首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total dissolved gas pressure (PTDG) measurements are useful to measure accurate in situ dissolved gas concentrations in groundwater, but challenged by in-well degassing. Although in-well degassing has been widely observed, its cause(s) are not clear. We investigated the mechanism(s) by which gas-charged groundwater in a recently pumped well becomes degassed. Vertical PTDG and dissolved gas concentration profiles were monitored in the standing water column (SWC) of a groundwater well screened in a gas-charged aquifer for 7 days before and 15 days after pumping. Prior to pumping, PTDG values remained relatively constant and below calculated bubbling pressure (PBUB) at all depths. In contrast, significant increases in PTDG were observed at all depths after pumping was initiated, as fresh groundwater with elevated in situ PTDG values was pumped through the well screen. After pumping ceased, PTDG values decreased to below PBUB at all depths over the 15-day post-pumping period, indicating well degassing was active over this time frame. Vertical profiles of estimated dissolved gas concentrations before and after pumping provided insight into the mechanism(s) by which in-well degassing occurred in the SWC. During both monitoring periods, downward mixing of dominant atmospheric and/or tracer gases, and upwards mixing of dominant groundwater gases were observed in the SWC. The key mechanisms responsible for in-well degassing were (i) bubble exsolution when PTDG exceeded PBUB as gas-charged well water moves upwards in the SWC during recovery (i.e., hydraulic gradient driven convection), (ii) microadvection caused by the upward migration of bubbles under buoyancy, and (iii) long-term, thermally driven vertical convection.  相似文献   

2.
Karst spring measurements assess biogeochemical processes occurring within groundwater contributing areas to springs (springsheds) but can only provide aggregated information. To better understand spatially distributed processes that comprise these aggregated measures, we investigated aquifer denitrification evidence in groundwater wells (n = 16) distributed throughout a springshed in the Upper Floridan aquifer in northern Florida. Aquifer geochemistry, nitrate isotopes, and dissolved gases were compared against similar measurements at the spring outlet to evaluate spatial heterogeneity of denitrification evidence in relation to land surface–aquifer connectivity. Sample locations spanned spatial variation in recharge processes (i.e., diffuse vs. focused recharge) and proximity to sources of denitrification reactants (e.g., wetlands). Although no distinct spatial pattern in denitrification was uncovered, excess dissolved N2 gas measurements were only above detection in the unconfined springshed, with some evidence of a wetland proximity effect. Measured oxidation–reduction potential and dissolved oxygen poorly predicted denitrification, indicating that measured denitrification may be occurring upgradient from sampled wells. Despite dramatic spatial chemical heterogeneity across wells, mean values for recharge nitrate concentrations (0.02 to 5.56 mg N L?1) and excess N2 from aquifer denitrification (below detection to 1.37 mg N L?1) corresponded reasonably with mean spring outlet measurements for initial nitrate (0.78 to 1.36 mg N L?1) and excess N2 (0.15 to 1.04 mg N L?1). Congruence between groundwater and spring measurements indicates that combining sampling at the spring outlet and across the springshed is useful for understanding spatial aquifer denitrification. However, this approach would be improved with a high‐density sampling network with transects of wells along distinct groundwater flow paths.  相似文献   

3.
Drinking water supply in Lithuania is entirely based on groundwater. Wellfields of Vilnius develop intermorainic ca. 50 m deep (in average) aquifer which is locally contaminated by chlorinated hydrocarbons— volatile organic compounds (VOCs). Groundwater abstraction activates VOCs migration from an abandoned factory into the pumping wells of one wellfield named “Vingis.” However monitoring data testify that only traces of VOCs were detected on the territory of this factory. Subsequent studies revealed the “secret”: dense VOCs have migrated from the territory of the polluter and have accumulated in lowermost places of pumped aquifer inside the wellfield. An attempt to ensure low concentration of VOCs in pumped water manipulating by pumping rates of more or less contaminated abstraction wells was not effective. Finally, an acceptable concentration of VOCs in supplied drinking water was ensured by permanent pumping out of the most polluted groundwater from some abstraction wells of the wellfield and diverting this water to the Neris River.  相似文献   

