首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geology of Ore Deposits - Preore metasomatites of epithermal gold–silver deposits are formed by various types of hydrothermal solutions—from highly acidic and oxidized (argillization,...  相似文献   

2.
In the light of field investigation, microscopic study, X-ray phase analysis and mineral infrared spectral analysis, it is considered that laumontitization is of extensive occurrence in the Axi gold orefield. The development of laumontitization and its relationship to mineralization show that the laumontitization appeared mainly at the top of and in the periphery of orebodies, and occurred at the edge of the epithermal system or at the late stage of epithermal system evolution. Therefore, laumontitization can be used as an exploration indicator of epithermal gold deposits. The fluids responsible for laumontitization in the Axi gold orefield are similar to those producing hot spring-type gold deposits or those from modem geothermal fields. Epithermal mineralization of the Axi gold deposit was dated at Carboniferous, indicating that the West Tianshan of China is a region favorable to epithermal-type gold mineralization and preservation. Hence the West Tianshan of China is a target area for exploring epithermal gold deposits.  相似文献   

3.
Doklady Earth Sciences - Data on the mineralogical and geochemical features of three epithermal gold deposits in Kamchatka, as well as on the compositions and physicochemical parameters of...  相似文献   

4.
5.
The first data on study of individual fluid inclusions in the Zhilnoye deposit have been obtained. It has been found that the gold-bearing quartz veins of the deposit were formed by heterogeneous hydrothermal fluids with low salt concentrations (0.2–3.6 wt% equiv. NaCl under intermediate temperature conditions of 246–350°C). The fluid pressure was 80–160 bar corresponding to 0.3–0.6 km depths of formation under hydrostatic conditions. The parameters of the mineral-forming fluids of the Zhilnoye deposit correspond to typical parameters of the fluids of epithermal deposits.  相似文献   

6.
Epithermal precious metal deposits have only quite recently been added to the metallogenic view of Italy. It was only in the late 1980s that two districts were recognized, in Sardinia and southern Tuscany, previously long known for a large variety of other commodities. The Sardinian epithermal precious metal district is associated with the Oligocene-Miocene Sardinian calc-alkaline magmatic cycle. The most relevant areas include the Au deposit at Furtei, already in production, and the Osilo prospect, where extensive exploration is under way. The deposit at Furtei contains at least six tonnes of gold metal. The mineralogy of the deposit and of the alteration assemblages is typical of the acid-sulfate (high-sulfidation) class of volcanic-hosted epithermal deposits. Fluids associated with alteration and mineralization have moderate temperatures (200–300 °C) and low salinities (less than 6% wt. NaCl equivalent); high-temperature, high-salinity fluids similar to porphyry-style systems also circulated at Furtei. At Osilo, a number of quartz veins containing up to several ppm Au have been identified. The alteration assemblage includes adularia and illite, i.e. is typical of low-sulfidation deposits. Fluid inclusion homogenization temperatures range from 198 to 270 °C, with salinities of less than 4% wt. NaCl equivalent. In southern Tuscany, a number of carbonate-hosted (“Carlin type”) gold showings occur at the edges of the geothermal fields of Larderello, Amiata and Latera, an area previously known for Sb mineralization. In fact, many showings coincide with former Sb mines, and stibnite, along with pyrite, is the most common sulfide mineral. Gold is typically invisible. Fluids hosted in a variety of minerals from these occurrences span a relatively large temperature range (132 to 245 °C), with constantly low salinities (less than 7% wt. NaCl equivalent). The onset of (presumably meteoric) hydrothermal fluid circulation can be ascribed to the emplacement of Neogene Tuscan magmatic rocks, but the ultimate source of gold remains speculative. Received: 13 October 1998 / Accepted: 5 February 1999  相似文献   

