首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the origins of hydrology, the time of concentration, tc, has conventionally been tackled as a constant quantity. However, theoretical proof and empirical evidence imply that tc exhibits significant variability against rainfall, making its definition and estimation a hydrological paradox. Adopting the assumptions of the Rational method and the kinematic approach, an effective procedure in a GIS environment for estimating the travel time across a catchment’s longest flow path is provided. By application in 30 Mediterranean basins, it is illustrated that tc is a negative power function of excess rainfall intensity. Regional formulas are established to infer its multiplier (unit time of concentration) and exponent from abstract geomorphological information, which are validated against observed data and theoretical literature outcomes. Besides offering a fast and easy solution to the paradox, we highlight the necessity of implementing the varying tc concept within hydrological modelling, signalling a major shift from current engineering practices.  相似文献   

2.
《水文科学杂志》2013,58(4):626-641
Abstract

An analytical solution of planar flow in a sloping soil layer described by the linearized extended Boussinesq equation is presented. The solution consists of the sum of steady-state and transient-series solutions, the latter in a separation-of-variables form, and can satisfy an arbitrary initial condition via collocation; this feature reduces the number of series terms, making the solution efficient. Key parameter is the dimensionless linearization depth η o (R), R being the dimensionless recharge. The variable η o (R), not the slope, characterizes the flow as kinematic or diffusive, and R ≈ 0.2 demarcates the two regimes. The transient series converges rapidly for large η o (large R, near-diffusive flow) and slowly as η o → 0 (kinematic flow). The quasi-steady (QS) state method of Verhoest & Troch is also analysed and it is shown that the QS depth profiles approximate the transient ones well, only if Δt exceeds a system-dependent transition time between flow states (possibly >>1 day). In an application example for a 30-day recharge series, the QS solution differs from the transient one by as much as 20% (RMSE = 15%), does not track recharge changes as well and fails to conserve mass.  相似文献   

3.
A dome-shaped layer can be selected as a storage site for fluid injection. In this study, we develop a mathematical model for simulating transient head distribution in a heterogeneous and anisotropic dome-shaped layer due to a constant-head injection in a fully penetrating well. In the model, a form of step change is adopted to approximate the upper and lower boundaries of the dome and then the layer is split into two regions. The Laplace-domain solution of the model is developed using the Laplace transform and method of separation of variables. The transient injection rate at wellbore can then be obtained based on Darcy’s law and Bromwich integral method. The predicted head contours from the head solution show significant vertical flow components near the location of step change in the dome reservoir. The results of sensitivity analysis indicate that the hydraulic conductivity is the most sensitive parameter and the specific storage is the least sensitive one to the injection rate after a short period of injection time. In addition, the injection rate for a dome reservoir is also very sensitive to the change of the height for the reservoir near the injection well (first region) at a very early injection time. In contrast, the injection rate is more sensitive to the change of the height of the second region than that of the first region at late time. This analytical solution may be used as a primary tool to assess the capacity of fluid injection to various dome reservoirs.  相似文献   

4.
A new solution of transient confined–unconfined flow driven by a pumping well is developed and compared to previous approximate solutions of Moench and Prickett [Moench AF, Prickett TA. Radial flow in an infinite aquifer undergoing conversion from artesian to water table conditions. Water Resour Res 1972;8:494–9] and Hu and Chen [Hu L, Chen C. Analytical methods for transient flow to a well in a confined–unconfined aquifer. Ground Water 2008;46(4):642–6]. The problem is rewritten in dimensionless form with the Boltzmann transform. The nonlinear equation for flow in the unconfined zone is solved with the Runge–Kutta method. Position of the conversion interface is determined with an iteration scheme. This study shows that the confined–unconfined flow depends on three dimensionless parameters that represent the confined–unconfined storativity ratio (aD), the ratio of the initial hydraulic head over the aquifer thickness (fi), and the dimensionless pumping rate (qD). The rate of expansion of the unconfined zone increases with qD, but decreases with aD and fi. Differences between the two previous approximate solutions and the new solution of this study are observable in the estimated position of the conversion interface and the drawdown–time curves. The new solution can be applied to estimate the time for confined–unconfined conversion to occur (critical conversion time), and the time when the pumping well becomes dry (critical drying time). The critical conversion time is found to be very sensitive to the initial hydraulic head. The critical drying time is often much larger than the critical conversion time and may never be observed during a finite pumping period.  相似文献   

5.
Summary The problem of a point source in an isotropic, inhomogeneous fluid medium is discussed. It is assumed that the density of the fluid is constant and the acoustic velocity varies with depth asc=c 0(1 +m z) wherem is a constant andc 0 is, the velocity at the level of the origin. An approximate expression for the field due to a point source in such a medium is obtained when the medium is infinite as well as when it is semi-infinite. It is found that the results obtained agree with the WKB solution of the problem.  相似文献   

6.
Abstract

A linear analysis is used to study the stability of a rapidly rotating, electrically-conducting, self-gravitating fluid sphere of radius r 0, containing a uniform distribution of heat sources and under the influence of an azimuthal magnetic field whose strength is proportional to the distance from the rotation axis. The Lorentz force is of a magnitude comparable with that of the Coriolis force and so convective motions are fully three-dimensional, filling the entire sphere. We are primarily interested in the limit where the ratio q of the thermal diffusivity κ to the magnetic diffusivity η is much smaller than unity since this is possibly of the greatest geophysical relevance.