4.
The total dissolved gas pressure (PTDG ) probe has been used in groundwater studies for over a decade, but rarely in assessing contaminant degradation, despite the many degradation reactions that produce or consume dissolved gases. Here we present three studies to demonstrate the application of PTDG measurements to groundwater experiencing contaminant degradation, with discussion of its benefits and limitations. The first study is a pilot‐scale laboratory experiment simulating dissolved ethanol contamination of an anaerobic sand aquifer. Continuous monitoring of PTDG showed the rapid onset of microbial hydrocarbon degradation via denitrification and fermentation. The subsequent formation of a gas phase was revealed when PTDG began mimicking the bubbling pressure (PG *; sum of hydrostatic and atmospheric pressure), fluctuating with atmospheric pressure. Some deviations of PTDG above PG * occurred also, which may hold promise for signalling substantial changes in the rate or type of degradation process (here, the onset of methanogenesis). In the second study, synoptic field measurements at a petroleum plume site demonstrated how elevated PTDG could identify wells with evidence of hydrocarbon degradation (denitrification and/or methanogenesis). And finally, combined field measurements of dissolved oxygen (DO) and PTDG in monitoring wells of a nitrate‐contaminated aquifer (Abbottsford‐Sumas) revealed areas where denitrification was likely occurring. Limitations to PTDG use identified in these studies included the masking of degradation processes by the presence of a gas phase, as when trapped following water table fluctuations or formed from rigorous degradation reactions, and confounded assessment of PTDG patterns from other natural or anthropogenic processes that can also influence groundwater PTDG .  相似文献   

5.
A crude‐oil spill occurred in 1979 when a pipeline burst near Bemidji, MN. In 1998, the pipeline company installed a dual‐pump recovery system designed to remove crude oil remaining in the subsurface at the site. The remediation from 1999 to 2003 resulted in removal of about 115,000 L of crude oil, representing between 36% and 41% of the volume of oil (280,000 to 316,000 L) estimated to be present in 1998. Effects of the 1999 to 2003 remediation on the dissolved plume were evaluated using measurements of oil thicknesses in wells plus measurements of dissolved oxygen in groundwater. Although the recovery system decreased oil thicknesses in the immediate vicinity of the remediation wells, average oil thicknesses measured in wells were largely unaffected. Dissolved‐oxygen measurements indicate that a secondary plume was caused by disposal of the pumped water in an upgradient infiltration gallery; this plume expanded rapidly immediately following the start of the remediation in 1999. The result was expansion of the anoxic zone of groundwater upgradient and beneath the existing natural attenuation plume. Oil‐phase recovery at this site was shown to be challenging, and considerable volumes of mobile and entrapped oil remain in the subsurface despite remediation efforts.  相似文献   

6.
Detection of free-phase gas (FPG) in groundwater wells is critical for accurate assessment of dissolved gas concentrations and the occurrence of FPG in the subsurface, with consequent implications for understanding groundwater contamination and greenhouse gas emissions. However, identifying FPG is challenging during routine groundwater monitoring and there is poor agreement on the best approach to detect the occurrence of FPG in groundwater. In this study, laboratory experiments in a water column were designed to mimic nonflowing and flowing conditions in a groundwater well to evaluate how the presence of FPG affects water pressure and commonly used continuous field parameters. The laboratory results were extrapolated to interpret field data at an abandoned exploration well with episodic release of free-gas CO2. The FPG effect on water pressure varied between flowing and nonflowing wells, and depending on whether the FPG was above or below the sensor. Electrical conductivity values were decreased and/or behaved erratically when FPG was present in the water column. Findings from this study have shown that the combined measurement of water pressure, electrical conductivity, and total dissolved gas pressure can provide information about the occurrence of FPG in groundwater wells. Measurement of these parameters at different depths can also provide information about relative depths and amounts of FPG within the well water column. This approach can be used for long-term monitoring of groundwater gases, managing gas-locking in production wells with gassy groundwater, and measuring fugitive greenhouse gas emissions from groundwater wells.  相似文献   