7.
Numerous stable isotope studies of whole rocks and mineral separates in epithermal systems indi-cate that even though meteoric waters are dominant components in epithermal systems ,fluids of other origins,such as sedimentary or meta-sedimentary fluids,magmatic waters and even evolved meteoric waters ,may also play a role in the formation of epithermal ore deposits.Usually the more depleted the wall rocks,the larger the size of ore deposits ,and the least depletion degrees in whole rocks for economic mineralization are by about 3.5‰.The depletion in δ^18O in wall rocks,however,may be complicated by the superimposition of low temperature-hydration over high-temperature altera-tion or vice versa,the existence of primary low-^18O and high-^18O magmas ,and alteration by vol-canic gases.The depletion in δ^18O in wall rocks is controlled by the composition and nature of flu-ids,the temperature of fluids,the elevation of rocks at the time of alteration ,lithology,boiling effects of fluids ,and alteration style,as well as by water/rock ratios.In addition ,the fluids re-sponsible for epithermal deposits have experienced positive δ^18O shifts .It seems that when the above complications and controlling factors are well defined,oxygen isotope studies would be a promising and powerful exploration tool.  相似文献   

8.
9.
10.
Gold deposits of the meso-epithermal carbonate type were first proposed based on the study of the Baguamiao gold deposit.This new type of gold deposits has many unique characteristics as follows:(1)Obviously strata-bound.The gold deposits are hosted in Middle Devonian turbidite formations;(2)Structrually controlled.Struc-ture is an important factor leading to metallogenesis of this type of gold deposits.The shape and distribution of orebodies are controlled by byittle-ductile shear zones;(3)Multi-stage wall-rock alteration.According to the characteristics of mineral assemblage,gold mineralization can be classified into three stages in association with various wall-rock al-terations.Wall-rock alterations closely genetically related to the gold mineralization are ankerization ,silicification,pyrrhotization and pyritization ;(4)Mineral compositions of the orebodies are mainly pyrrhotite,pyrite,marcasitolite,chalcopyrite,quartz,ankerite,and sericite.Gold mineralization is associated closely in space and time with iron sulfides;(5)Rare elements and REE in ores are low in contents relative to those of the crust.Au content varies from 1.91g/t to 11.15g/t ,averaging 5.5g/t;(6)Studies of sulfur,hydrogen,oxygen and carbon isotopes in main gangue minerals (quartz and ankerite)indicate that fluids and ore-forming materials came from deep-seated sources;(7)Three types of inclusions are recognized in terms of their composition and the vapor amounts of inclusions.The homogenization temperatures of inclusions range from 210℃to 310℃,averaging 230℃,showing that this type of gold deposits belongs to the meso-epithermal type;(8)Metallogenic age of this type of gold deposits is similar to that of the collision between the Yangtze Plate and the North China Plate,indicating that gold deposits of this type are genetically related to continental-margin plate activity.  相似文献   

11.
BOZKAYA  G.  BANKS  DA 《地质学报》2014,88(Z2):1064-1065
Please refer to the attachment(s) for more details.  相似文献   

12.
Element geochemistry of gold arsenic and mineralogical features of their sulfides in the Carlin-type gold depostis of the Qinling region are discussed in this paper.The initial contents of ore-forming elements such as glod and arsenic are high the ore-bearing rock series in the Qinling region.Furthermore,both the metals are concentrated mainly in the diagenetic pyrite.Study on the mineralogy of arsenic-bearing sulfide minerals in the ores demonstrated that there is a poistive correlation between gold and arsenic in the sulfide minerals.Available evidence suggests that gold in the As-bearing sulfide minerals in likely to be presented as a charge species(Au ),and it is most possible for it to replace the exxcess arsenic at the site of iron and war probably deposited together with arsenic as solid in the sulfide minerals. Pyrite is composed of(Aux^3 ,Fe1-2^2 )([AsS]x^3-[S2]1-x^2-),and arenopyrite of (Aux^3 ,Fe1-x^3 )([AsS]x^3-[AsS2]1-x^3-).The occurrence of glod in the As-sulfied minerals from the Carlin-type gold depostis in the Qinling region has been confirmed by electron probe and transmission electron microscopic studies.The results show that gold was probably depostied together with arsenicas coupled solid solutions in sulfide minerals in the early stage of mineralization.Metallogenic chemical reactions concerning gold deposition in the Carlin-type As-rich gold deposits would involve oxidation of glod and concurrent reduction of arsenic.Later,the deposited gold as solid was remobilized and redistributed as exsolutions,as a result of increasing hydrothermal alteration and crystallization,and decreasing resistance to refractoriness of the host minerals.Gold occurs as sub-microscopic grains(ranging from 0.04tp 0.16μm in diameter)of native gold along micro factures in and crystalline grains of the sulfiedes.  相似文献   