Thermal convection sets in when the temperature gradient exceeds some critical value as measured by the modified Rayleigh number Rc. The critical temperature gradient is smallest (Rc reaches a minimum) when the magnetic field strength parameter Λ ? 1. [Rc and Λ are defined in (2.3).] The instability takes the form of a very slow wave with frequency of order κ/r 2 0 and its direction of propagation changes from eastward to westward as Λ increases through Λ c ? 4.

When the fluid is sufficiently stably stratified and when Λ > Λm ? 22 a new mode of instability sets in. It is magnetically driven but requires some stratification before the energy stored in the magnetic field can be released. The instability takes the form of an eastward propagating wave with azimuthal wavenumber m = 1.  相似文献   

7.
A tracer plume was created within a thin aquifer by injection for 299 d of two adjacent “sub‐plumes” to represent one type of plume heterogeneity encountered in practice. The plume was monitored by snapshot sampling of transects of fully screened wells. The mass injection rate and total mass injected were known. Using all wells in each transect (0.77 m well spacing, 1.4 points/m2 sampling density), the Theissen Polygon Method (TPM) yielded apparently accurate mass discharge (Md) estimates at three transects for 12 snapshots. When applied to hypothetical sparser transects using subsets of the wells with average spacing and sampling density from 1.55 to 5.39 m and 0.70 to 0.20 points/m2, respectively, the TPM accuracy depended on well spacing and location of the wells in the hypothesized transect with respect to the sub‐plumes. Potential error was relatively low when the well spacing was less than the widths of the sub‐plumes (>0.35 points/m2). Potential error increased for well spacing similar to or greater than the sub‐plume widths, or when less than 1% of the plume area was sampled. For low density sampling of laterally heterogeneous plumes, small changes in groundwater flow direction can lead to wide fluctuations in Md estimates by the TPM. However, sampling conducted when flow is known or likely to be in a preferred direction can potentially allow more useful comparisons of Md over multiyear time frames, such as required for performance evaluation of natural attenuation or engineered remediation systems.  相似文献   

8.
Abstract

Adiabatic, two-dimensional, steady-state finite-amplitude, hydrostatic gravity waves produced by flow over a ridge are considered. Nonlinear self advection steepens the wave until the streamlines attain a vertical slope at a critical height zc. The height zc , where this occurs, depends on the ridge crest height and adiabatic expansion of the atmosphere. Dissipation is introduced in order to balance nonlinear self advection, and to maintain a marginal state above zc. The approach is to assume that the wave is inviscid except in a thin layer, small compared to a vertical wavelength, where dissipation cannot be neglected. The solutions in each region are matched to obtain a continuous solution for the streamline displacement δ. Solutions are presented for different values of the nondimensional dissipation parameter β. Eddy viscosity coefficients and the thickness of the dissipative layer are expressed as functions of β, and their magnitudes are compared to other theoretical evaluations and to values inferred from radar measurements of the stratosphere.

The Fourier spectrum of the solution for z ≫ zc is shown to decay exponentially at large vertical wave numbers n. In comparison, a spectral decay law n ?-8/3 characterizes the marginal state of the wave at z = zc .  相似文献   

9.
Abstract

Travel time and time of concentration Tc are important time parameters in hydrological designs. Although Tc is the time for the runoff to travel to the outlet from the most remote part of the catchment, most researchers have used an indirect method such as hydrograph analysis to estimate Tc. A quasi two-dimensional diffusion wave model with particle tracking for overland flow was developed to determine the travel time, and validated for runoff discharges, velocities, and depths. Travel times for 85%, 95% and 100% of particles arrival at the outlet of impervious surfaces (i.e. Tt85, Tt95, and Tt100) were determined for 530 model runs. The correlations between these travel times and Tc estimated from hydrograph analysis showed a significant agreement between Tc and Tt85. All the travel times showed nonlinear relationships with the input variables (plot length, slope, roughness coefficient, and effective rainfall intensity) but showed linear relationships with each other.
Editor D. Koutsoyiannis; Associate editor S. Grimaldi  相似文献   

