首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

2.
The precipitation of freshwater carbonates (tufa) along karstic rivers is enhanced by degassing of carbon dioxide (CO2) downstream of karstic springs. However, in most karstic springs CO2 degassing is not enough to force the precipitation of tufa sediments. Little is known about the role of dissolution of gypsum or dolomite in the hydrochemistry of these systems and how this affects the formation of tufa deposits. Here we present a monitoring study conducted over a year in Trabaque River (Spain). The river has typical karst hydrological dynamics with water sinking upstream and re‐emerging downstream of the canyon. Mixing of calcium–magnesium bicarbonate and calcium sulphate waters downstream of the sink enhances the dissolution of carbonates and potentially plays a positive role in the formation of tufa sediments. However, due to the common‐ion effect, dissolution of dolomite and/or gypsum causes precipitation of underground calcite cements as part of the incongruent dissolution of dolomite/dedolomitization process, which limits the precipitation of tufa sediments. Current precipitation of tufa is scant compared to previous Holocene tufa deposits, which likely precipitated from solutions with higher saturation indexes of calcite (SIcc values) than nowadays. Limited incongruent dissolution of dolomite/dedolomitization favours higher SIcc values. This circumstance occurs when waters with relatively high supersaturation of dolomite and low SO42? composition sink in the upper sector of the canyon. In such a scenario, the process of mixing waters enhances the exclusive dissolution of limestones, preventing the precipitation of calcite within the aquifer and favouring the increase of SIcc values downstream of the springs. Such conditions were recorded during periods of high water level of the aquifers and during floods. This research shows that the common‐ion effect caused by the dissolution of gypsum and/or dolomite rocks can limit [or favour] the precipitation of tufa sediments depending on the occurrence [or not] of incongruent dissolution of dolomite/dedolomitization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
To improve understanding of Ca isotope transport during water-rock interaction on the continents, we measured dissolved δ44Ca values along a 236 km flow path in the Madison aquifer, South Dakota, where fluids have chemically evolved according to dolomite and anhydrite dissolution, calcite precipitation, and Ca-for-Na ion-exchange over a timescale spanning ~ 15 kyr. We used a reactive transport model employing rate data constrained from major ion mass-balances to evaluate the extent to which calcite precipitation and ion-exchange fractionate Ca isotopes. Elevated δ44Ca values during the initial and final stages of water transport possibly result from calcite precipitation under supersaturated conditions and Ca-for-Na ion-exchange, respectively. However, for the bulk of the flow path, δ44Ca values evolve by mixing between anhydrite and dolomite dissolution, with no fractionation during calcite precipitation under saturated conditions. We attribute the absence of Ca isotope fractionation to the long timescale of water-rock interaction and slow rate of calcite precipitation, which have enabled fluids to chemically and isotopically equilibrate with calcite. We therefore conclude that the equilibrium Ca isotope fractionation factor between calcite and water (Δcal–w) is very close to zero. To the extent that the Madison aquifer typifies other groundwater systems where calcite slowly precipitates from solutions at or near chemical equilibrium, this study suggests that groundwater contributions to δ44Ca variability on the continents can be modeled according to simple mixing theory without invoking isotope discrimination.  相似文献   

4.
Ground-water levels in the Upper Floridan aquifer beneath the southeastern coast of South Carolina have undergone pumpage-induced declines approaching 20 ft below sea level at the southern end of Hilton Head Island. This scenario suggests the potential exists for the inducement of recharge to the Upper Floridan aquifer across the island, which could affect the quality of water being pumped by wells. However, low radiocarbon concentrations in ground-water samples (0.5 to 1.4 ± 0.1 PMC) indicate that most of the water is relict ground water reflecting prepumpage ground-water flow conditions in the Upper Floridan aquifer. The isotopic data indicate long residence times and water-chemistry evolution more characteristic of ground-water recharge occurring farther inland prior to the commencement of pumpage in the late 1800s. Radiocarbon concentrations (as Percent Modern Carbon) and stable carbon isotope ratios (as δ13C in dissolved inorganic carbon) determined during this study and reported in other studies on and around Hilton Head Island varied in a systematic manner. Heavier δ13C values (–2.8 to –1.6 per mil) in ground water beneath southern Hilton Head Island reflect ground-water discharge from prepumpage flowpaths originating over 100 miles away, hence a depletion in radiocarbon concentration with corrected ground-water ages no younger than 16,000 yrs BP. In contrast, lighter δ13C values (–13.9 to –8.67 per mil) beneath the northern part of the island indicate recent recharge as a result of water-level declines, and recharge in areas off the island that have not changed as a result of pumpage (evidenced by enrichment in radiocarbon with corrected ground-water ages no older than 4,000 yrs BP). This suggests that the δ13C composition of ground water in the Upper Floridan aquifer is a useful indicator of mixing between ground waters from different sources, and can be used to delineate recharge-discharge patterns. This approach may be applicable to other aquifers of highly evolved ground-water chemistry in regional carbonate aquifer systems that may be receiving recent recharge. Moreover, this approach could prove useful in delineating the contribution of recent water being captured by pumped wells as part of wellhead protection programs designed to assess aquifer vulnerability from surficial contaminant sources.  相似文献   

