首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have derived an analytical solution for two-region flow toward a well in a confined aquifer based on a linearization method. The two-region flow includes Izbash non-Darcian flow near the well and Darcian flow in the rest of the aquifer. The wellbore storage is also considered. The type curves in the non-Darcian and Darcian flow domains are obtained by a numerical Laplace inversion method incorporated in MATLAB programs. We have compared our results with the one-region Darcian flow model (Theis). Our solutions agree with those of Sen [Sen Z. Type curves for two-region well flow. J Hydr Eng 1988;114(12):1461–84] which were obtained using the Boltzmann transform at late times for fully turbulent flow, while some difference has been found at early and moderate times. We have defined a dimensionless non-Darcian hydraulic conductivity term which is shown to be a key parameter for analyzing the two-region flow. A smaller dimensionless non-Darcian hydraulic conductivity results in a larger drawdown in the non-Darcian flow region at late times. However, the dimensionless non-Darcian hydraulic conductivity does not affect the slope of the dimensionless drawdown versus the logarithmic dimensionless time in the non-Darcian flow region at late times. The dimensionless non-Darcian hydraulic conductivity does not affect the late time drawdown in the Darcian flow region.  相似文献   

2.
This review focuses on investigations of groundwater flow and solute transport in karst aquifers through laboratory scale models (LSMs). In particular, LSMs have been used to generate new data under different hydraulic and contaminant transport conditions, testing of new approaches for site characterization, and providing new insights into flow and transport processes through complex karst aquifers. Due to the increasing need for LSMs to investigate a wide range of issues, associated with flow and solute migration karst aquifers this review attempts to classify, and introduce a framework for constructing a karst aquifer physical model that is more representative of field conditions. The LSMs are categorized into four groups: sand box, rock block, pipe/fracture network, and pipe-matrix coupling. These groups are compared and their advantages and disadvantages highlighted. The capabilities of such models have been extensively improved by new developments in experimental methods and measurement devices. Newer technologies such as 3D printing, computed tomography scanning, X-rays, nuclear magnetic resonance, novel geophysical techniques, and use of nanomaterials allow for greater flexibilities in conducting experiments. In order for LSMs to be representative of karst aquifers, a few requirements are introduced: (1) the ability to simulate heterogeneous distributions of karst hydraulic parameters, (2) establish Darcian and non-Darcian flow regimes and exchange between the matrix and conduits, (3) placement of adequate sampling points and intervals, and (4) achieving some degree of geometric, kinematic, and dynamic similitude to represent field conditions.  相似文献   

3.
In this study, we use a linearization procedure and a finite difference method to solve non-Darcian flow to a well in an aquifer–aquitard system. The leakage effect is considered. Flow in the aquifer is assumed to be non-Darcian and horizontal, whereas flow in the aquitard is assumed to be Darcian and vertical. The Izbash equation [Izbash SV. O filtracii V Kropnozernstom Materiale. USSR: Leningrad; 1931 [in Russian]] is employed to describe the non-Darcian flow. The wellbore storage is also considered in this study. An approximate semi-analytical solution has been obtained by the linearization procedure, and a numerical solution has been obtained by using a finite difference method. The previous solutions for Darcian flow case and non-Darcian flow case without leakage can be described as special cases of the new solutions. The error caused by the linearization procedure has also been analyzed. The relative error caused by the linearization procedure is nearly 100% at early times, and decreases to zero at late times. We have also compared the results in this study with Wen et al. [Wen Z, Huang G, Zhan H. A numerical solution for non-Darcian flow to a well in a confined aquifer using the power law function. J Hydrol, 2008d [in revision]] in which the leakage effect is not considered, and Hantush and Jacob [Hantush MS, Jacob CE. Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 1955;36(1):95–100] who investigated a similar problem in Darcian flow case. The comparison of this study and Wen et al. (2008d) indicates the dimensionless drawdown in the aquifer with leakage is less than that without leakage, and the leakage has little effect at early times. The comparison between the results of this study and that of Hantush and Jacob (1955) indicates that the dimensionless drawdown in the aquifer for non-Darcian flow is larger at early times and smaller at late times, than their counterparts for Darcian flow. A larger dimensionless non-Darcian conductivity kD results in a smaller dimensionless drawdown in the aquifer at late times, and leads to a larger dimensionless drawdown in the aquifer at early times. A smaller dimensionless leakage parameter BD results in a smaller drawdown at late times, and the leakage does not affect the early-time drawdown. The analysis of the dimensionless drawdown inside the well has also been included in this study when the wellbore storage is considered.  相似文献   