7.
The vertical portion of a shale gas well, known as the “tophole” is often drilled using an air‐hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3‐D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high‐pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre‐existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane.  相似文献   

8.
Bredehoeft J 《Ground water》2011,49(4):468-475
An aquifer, in a stream/aquifer system, acts as a storage reservoir for groundwater. Groundwater pumping creates stream depletion that recharges the aquifer. As wells in the aquifer are moved away from the stream, the aquifer acts to filter out annual fluctuations in pumping; with distance the stream depletion tends to become equal to the total pumping averaged as an annual rate, with only a small fluctuation. This is true for both a single well and an ensemble of wells. A typical growing season in much of the western United States is 3 to 4 months. An ensemble of irrigation wells spread more or less uniformly across an aquifer several miles wide, pumping during the growing season, will deplete the stream by approximately one-third of the total amount of water pumped during the growing season. The remaining two-thirds of stream depletion occurs outside the growing season. Furthermore, it takes more than a decade of pumping for an ensemble of wells to reach a steady-state condition in which the impact on the stream is the same in succeeding years. After a decade or more of pumping, the depletion is nearly constant through the year, with only a small seasonal fluctuation: ±10%. Conversely, stream depletion following shutting down the pumping from an ensemble of wells takes more than a decade to fully recover from the prior pumping. Effectively managing a conjunctive groundwater and surface water system requires integrating the entire system into a single management institution with a long-term outlook.  相似文献   

9.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

10.
华北地区部分井孔稀有气体异常研究   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了近年来华北地区宝龙等 3口井稀有气体的显著异常 ,并据其特征与井孔水位动态的关系 ,对稀有气体异常的成因进行了理论分析与实验研究。结果表明 ,水位下降 10 0mm ,岩层孔隙、裂隙中的气体体积膨胀 0 0 0 90 % (气体体积百分比 ,下同 )左右。由于地下水位大幅度下降 ,岩层孔隙压力减小 ,积聚在岩层孔隙、裂隙中的气体体积膨胀溢出 ,导致井孔地下水中稀有气体含量出现异常变化。这些异常是干扰因素所致 ,不是地震异  相似文献   

11.
Pumping test evaluation of stream depletion parameters   总被引:1,自引:0,他引:1  
Lough HK  Hunt B 《Ground water》2006,44(4):540-546
  相似文献   

12.
The desert of eastern Libya forms one of the most arid regions of the Sahara. The Great Man‐Made River Project (GMRP) was established. It transports millions of cubic meters of water a day from desert wellfields to the coastal cities, where over 80% of the population lives. The Tazerbo Wellfield is one of the wellfields designed within the GMRP, delivering water to the eastern coast of Libya through an underground pipe network. Tazerbo Wellfield consists of 108 production wells; each well was designed to pump 100 L/s. The planned total groundwater withdrawal from all wells is 1 million m3/d. The deep sandstone aquifer (Nubian sandstone) is covered by a thick mudstone‐siltstone aquitard and is being heavily pumped. The aquifer and fine‐grained sediments of the aquitard may be compacted resulting in land subsidence as a result of high exploitation. Local sinkholes have developed in the area of Tazerbo since the start of the pumping from the wellfield in 2004. These sinkholes have been caused mainly by lowering of the piezometric heads due to the withdrawal of groundwater. In this study, a hydrogeological investigation is presented about the effect of large groundwater pumping from the Nubian sandstone aquifer in Tazerbo Wellfield, SE Libya, based on physical parameters for 108 production wells and 23 observation wells.  相似文献   