5.
The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sustainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years.  相似文献   

6.
Weiss M  Gvirtzman H 《Ground water》2007,45(6):761-773
The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.  相似文献   

7.
The recharge location for many springs is unknown because they can be sourced from proximal, shallow, atmospheric sources or long‐traveled, deep, regional aquifers. The stable isotope (18O and 2H) geochemistry of springs water can provide cost‐effective indications of relative flow path distance without the expense of drilling boreholes, conducting geophysical studies, or building groundwater flow models. Locally sourced springs generally have an isotopic signature similar to local precipitation for that region and elevation. Springs with a very different isotopic composition than local meteoric inputs likely have non‐local recharge, representing a regional source. We tested this local vs. regional flow derived hypothesis with data from a new, large springs isotopic database from studies across Western North America in Arizona, Nevada, and Alberta. The combination of location‐specific precipitation data with stable isotopic groundwater data provides an effective method for flow path determination at springs. We found springs in Arizona issue from a mix of regional and local recharge sources. These springs have a weak elevation trend across 1588 m of elevation where higher elevation springs are only slightly more depleted than low elevation springs with a δ18O variation of 5.9‰. Springs sampled in Nevada showed a strong elevation‐isotope relationship with high‐elevation sites discharging depleted waters and lower elevation springs issuing enriched waters; only a 2.6‰ difference exists in 18O values over an elevation range of more than 1500 m. Alberta's springs are mostly sourced from local flow systems and show a moderate elevation trend of 1200 m, but the largest range in δ18O, 7.1‰.  相似文献   

8.
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate.  相似文献   

9.
Ground water from springs and public supply wells was investigated for hydrochemistry and environmental isotopes of 3H, 18O and D in Jeju volcanic island, Korea. The wells are completed in a basaltic aquifer and the upper part of hydrovolcanic sedimentary formation. Nitrate contamination is conspicuous in the coastal area where most of the samples have nitrate concentrations well above 1 mg NO3 N/l. Agricultural land use seems to have a strong influence on the distribution of nitrate in ground water. Comparison of stable isotopic compositions of precipitation and ground water show that ground water mostly originates from rainy season precipitation without significant secondary modification and that local recharge is dominant. 3H concentration of ground water ranged from nearly zero to 5 TU and is poorly correlated with vertical location of well screens. The occurrence of the 3H‐free, old ground water is due to the presence of low permeability layers near the boundary of the basaltic aquifer and the hydrovolcanic sedimentary formation, which significantly limits ground water flow from the upper basaltic aquifer. The old ground water exhibited background‐level nitrate concentrations despite high nitrate loadings, whereas young ground water had considerably higher nitrate concentrations. This correlation of 3H and nitrate concentration may be ascribed to the history of fertilizer use that has increased dramatically since the early 1960s in the island. This suggests that 3H can be used as a qualitative indicator for aquifer vulnerability to nitrate contamination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

In order to evaluate groundwater quality and geochemical reactions arising from mixing between seawater and dilute groundwater, we performed a hydrochemical investigation of alluvial groundwater in a limestone-rich coastal area of eastern South Korea. Two sites were chosen for comparison: an upstream site and a downstream site. Data of major ion chemistry and ratios of oxygen–hydrogen isotopes (δ18O, δD) revealed different major sources of groundwater salinity: recharge by sea-spray-affected precipitation in the upstream site, and seawater intrusion and diffusion zone fluctuation in the downstream site. The results of geochemical modelling showed that Ca2+ enrichment in the downstream area is caused by calcite dissolution enhanced by the ionic strength increase, as a result of seawater–groundwater mixing under open system conditions with a constant PCO2 value (about 10?1.5 atm). The results show that, for coastal alluvial groundwater residing on limestone, significant hydrochemical change (especially increased hardness) due to calcite dissolution enhanced by seawater mixing should be taken into account for better groundwater management. This process can be effectively evaluated using geochemical modelling.