4.
Modeling flow and transport using both temperature and dye tracing provides constraints that can improve understanding of karst networks. A laminar flow and transport model using the finite element subsurface flow model simulated the conduit connection between a sinking stream and spring in central Pennsylvania to evaluate how conduit morphology might affect dye transport. Single and overly tortuous conduit models resulted in high concentrations as dye flowed back into the conduit from the matrix after dye injections ceased. A forked conduit model diverted flow from the main conduit, reducing falling limb dye concentration. Latin hypercube sampling was performed to evaluate the sensitivity of 52 parameter combinations (conduit hydraulic conductivity, conduit cross-sectional area, matrix transmissivity, matrix porosity, and dispersivity) for four conduit geometry scenarios. Sensitivity of arrival time for 50% of the dye indicated no parameter combinations which simulate falling limb dye concentrations for tortuous geometries, confirming the importance of the forked geometry regardless of other parameters. Temperature data from high-resolution loggers were then incorporated into the forked conduit model to reproduce seasonal spring temperature using variable sink inflow. Unlike the dye trace models, the thermal models were sensitive to other model parameters, such as conduit cross-sectional area and matrix transmissivity. These results showed this dual approach (dye and temperature) to karst network modeling is useful for (1) exploring the role of conduit and matrix interaction for contaminant storage, (2) constraining karst conduit geometries, which are often poorly understood, and (3) quantifying the effect of seasonal trends on karst aquifers.  相似文献   

5.
This paper derives an equivalent of Darcian Theis solution for non-Darcian flow induced by constant rate pumping of a well in a confined aquifer. The derivation, which is valid at later times only, is original. It utilizes Izbash's equation. This introduces an additional parameter to Darcian condition, namely, empirical exponent. The solution is a non-Drcian equivalent of Jacob straight line method for analyzing pumping tests at late times. It can be used to determine aquifer parameters: storativity, analogous hydraulic conductivity, and empirical exponent. However, while the Jacob method requires a minimum of only one pumping test with one observation well, the additional parameter in the present solution means that a minimum of two observation wells in one test or two pumping tests at different rates with one observation well are required. The derived solution is applied to a case study at Plomeur in Brittany, France, and is shown to provide a practical and efficient method for analyzing pumping tests where non-Darcian groundwater flow occurs.  相似文献   

6.
We have developed a new method to analyze the power law based non-Darcian flow toward a well in a confined aquifer with and without wellbore storage. This method is based on a combination of the linearization approximation of the non-Darcian flow equation and the Laplace transform. Analytical solutions of steady-state and late time drawdowns are obtained. Semi-analytical solutions of the drawdowns at any distance and time are computed by using the Stehfest numerical inverse Laplace transform. The results of this study agree perfectly with previous Theis solution for an infinitesimal well and with the Papadopulos and Cooper’s solution for a finite-diameter well under the special case of Darcian flow. The Boltzmann transform, which is commonly employed for solving non-Darcian flow problems before, is problematic for studying radial non-Darcian flow. Comparison of drawdowns obtained by our proposed method and the Boltzmann transform method suggests that the Boltzmann transform method differs from the linearization method at early and moderate times, and it yields similar results as the linearization method at late times. If the power index n and the quasi hydraulic conductivity k get larger, drawdowns at late times will become less, regardless of the wellbore storage. When n is larger, flow approaches steady state earlier. The drawdown at steady state is approximately proportional to r1−n, where r is the radial distance from the pumping well. The late time drawdown is a superposition of the steady-state solution and a negative time-dependent term that is proportional to t(1−n)/(3−n), where t is the time.  相似文献   