10.
This paper investigates dynamics of a spherical bubble surrounded by a viscoelastic fluid. The purpose of the study is to understand the parameters which control expansion and fragmentation of bubbly magma by decompression. In particular, we focus on which occurs first, fragmentation or expansion. Supposing that rupture of the bubble wall occurs in a critical stress condition, we calculate the change of the bubble radius and tensile stress at the bubble wall for various decompression rates. Conditions in which tensile stress is stored in the shell are represented in terms of dimensionless parameters. The results are interpreted as follows: when magma viscosity is larger than a critical value, and the decompression time is shorter than viscous expansion time, tensile stress is stored before expansion; when magma viscosity is smaller than the critical value, tensile stress is not stored, no matter how rapid the decompression. Although it is a generally accepted theory that fragmentation is effected by stress conditions and decompression time, exactly how decompression time (t1) effects the fragmentation is not yet fully understood. This study demonstrates that the stress condition is controlled by the length of the decompression time not relative to the viscoelastic relaxation time (t1 / τ), but relative to the viscous expansion time (t1 / τlrlx). As suggested by recent experimental studies, the decompression time relative to viscoelastic relaxation time (t1 / τ) is also significant to the fragmentation process itself. It indicates that the decompression time effects the fragmentation not through the stress condition. However more work must be completed to fully understand the particular relationship between the decompression time and relaxation time in terms of its influence on fragmentation.  相似文献   

11.
In this paper, fluid flow is examined for a mature strike‐slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc) and rock‐quality measurements (Q‐value) performed along a 50‐m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water‐injection test. The resulting fluid pressures and flow rates through the different fault‐zone compartments were then analyzed with a two‐phase fluid‐flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q‐value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro‐ and macrofractures that lower the fault‐zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties.  相似文献   

12.
Abstract

In this paper we analyse the stationary mean energy density tensor Tij = BiBj for the x 2-sphere. This model is one of the simplest possible turbulent dynamos, originally due to Krause and Steenbeck (1967): a conducting sphere of radius R with homogeneous, isotropic and stationary turbulent convection, no differential rotation and negligible resistivity. The stationary solution of the (linear) equation for Tij is found analytically. Only Trr , T θθ and T φφ are unequal to zero, and we present their dependence on the radial distance r.

The stationary solution depends on two coefficients describing the turbulent state: the diffusion coefficient β≈?u2c/3 and the vorticity coefficient γ ≈ ?|?×u|2c/3 where u(r, t) is the turbulent velocity and c its correlation time. But the solution is independent of the dynamo coefficient α≈??u·?×u?τc/3 although α does occur in the equation for Tij . This result confirms earlier conclusions that helicity is not required for magnetic field generation. In the stationary state, magnetic energy is generated by the vorticity and transported to the boundary, where it escapes at the same rate. The solution presented contains one free parameter that is connected with the distribution of B over spatial scales at the boundary, about which Tij gives no information. We regard this investigation as a first step towards the analysis of more complicated, solar-type dynamos.  相似文献   

13.
Résumé Nous avons étendu aux températures négatives les mesures de l'humidité relative critiqueh c juste suffisante pour permettre la condensation de vapeur d'eau sur des noyaux géants constitués par divers sels.Pour chaque sel étudié, un point de la courbe donnanth c en fonction de la températuret° C est facilement obtenu en recherchant pour quelle valeurt c de la températureh c coïncide avec l'humidité relative en équilibre avec la glace à la même températuret c .Les valeurs obtenues pour NaCl, NH4Cl, KCl, KNO3 tendent à valider l'extrapolation des valeurs déjà connues pour les températures positives.
Summary We have enlarged to negative temperatures the measures of critical relative humidityh c just sufficient to allow the condensation of water vapour on giant nuclei constituted by different salts.For every salt studied, a point of the curve givingh c as a function of the temperaturet° C is easily obtained by measuring for what valuet c of the temperature,h c coincides with the relative humidity in equilibrium with ice at the same temperaturet c .The values obtained for NaCl, NH4Cl, KCl, KNO3 tend to validate the extrapolation of the values known for positive temperatures.
  相似文献   

14.
Predicting the behavior of overland flow with analytical solutions to the kinematic wave equation is appealing due to its relative ease of implementation. Such simple solutions, however, have largely been constrained to applications on simple planar hillslopes. This study presents analytical solutions to the kinematic wave equation for hillslopes with modest topographic curvature that causes divergence or convergence of runoff flowpaths. The solution averages flow depths along changing hillslope contours whose lengths vary according hillslope width function, and results in a one-dimensional approximation to the two-dimensional flow field. The solutions are tested against both two-dimensional numerical solutions to the kinematic wave equation (in ParFlow) and against experiments that use rainfall simulation on machined hillslopes with defined curvature properties. Excellent agreement between numerical, experimental and analytical solutions is found for hillslopes with mild to moderate curvature. The solutions show that curvature drives large changes in maximum flow rate qpeak and time of concentration tc , predictions frequently used in engineering hydrologic design and analysis.  相似文献   