Editor D. Koutsoyiannis; Associate editor Y. Guttman

Citation Chae, G.-T., Yun, S.-T., Yun, S.-M., Kim, K.-H., and So, C.-S., 2012. Seawater–freshwater mixing and resulting calcite dissolution: an example from a coastal alluvial aquifer in eastern South Korea. Hydrological Sciences Journal, 57 (8),1–12.  相似文献   

11.
本文通过初步分析杭嘉湖地区地下水化学和同位素特征,认为地下水的水化学分布存在着一定的分带性。浅层地下水化学类型为Cl,HCO3-Ca,Na型,代表了降水或地表水补给的形成过程,且补给前受到不同程度的蒸发。深层承压水化学类型为HCO3-Ca,Na和HCO3-Na型,代表了以铝硅酸盐矿物溶解为主的形成过程,其补给源为古气候条件下的降水补给。利用氘过量参数d值判断了第承压水(120~150 m)总体流向为南西至北东,即由杭州和湖州向嘉兴方向径流。  相似文献   

12.
This study addresses the influence of landslide dams on surface water drainage and groundwater flow. In the study area of Scanno Lake and Sagittario River (Central Italy), a limestone rockslide‐avalanche formed a lake, which has an outlet that is occasionally active, showing infiltration into the rockslide dam. Several springs are present at the lake's base and are partly fed by seepage through the rockslide debris. Piezometric surveys, discharge measurements, pumping tests and chemical analyses are tools used to build a conceptual model of the groundwater flow and to evaluate the flow through the rockslide debris. Seasonal water isotopic signatures validate the assumed model, showing a mixing of infiltration recharge and groundwater seepage throughout the rockslide debris. Various recharge areas have been found for springs, pointing out those directly fed by the rockslide debris aquifer. Hypotheses about seasonal groundwater mixing between the regional carbonate aquifer and the rockslide debris aquifer are supported by isotope results. Seasonal changes in groundwater table level due to recharge and surface losses from seasonal outlet have been correlated with isotopic groundwater composition from the rockslide debris aquifer and the downstream springs; this relationship highlights the role of the rockslide dam body on the hydrodynamics of the studied area. Relationships between surface waters and groundwater in the area have been completely understood on the basis of water isotopic fingerprinting, finally obtaining a complete evaluation of groundwater renewable resources and its regimen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age‐dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ13C value (?17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ18O and δD values (?4.0 ± 0.1‰ VSMOW, n = 27; δD: ?19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface.  相似文献   

14.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Blasch KW  Bryson JR 《Ground water》2007,45(3):294-308
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.  相似文献   

16.
Delineation of regional arid karstic aquifers: an integrative data approach   总被引:1,自引:0,他引:1  
This research integrates data procedures for the delineation of regional ground water flow systems in arid karstic basins with sparse hydrogeologic data using surface topography data, geologic mapping, permeability data, chloride concentrations of ground water and precipitation, and measured discharge data. This integrative data analysis framework can be applied to evaluate arid karstic aquifer systems globally. The accurate delineation of ground water recharge areas in developing aquifer systems with sparse hydrogeologic data is essential for their effective long-term development and management. We illustrate the use of this approach in the Cuatrociénegas Basin (CCB) of Mexico. Aquifers are characterized using geographic information systems for ground water catchment delineation, an analytical model for interbasin flow evaluation, a chloride balance approach for recharge estimation, and a water budget for mapping contributing catchments over a large region. The test study area includes the CCB of Coahuila, Mexico, a UNESCO World Biosphere Reserve containing more than 500 springs that support ground water-dependent ecosystems with more than 70 endemic organisms and irrigated agriculture. We define recharge areas that contribute local and regional ground water discharge to springs and the regional flow system. Results show that the regional aquifer system follows a topographic gradient that during past pluvial periods may have linked the Río Nazas and the Río Aguanaval of the Sierra Madre Occidental to the Río Grande via the CCB and other large, currently dry, upgradient lakes.  相似文献   

17.
Fractured rock aquifers cover much of Earth's surface and are important mountain sites for groundwater recharge but are poorly understood. To investigate groundwater systematics of a fractured-dominated aquifer in Baja California Sur, Mexico, we examined the spatial patterns of aquifer recharge and connectivity using the geochemistry of springs. We evaluate a range of geochemical data within the context of two endmember hypotheses describing spatial recharge patterns and fracture connectivity. Hypothesis 1 is that the aquifer system is segmented, and springs are fed by local recharge. Hypothesis 2 is that the aquifer system is well connected, with dominant recharge occurring in the higher elevations. The study site is a small <15 km2 catchment. Thirty-four distinct springs and two wells were identified in the study area, and 24 of these sites were sampled for geochemical analyses along an elevation gradient and canyon transect. These analyses included major ion composition, trace element and strontium isotopes, δ18O and δ2H isotopes, radiocarbon, and tritium. δ18O and δ2H isotopes suggest that the precipitation feeding the groundwater system has at least two distinct sources. Carbon isotopes showed a change along the canyon transect, suggesting that shorter flowpaths feed springs in the top of the transect, and longer flowpaths discharge near the bottom. Geochemical interpretations support a combination of the two proposed hypotheses. Understanding of the connectivity and provenance of these springs is significant as they are the primary source of water for the communities that inhabit this region and may be impacted by changes in recharge and use.  相似文献   