13.
Calculations based on the available thermodynamic data of AuCl 2 and Au (HS) 2 indicate that AuCl 2 is responsible for the transport and enrichment of gold during the stage of pre-concentration in the source bed while Au (HS) 2 is the main gold species involved in the formation of gold deposits in response to hydrothermal reworking. Acid chloride solutions witha Cl > 10° and sulfur-rich solutions with aΣs in excess of 10−2 are held as important criteria for gold enrichment in the source bed and for the formation of gold deposits by subsequent hydrothermal event, respectively.  相似文献   

14.
Gold deposits in intrusive masses include the veinlet dissemination,quartz vein and veinlet dissemination vein types,They are distributed in fracture zones along the endocontact zone of a batholith or in the centre and edge of a stock.The metallogenic epochs are Yenshanian,Hercynian,Archean,Proterozoic and Himalayan,The gold deposits are characterized by a big difference in time span between gold mineralization and the formation of host masses Ore-forming materials were derived from the masses and auriferous strata and ore-forming fluids came from meteoric and formation waters.When circulating water was heated by ascending heat flow,gold would be extracted,concentrated and transported from auriferous rocks and then precipitated in the masses during the late tectonic movement,Finally gold deposits were formed in the intrusive masses.  相似文献   

15.
The Sain Us gold deposit is a typical auriferous sulphide quartz vein deposit in the InnerMongolian arid steppe climatic region. The oxidation zone has been controlled by the arid cli-mate since the beginning of the Holocene. Gold supergene evolution is characterized by enlarge-ment of gold grains, complication of the gold form, raising of the gold grade and increase of thegold fineness; besides, gold and silver have two enrichment peaks at the same depth, which is insharp contrast to the unimodal enrichment of gold and silver and the occurrence of gold aboveand silver below in a humid climatic region. Sun pumping is the main cause for the bimodalenrichment of gold and silver. Illite 2 M_1 is one of the main causes for the upper enrichment peakof gold and silver.  相似文献   

16.
Native ruthenium and platinum-bearing hedleyite were recognized two gold deposits contained in Archaean metamorphic rocks in northern China.They are coexistent with native gold,quartz and pyrite.The high W content of native ruthenium may reflect the precipitation of ores in a W-rich hydrothermal system at moderate to high temperatures,The presence of platinum-group minerals(PGM)in the two deposits suggests that Au and PGE were both derived from mantle-source rocks.  相似文献   

17.
The Jinwozi gold deposit consists of gold-bearing quartz veins in a biotite granodiorite of Hercynian age (zircon U-Pb age ≈ 335.7 Ma). Ore mineralogy is simple. In addition to native gold, there are only small amounts of sulfides, mainly pyrite and minor sphalerite, chalcopyrite and galena. δ34S values average 6.69‰, and δ18O 13.99‰ Abundant CO2 is contained in fluid inclusions from quartz. Homogenization temperatures of fluid inclusions are between 186 and 262 °C. REE distribution patterns indicate that the igneous mass may have been derived from a common initial material of calcareous-argillaceous sediments and alkali basalts as the country rocks. In other words, the Jinwozi granodiorite is of remelting origin from crustal material. Isotopic evidence of S, O and Pb shows that the ore-forming material is genetically related to magmatic hydrothermal activity.  相似文献   

18.
Strata of different geological periods extensively outcrop in western Guang-dong Province, but most gold deposits are restricted to the Middle-Late Proterozoic Yunkai Group and the Cambrian Bacun Group,showing obvious strata-boun character-istics .Gold abundance and trace element geochemistry of the Yunkai and Bacun Groups are compared with those of the Ordovician and Silurian strta.The Yunkai Group is considered to be the source strata for gold mineralization in the region.  相似文献   

19.
Please refer to the attachment(s) for more details  相似文献   

20.
Tasev  G.  Serafimovski  D.  Volkov  A. V.  Boev  B.  Djordjevic  T.  Kolitsch  U.  Serafimovski  T. 《Geology of Ore Deposits》2020,62(5):419-431
Geology of Ore Deposits - The Dudica deposit is located in the southern part of the Republic of North Macedonia (RNM), not far from the border with Greece in the Kozuf–Aridean volcanic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号