15.
CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O–CO2–Na–Cl–CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach high CO2 concentrations quite rapidly. We conclude that carbonate dissolution needs not to be feared.  相似文献   

16.
Book Review     
Abstract

The instantaneous unit hydrograph (IUH) of a watershed is the result of one instantaneous unit of rainfall excess distributed uniformly over the watershed. Although the geomorphological characteristics of the basin remain relatively constant, the variable characteristics of storms cause variations in the shape of the resulting hydrographs. It is, therefore, inadequate to use one typical IUH to represent the hydrological response generated from any specific storm. In this study, a variable IUH was derived that directly reflects the time-varying rainfall intensity during storms. The rainfall intensity used to generate the variable IUH at time t is the mean rainfall intensity occurring from the time t—T c to t in which T c is the watershed time of concentration. Hydrological records from three watersheds in Taiwan were used to demonstrate the applicability of the proposed model. The results show that better simulations can be obtained by using the proposed model than by using the conventional unit hydrograph method, especially for concentrated rainstorm cases.  相似文献   

17.
18.
We analyzed the local earthquakes waveform recorded on a broadband seismic network in the northwestern Himalayan Region to compute lapse time and frequency dependence of coda Q (Q c). The observed Q c values increase with increasing lapse time at all frequency bands. The increase in Q c values with lapse time is attributed to an increase in Q c with depth. This implies that attenuation decreases with increasing depth. The approximate radius of medium contributing to coda generation varies from 55 to 130 km. By comparing the Q c values with those from other regions of the world, we find that they are similar to those obtained from tectonically active regions. The estimated Q c values show a frequency-dependent relationship, Q c = Q 0 f n , where Q 0 is Q c at 1 Hz and n represents degree of frequency dependence. They represent the level of heterogeneity and tectonic activity in an area. Our results show that northwest Himalayas are highly heterogeneous and tectonically very active. Q 0 increases from 113 ± 7 to 243 ± 10 and n decreases from 1.01 ± 0.05 to 0.85 ± 0.03 when lapse time increases from 30 to 70 s. As larger time window sees the effect of deeper part of the Earth, it is concluded that Q 0 increases and n decreases with increasing depth; i.e., heterogeneity decreases with depth in the study area.  相似文献   

19.
Abstract

An investigation is made of steady thermal convection of a Boussinesq fluid confined in a vertically-mounted rotating cylinder. The top and bottom endwall disks are thermal conductors at temperatures Tt and Tb with δT = Tt ? Tb >0. The vertical sidewall has a finite thermal conductance. A Newtonian heat flux condition is adopted at the sidewall. The Rayleigh number of the fluid system is large to render a boundary layer-type flow. Finite-difference numerical solutions to the full Navier-Stokes equations are obtained. The vertical motions within the buoyancy layer along the sidewall induce weak meridional flows in the interior. Because of the Coriolis acceleration, the meridional flows give rise to azimuthal flows relative to the rotating container. Strong vertical gradients of azimuthal flows exist in the regions near the endwalls. As the stratification effect increases, concentration of flow gradients in thin endwall boundary layers becomes more pronounced. The azimuthal flow field exhibits considerable horizontal gradients. The temperature field develops horizontal variations superposed on the dominant vertical distribution. As either the sidewall thermal conductance or the stratification effect decreases, the temperature distribution tends to the profile varying linearly with height. Comparisons of the sizes of the dynamic effects demonstrate that, in the bulk of flow field, the vertical shear of azimuthal velocity is supported by the horizontal temperature gradient, resulting in a thermal-wind relation.  相似文献   

20.
We consider how to treat a finite-dimensional linear inverse problem when the form of the forward problem is known exactly, but is dependent upon some parameters whose exact value is uncertain and which enter the forward problem multiplicatively. We show one way to proceed when the uncertainty is treatable in a statistical manner. Predicting the secular variation ∂tB(t) produced by a particular fluid flow V at the core-mantle boundary (when magnetic diffusion is ignored) is one such example, because the results depend on the main magnetic field B(t) originating in the core which is improperly known because of contamination by the crustal magnetic field. This infinite-dimensional inverse problem is often solved by projection on to a finite-dimensional basis, and the resulting parameters found by a maximum likelihood technique. If the main field is contaminated with errors from a Gaussian distribution, this paper describes how the maximum likelihood solution can take this into account, and we show the probability density function that must be maximised in this case. We give an example of the effects for a simple model system, and suggest possible areas of application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号