18.
Analytical and numerical models to explain steady rates of spring flow   总被引:1,自引:0,他引:1  
Swanson SK  Bahr JM 《Ground water》2004,42(5):747-759
Flow from some springs in former glacial lakebeds of the Upper Midwest is extremely steady throughout the year and does not increase significantly after precipitation events or seasonal recharge. Analytical and simplified numerical models of spring systems were used to determine whether preferential ground water flow through high-permeability features in shallow sandstone aquifers could produce typical values of spring discharge and the unusually steady rates of spring flow. The analytical model is based on a one-dimensional solution for periodic ground water flow. Solutions to this model suggest that it is unlikely that a periodic forcing due to seasonal variations in areal recharge would propagate to springs in a setting where high-permeability features exist. The analytical model shows that the effective length of the aquifer, or the length of flowpaths to a spring, and the total transmissivity of the aquifer have the greatest potential to impact the nature of spring flow in this setting. The numerical models show that high-permeability features can influence the magnitude of spring flow and the results demonstrate that the lengths of ground water flowpaths increase when high-permeability features are explicitly modeled, thus decreasing the likelihood for temporal variations in spring flow.  相似文献   

19.
Atrazine, cyanazine, alachlor, and metolachlor in the surface water of a recharge structure, which impounds runoff from row-cropped farmland in Nebraska, are transported with seepage to the shallow ground water flow system and to the locally confined regional aquifer. All wells in the shallow flow system and all those in the regional flow system impacted by seepage from the structure had detectable concentrations of at least one of the four pesticides.
The detectable concentrations of cyanzine, alachlor, and metolachlor in the two flow systems ranged from 0.1 to 0.9 ppb. These concentrations were an order of magnitude lower than those in the surface water. Concentrations in the regional aquifer clustered at the lower end of this concentration range. These three pesticides were not detected in the baseline study of the regional aquifer.
Unlike alachlor, cyanzine, and metolachlor, atrazine was always present in the wells impacted by seepage from the recharge structure. In the shallow flow system, concentrations ranged from 0.3 to 8.8 ppb and from 0.1 to 2.5 ppb in the regional aquifer. The average of the detectable atrazine concentrations in the baseline study was 0.04 ± 0.05 ppb.  相似文献   

20.
In the Tyrrhenian region of central Italy, late Quaternary fossil travertines are widespread along two major regional structures: the Tiber Valley and the Ancona-Anzio line. The origin and transport of spring waters from which travertines precipitate are elucidated by chemical and isotopic studies of the travertines and associated thermal springs and gas vents. There are consistent differences in the geochemical and isotopic signatures of thermal spring waters, gas vents and present and fossil travertines between east and west of the Tiber Valley. West of the Tiber Valley, δ13C of CO2 discharged from gas vents and δ13C of fossil travertines are higher than those to the east. To the west the travertines have higher strontium contents, and gases emitted from vents have higher 3He/4He ratios and lower N2 contents, than to the east. Fossil travertines to the west have characteristics typical of thermogene (thermal spring) origin, whereas those to the east have meteogene (low-temperature) characteristics (including abundant plant casts and organic impurities). The regional geochemical differences in travertines and fluid compositions across the Tiber Valley are interpreted with a model of regional fluid flow. The regional Mesozoic limestone aquifer is recharged in the main axis of the Apennine chain, and the groundwater flows westward and is discharged at springs. The travertine-precipitating waters east of the Tiber Valley have shallower flow paths than those to the west. Because of the comparatively short fluid flow paths and low (normal) heat flow, the groundwaters to the east of the Tiber Valley are cold and have CO2 isotopic signatures, indicating a significant biogenic contribution acquired from soils in the recharge area and limited deeply derived CO2. In contrast, spring waters west of the Tiber Valley have been conductively heated during transit in these high heat-flow areas and have incorporated a comparatively large quantity of CO2 derived from decarbonation of limestone. The elevated strontium content of the thermal spring water west of the Tiber Valley is attributed to deep circulation and dissolution of a Triassic evaporite unit that is stratigraphically beneath the Mesozoic limestone. U-series age dates of fossil travertines indicate three main periods of travertine formation (ka): 220-240, 120-140 and 60-70. Based on the regional flow model correlating travertine deposition at thermal springs and precipitation in the recharge area, we suggest that pluvial activity was enhanced during these periods. Our study suggests that travertines preserve a valuable record of paleofluid composition and paleoprecipitation and are thus useful for reconstructing paleohydrology and paleoclimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号