance results being achieved. This research involved design of a database, acquisition and review of ISCO project information, population of the database, and analyses of the database using statistical methods. Based on 242 ISCO projects included in the database, ISCO has been used to treat a variety of contaminants; however, chlorinated solvents are by far the most common. ISCO has been implemented at sites with varied subsurface conditions with vertical injection wells and direct push probes being the most common delivery methods. ISCO has met and maintained concentrations below maximum contaminant levels (MCLs), although not at any sites where dense nonaqueous phase liquids (DNAPL) were presumed to be present. Alternative cleanup levels and mass reduction goals have also been attempted, and these less stringent goals are met with greater frequency than MCLs. The use of pilot testing is beneficial in heterogeneous geologic media, but not so in homogeneous media. ISCO projects cost $220,000 on average, and cost on average $94/yd3 of target treatment zone. ISCO costs vary widely based on the size of the treatment zone, the presence of DNAPL, and the oxidant delivery method. No case studies were encountered in which ISCO resulted in permanent reductions to microbial populations or sustained increases in metal concentrations in groundwater at the ISCO-treated site.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)‐containing minerals has been observed in both laboratory and field studies. These reactive iron minerals form under iron‐ and sulfate‐reducing conditions which are commonly found in permeable reactive barriers (PRBs), enhanced reductive dechlorination (ERD) treatment locations, landfills, and aquifers that are chemically reducing. The objective of this review is to synthesize current understanding of abiotic degradation of chlorinated solvents by reactive iron minerals, with special focus on how abiotic processes relate to groundwater remediation. Degradation of chlorinated solvents by reactive minerals can proceed through reductive elimination, hydrogenolysis, dehydrohalogenation, and hydrolysis reactions. Degradation products of abiotic reactions depend on degradation pathways and parent compounds. Some degradation products (e.g., acetylene) have the potential to serve as a signature product for demonstrating abiotic reactions. Laboratory and field studies show that various minerals have a range of reactivity toward chlorinated solvents. A general trend of mineral reactivity for degradation of chlorinated solvents can be approximated as follows: disordered FeS > FeS > Fe(0) > FeS2 > sorbed Fe2+ > green rust = magnetite > biotite = vermiculite. Reaction kinetics are also influenced by factors such as pH, natural organic matter (NOM), coexisting metal ions, and sulfide concentration in the system. In practice, abiotic reactions can be engineered to stimulate reactive mineral formation for groundwater remediation. Under appropriate site geochemical conditions, abiotic reactions can occur naturally, and can be incorporated into remedial strategies such as monitored natural attenuation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号