7.
Hydrological and hydrochemical processes in the critical zone of karst environments are controlled by the fracture‐conduit network. Modelling hydrological and hydrochemical dynamics in such heterogeneous hydrogeological settings remains a research challenge. In this study, water and solute transport in the dual flow system of the karst critical zone were investigated in a 73.5‐km2 catchment in southwest China. We developed a dual reservoir conceptual run‐off model combined with an autoregressive and moving average model with algorithms to assess dissolution rates in the “fast flow” and “slow flow” systems. This model was applied to 3 catchments with typical karst critical zone architectures, to show how flow exchange between fracture and conduit networks changes in relation to catchment storage dynamics. The flux of bidirectional water and solute exchange between the fissure and conduit system increases from the headwaters to the outfall due to the large area of the developed conduits and low hydraulic gradient in the lower catchment. Rainfall amounts have a significant influence on partitioning the relative proportions of flow and solutes derived from different sources reaching the underground outlet. The effect of rainfall on catchment function is modulated by the structure of the karst critical zone (e.g., epikarst and sinkholes). Thin epikarst and well‐developed sinkholes in the headwaters divert more surface water (younger water) into the underground channel network, leading to a higher fraction of rainfall recharge into the fast flow system and total outflow. Also, the contribution of carbonate weathering to mass export is also higher in the headwaters due to the infiltration of younger water with low solute concentrations through sinkholes.  相似文献   

8.
Grasso DA  Jeannin PY 《Ground water》2002,40(6):608-617
Investigation techniques for karst flow systems are based mainly on the study of different signals leaving the system caused by natural or induced external influences. Each signal represents one of the systems outputs (e.g., hydraulic, chemical, physical, or isotopic responses) that reflect the characteristics of the entire system. In this paper, we present a method to infer information about the structure of karst systems. It is based on a simultaneous analysis of chemical and hydraulic responses. Beside the classical piston flow at the beginning of a flood pulse, we define a chemically based recession flow phase. During this phase, field data show that the concentration of total dissolved solids can be considered as an exponential function of the logarithm of flow. This relationship allows two parameters to be defined, one of which is dependent on the structure and degree of development of the karst conduit network, the other is dependent mainly on bioclimatic factors. Data collected from seven karst springs are used to support ideas introduced in the paper.  相似文献   

9.
Comparison of flowpaths to a well and spring in a karst aquifer   总被引:3,自引:0,他引:3  
Toran L  Herman EK  White WB 《Ground water》2007,45(3):281-287
The permeability of some karst aquifers consists of networks of poorly integrated conduits and dissolution-widened fractures. The flow includes conduit flow, especially during storm recharge, but lacks the focused recharge into single master conduits that occurs in more highly developed karst systems. The proportions of conduit and dispersed flow are difficult to quantify in such systems. This study examines the flowpaths in a small karst watershed, based on comparing the physical and chemical response to storm flow at both a spring and a well. By conducting continuous monitoring at both locations, a better understanding of the flowpaths in a poorly integrated network was obtained. A more permeable flowpath to the spring leads to faster storm response and lower ion concentrations. The flowpath to and from the well is more complicated. The higher ion content and slower storm response suggest slower, more dispersed flowpaths. However, the well has greater variation in ion chemistry. Periodic recharge may dilute well concentrations due to faster (conduit or fracture) flowpaths. Although karst systems such as this are difficult to characterize, applying a variety of geochemical and physical monitoring techniques at multiple locations illustrates that the flowpaths can vary in both space and time.  相似文献   

10.
Karst spring responses examined by process-based modeling   总被引:8,自引:0,他引:8  
Birk S  Liedl R  Sauter M 《Ground water》2006,44(6):832-836
Ground water in karst terrains is highly vulnerable to contamination due to the rapid transport of contaminants through the highly conductive conduit system. For contamination risk assessment purposes, information about hydraulic and geometric characteristics of the conduits and their hydraulic interaction with the fissured porous rock is an important prerequisite. The relationship between aquifer characteristics and short-term responses to recharge events of both spring discharge and physicochemical parameters of the discharged water was examined using a process-based flow and transport model. In the respective software, a pipe-network model, representing fast conduit flow, is coupled to MODFLOW, which simulates flow in the fissured porous rock. This hybrid flow model was extended to include modules simulating heat and reactive solute transport in conduits. The application of this modeling tool demonstrates that variations of physicochemical parameters, such as solute concentration and water temperature, depend to a large extent on the intensity and duration of recharge events and provide information about the structure and geometry of the conduit system as well as about the interaction between conduits and fissured porous rock. Moreover, the responses of solute concentration and temperature of spring discharge appear to reflect different processes, thus complementing each other in the aquifer characterization.  相似文献   