13.
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre‐ and post‐drill sampling programs in the Appalachian Basin. These include an open‐system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct‐Fill VOA) and two alternative methods: (1) a semi‐closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct‐Fill VOA (open system) samples, and Inverted VOA (semi‐closed system) samples yielded lower concentrations. These results suggest that open and semi‐closed system sample collection methods are adequate for non‐effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.  相似文献   

14.
Laboratory evaluations of flowmeter response to flow in fractured-rock simulators are needed to improve understanding of data collected in field settings. The ability of flowmeters to accurately measure the velocity and direction of water flowing between parallel plates was used as a surrogate for instrument response in fractured-rock aquifers. A colloidal borescope flowmeter and a heat-pulse flowmeter were deployed in a fractured rock simulator with 4-inch and 6-inch inner-diameter, uncased wells with 0.39- and 1.0-inch fracture apertures and groundwater velocities from 35 to 975 ft/d. The colloidal borescope measurements and applied velocities were positively correlated in all wells and apertures (the coefficient of determination [r2] = 0.61–0.89) and most accurately measured direction at higher velocities. The mean directional error in colloidal borescope measurements was less than 17° in 6-inch wells and 31° in the 4-inch wells at velocities between 92 and 958 ft/d. Heat-pulse flowmeter measurements were 0.001 to 0.004 times less than applied rates and may indicate that water was moving around rather than through the instrument's integrated packer. The mean directional error of heat-pulse flowmeter measurements were about 18 and 42° in the 0.39- and 1.0-inch fractures, respectively, for groundwater velocities within the manufacturer's suggested range of application (0.5–100 ft/d). Measurements made at vertical increments and fracture positions in the well using the colloidal borescope indicate that laminar flow occurs within the central 50% of the fracture but measurements above or below are likely affected by eddy currents.  相似文献   

15.
Quantifying anthropogenic contributions to elemental cycles provides useful information regarding the flow of elements important to industrial and agricultural development and is key to understanding the environmental impacts of human activity. In particular, when anthropogenic fluxes reach levels large enough to influence an element's overall cycle the risk of adverse environmental impacts rises. While intensive groundwater pumping has been observed to affect a wide-range of environmental processes, the role of intensive groundwater extraction on global anthropogenic element cycles has not yet been characterized. Relying on comprehensive datasets of groundwater and produced water (groundwater pumped during oil/gas extraction) chemistry from the U.S. Geological Survey along with estimates of global groundwater usage, I estimate elemental fluxes from global pumping, consumptive use, and depletion of groundwater. I find that groundwater fluxes appreciably contribute to a number of elements overall cycles and thus these cycles were underestimated in prior studies, which did not recognize groundwater pumping's role. I also estimate elemental loadings to agricultural soils in the United States and find that in some regions, groundwater may provide a significant portion (more than 10%) of crop requirements of key nutrients (K, N). With nearly 40% of globally irrigated land under groundwater irrigation, characterizing nutrient and toxic element fluxes to these soils, which ultimately influence crop yields, is important to our understanding of agricultural production. Thus, this study improves our basic understanding of anthropogenic elemental cycles and demonstrates that quantification of groundwater pumping elemental fluxes provides valuable information about the potential for environmental impacts from groundwater pumping.  相似文献   

16.
The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ13C‐CH4 and δ2H‐CH4) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ13C‐CH4 and δ2H‐CH4 ranged from ?84.0‰ to ?58.3‰ and from ?246.5‰ to ?146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region.  相似文献   

17.
To enable a wider use of dissolved noble gas concentrations and isotope ratios in groundwater studies, we have developed an efficient and portable sampling device using a commercially available membrane contactor. The device separates dissolved gases from a stream of water and collects them in a small copper tube (6 mm in diameter and 100 mm in length with two pinch‐off clamps) for noble gas analysis by mass spectrometry. We have examined the performance of the sampler using a tank of homogeneous water prepared in the laboratory and by field testing. We find that our sampling device can extract heavier noble gases (Ar, Kr, and Xe) more efficiently than the lighter ones (He and Ne). An extraction time of about 60 min at a flow rate of 3 L/min is sufficient for all noble gases extracted in the sampler to attain equilibrium with the dissolved phase. The extracted gas sample did not indicate fractionation of helium (3He/4He) isotopes or other noble gas isotopes. Field performance of the sampling device was tested using a groundwater well in Vienna and results were in excellent agreement with those obtained from the conventional copper tube sampling method.  相似文献   