11.
Non-Darcian flow towards a well which fully penetrates a confined single vertical fracture is presented in this paper on the basis of the Izbash equation. We have obtained semi-analytical solutions for non-Darcian flow by using the Boltzmann transform and developed the non-Darcian flow well functions for cases with and without the effect of wellbore storage. The results show that the non-Darcian flow type curves are more or less deviated from the Darcian flow type curve. The non-linear effect is mainly attributable to the turbulent factor, v, a dimensionless parameter related to the pumping rate, the fracture aperture, the fracture thickness, and two constants k′ and n used in the Izbash power-law. The non-linear effect appears to be less sensitive to the power-law index, n. When excluding wellbore storage, the well function at early times is proportional to v−1/(n−1)un/(n−1), where u is a dimensionless term inversely proportional to time; whereas the well function at late times is approximated as , where A0(n) is a finite term depending on n. When considering wellbore storage, drawdowns inside the well with different v values approach the same asymptotic value at small times, and the effect of wellbore storage is only found at the early stage of pumping.  相似文献   

12.
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers.  相似文献   

13.
Li G 《Ground water》2011,49(4):584-592
Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion.  相似文献   

14.
Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory‐scale Geo‐HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow‐dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit‐like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study.  相似文献   

15.
Rapid changes in spring water quality in karst areas due to rapid recharge of bacterially contaminated water are a major concern for drinking water suppliers and users. The main objective of this study was to use field experiments with fecal indicators to verify the vulnerability of a karst spring to pathogens, as determined by using a numerical modeling approach. The groundwater modeling was based on linear storage models that can be used to simulate karst water flow. The vulnerability of the karst groundwater is estimated using such models to calculate criteria that influence the likelihood of spring water being affected by microbial contamination. Specifically, the temporal variation in the vulnerability, depending on rainfall events and overall recharge conditions, can be assessed and quantified using the dynamic vulnerability index (DVI). DVI corresponds to the ratio of conduit to diffuse flow contributions to spring discharge. To evaluate model performance with respect to predicted vulnerability, samples from a spring were analyzed for Escherichia coli, enterococci, Clostridium perfringens, and heterotrophic plate count bacteria during and after several rainfall events. DVI was shown to be an indication of the risk of fecal contamination of spring water with sufficient accuracy to be used in drinking water management. We conclude that numerical models are a useful tool for evaluating the vulnerability of karst systems to pathogens under varying recharge conditions  相似文献   

16.
As a result of rock dissolution processes, karst aquifers exhibit highly conductive features such as caves and conduits. Within these structures, groundwater flow can become turbulent and therefore be described by nonlinear gradient functions. Some numerical groundwater flow models explicitly account for pipe hydraulics by coupling the continuum model with a pipe network that represents the conduit system. In contrast, the Conduit Flow Process Mode 2 (CFPM2) for MODFLOW-2005 approximates turbulent flow by reducing the hydraulic conductivity within the existing linear head gradient of the MODFLOW continuum model. This approach reduces the practical as well as numerical efforts for simulating turbulence. The original formulation was for large pore aquifers where the onset of turbulence is at low Reynolds numbers (1 to 100) and not for conduits or pipes. In addition, the existing code requires multiple time steps for convergence due to iterative adjustment of the hydraulic conductivity. Modifications to the existing CFPM2 were made by implementing a generalized power function with a user-defined exponent. This allows for matching turbulence in porous media or pipes and eliminates the time steps required for iterative adjustment of hydraulic conductivity. The modified CFPM2 successfully replicated simple benchmark test problems.  相似文献   