18.
There is concern about adverse impacts of natural gas (primarily methane) production on groundwater quality; however, data on trace element concentrations are limited. The objective of this study was to compare the distribution of trace elements in groundwater samples with and without dissolved methane in aquifers overlying the Barnett Shale (Hood and Parker counties, 207 samples) and the Haynesville Shale (Panola County, 42 samples). Both shales have been subjected to intensive hydraulic fracturing for gas production. Well clusters with high dissolved methane were previously found in these counties and are thought to be of natural origin. Overall, groundwater in these counties is of excellent quality with typically low elemental concentrations. Several statistical analyses strongly suggest that most trace element concentrations, generally at low background levels, are no higher and even reduced when dissolved methane is present. In addition, trace element concentrations are not correlated with distance to gas wells. The reduction in trace element concentrations is attributed to anaerobic microbial degradation of methane, is associated with a higher pH (>8.5), and, likely, with precipitation of carbonates and pyrite and formation of clays. Trace and other elements are likely incorporated within the precipitating mineral crystalline network or sorbed. High pH values are found throughout these high‐methane clusters (e.g., Parker‐Hood cluster), even in subregions where methane is not present, which is consistent with a pervasive natural origin of dissolved methane rather than a limited gas well source.  相似文献   

19.
Excessive groundwater withdrawal has caused severe land subsidence worldwide. The pore water pressure and the deformation of pumped hydrostratigraphic units are complex. A fully coupled three-dimensional numerical simulation was carried out for different pumping plans in this paper. When groundwater is pumped from a confined aquifer, the great compaction occurs in the pumped aquifer and its upper and lower adjacent aquitard units. Land subsidence is smaller and the area affected by land subsidence is greater when groundwater is pumped from the deeper confined aquifer. The pore water pressure in the pumped confined aquifer changes immediately with pumpage. In the adjacent aquitard units, however, the pore water pressure increases in the early pumping time and decreases in the early recharging time. The decrease in the pore water pressure vertically spreads from the interface between aquitard and pumped aquifer to the other surface of the aquitard. The pumped aquifer compacts and rebounds immediately with pumping and non-pumping or recharging actions, while the compaction and rebounding of the aquitard units clearly lag behind. The compaction of the adjacent aquitard unit first occurs near the interface between aquitard and pumped aquifer units, and the compaction zone spreads outward as the pumping goes on. The aquitards may expand vertically within some zones. Due to the inelastic deformation of soil skeleton, different pumping plans result in different land subsidence. For the same net pumpage, maximal land subsidence and horizontal displacement are the smallest for constant discharge and the greatest for recharge-discharge cycle.  相似文献   

20.
The electromagnetic borehole flowmeter (EBF) is finding increasing application as a method for measuring hydraulic conductivity (K) distributions. A recent paper details an experimental/theoretical study of the effect of in-well hydraulics on calculated K distributions based on EBF measurements (Dinwiddie et al. 1999). Results showed that minimizing head loss associated with flow through the meter was the key to producing accurate K values. Using the same experimental procedures, the previous study has been extended to develop data from a larger diameter (1 inch) EBF, and to determine if an EBF can be calibrated effectively without using an inflatable packer to force all flow through the meter annulus. Both experiments were aimed at producing low head loss conditions. Results show that overall calibration can be accomplished in the absence of a packer, which reduces head losses to nonmeasurable levels, and use of the 1-inch EBF with a packer reduces head losses by a factor of 16 when compared with the 0.5-inch EBF studied by Dinwiddie et al. (1999).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号