17.
We discuss techniques to represent groundwater flow in carbonate aquifers using the three existing modeling approaches: equivalent porous medium, conduit network, and discrete fracture network. Fractures in faulted stratigraphic successions are characterized by dominant sets of sub-vertical joints. Grid rotation is recommended using the equivalent porous medium to match higher hydraulic conductivity with the dominant orientation of the joints. Modeling carbonate faults with throws greater than approximately 100 m is more challenging. Such faults are characterized by combined conduit-barrier behavior. The barrier behavior can be modeled using the Horizontal Flow Barrier Package with a low-permeability vertical barrier inserted to represent the impediment of horizontal flow in faults characterized by sharp drops of the piezometric surface. Cavities can occur parallel to the strike of normal faults generating channels for the groundwater. In this case, flow models need to account for turbulence using a conduit network approach. Channels need to be embedded in an equivalent porous medium due to cavities a few centimeters large, which are present in carbonate aquifers even in areas characterized by low hydraulic gradients. Discrete fracture network modeling enables representation of individual rock discontinuities in three dimensions. This approach is used in non-heavily karstified aquifers at industrial sites and was recently combined with the equivalent porous medium to simulate diffusivity in the matrix. Following this review, we recommend that the future research combines three practiced modeling approaches: equivalent porous medium, discrete fracture network, and conduit network, in order to capture structural and flow aspects in the modeling of groundwater in carbonate rocks.  相似文献   

18.
Physics-based distributed models for simulating flow in karst systems are generally based on the discrete–continuum approach in which the flow in the three-dimensional fractured limestone matrix continuum is coupled with the flow in discrete one-dimensional conduits. In this study we present a newly designed discrete–continuum model for simulating flow in karst systems. We use a flexible spatial discretization such that complicated conduit networks can be incorporated. Turbulent conduit flow and turbulent surface flow are described by the diffusion wave equation whereas laminar variably saturated flow in the matrix is described by the Richards equation. Transients between free-surface and pressurized conduit flow are handled by changing the capacity term of the conduit flow equation. This new approach has the advantage that the transients in mixed conduit flow regimes can be handled without the Preissmann slot approach. Conduit–matrix coupling is based on the Peaceman’s well-index such that simulated exchange fluxes across the conduit–matrix interface are less sensitive to the spatial discretization. Coupling with the surface flow domain is based on numerical techniques commonly used in surface–subsurface models and storm water drainage models. Robust algorithms are used to simulate the non-linear flow processes in a coupled fashion. The model is verified and illustrated with simulation examples.  相似文献   

19.
Application of a Discrete-Continuum Model to Karst Aquifers in North China   总被引:7,自引:0,他引:7  
A generalized discrete-continuum model is developed to simulate ground water flow in the karst aquifers of North China. The model is a hybrid numerical flow model, which takes into account both quick conduit flow and diffusive fissure flow. The conduit flow is represented by a discrete network model, and the fissure flow is modeled by a continuum approach. The developed model strongly emphasizes the function of the conduits in the flow fields. They control the general drainage pattern, as demonstrated in the simulation of a complex karst aquifer in North China. The model reproduces reasonably well the flow field in response to an unanticipated discharge of ground water from the karst aquifer into an underground mine based on the aquifer parameters that are manually calibrated from a multiple-well pumping test. Sensitivity of the model to the aquifer parameters was evaluated in the context of the case study.  相似文献   

20.
A new methodology for magnetic resonance sounding (MRS) data acquisition and interpretation was developed for locating water-filled karst cavities. This methodology was used to investigate the Ouysse karst system in the Poumeyssens shaft in the Causse de Gramat (France). A new 2D numerical MRS response model was designed for improved accuracy over the previous 1D MRS approach. A special survey performed by cave divers confirmed the accuracy of the MRS results. Field results demonstrated that in favourable conditions (a low EM noise environment and a relatively shallow, large target) the MRS method, used with a coincident transmitter/receiver loop, can be an effective tool for locating a water-filled karst conduit. It was shown numerically that because an a priori orientation of the MRS profile with the karst conduit is used in the inversion scheme (perpendicular for instance), any error in this assumption introduces an additional error in locating the karst. However, the resulting error is within acceptable limits when the deviation is less than 30°. The MRS results were compared with an electrical resistivity tomography (ERT) survey. It was found that in Poumeyssens, ERT is not able to locate the water-filled karst. On the other hand, ERT provides additional information about heterogeneities in the limestone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号