首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeling multiaquifer wells with MODFLOW   总被引:3,自引:0,他引:3  
Neville CJ  Tonkin MJ 《Ground water》2004,42(6-7):910-919
Multiaquifer wells, i.e., wells that are open across more than one aquifer, can have a profound effect on the hydraulics of a ground water system. These wells change the physical system by establishing direct hydraulic links between otherwise isolated strata. Several methods are available to simulate multiaquifer wells in the context of comprehensive ground water flow simulators. In this paper, we review four methods to represent multiaquifer wells with the widely used code MODFLOW. These methods include a specialized code developed, but never formally released, by the U.S. Geological Survey (USGS), the Multi-Aquifer Well (MAW1) Package. An expanded implementation of the techniques in the MAW1 Package has been incorporated in the Multi-Node Well Package released recently by the USGS (Halford and Hanson 2002). We examine the performance of the methods in the context of a benchmarking study against the analytical solutions of Papadopulos (1966) and Sokol (1963). Our results demonstrate that results obtained with the MAW1 Package closely match exact solutions for pumping and nonpumping conditions, using both coarse and refined grids.  相似文献   

2.
As a crucial agricultural and economic development zone since the Qin Dynasty (221 to 206 BC), the Guanzhong section of the Weihe River basin is facing serious water resource shortages due to population growth and regional development. Its water resource amount per capita is only 361 m3, about 1/6 of the average in China and less than 1/20 of the average in the world. Surface water and groundwater (SW-GW) interaction, having a significant influence on the spatiotemporal distribution of water resources, was qualitatively and quantitatively investigated during a wet year based on stable isotopes and hydrochemistry. The results show that the recharge pattern in the north part varies with season, that is, 40% of the surface water recharge comes from groundwater in the dry season, but 93% of the groundwater recharge comes from surface water in the rainy season. In the south part, groundwater is always recharged by surface water, with contributions of 47% and 61% in the rainy and dry seasons, respectively. For the main stream, the recharge pattern is complicated and varies with season and site. This study will provide useful information about SW-GW interaction at basin scale. Integrated management of groundwater and surface water could improve the efficiency of regional water resources utilization and promote accurate and sustainable water management in the semi-arid basin.  相似文献   

3.
4.
5.
6.
7.
The standard MODFLOW packages offer limited capabilities to model piecewise-linear boundary conditions to describe ground water–surface water interaction. Specifically, MODFLOW is incapable of representing a Cauchy-type boundary with different resistances for discharge or recharge conditions. Such a more sophisticated Cauchy boundary condition is needed to properly represent surface waters alternatively losing water through the bottom (high resistance) or gaining water mostly near the water surface (low resistance). One solution would be to create a new package for MODFLOW to accomplish this. However, it is also possible to combine multiple instances of standard packages in a single cell to the same effect. In this specific example, the general head boundary package is combined with the drain package to arrive at the desired piecewise-linear behavior. In doing so, the standard USGS MODFLOW version can be used without any modifications at the expense of a minor increase in preprocessing and postprocessing and computational effort. The extra preprocessing for creating the input and extra postprocessing to determine the water balance in terms of the physical entities from the MODFLOW cell fluxes per package can be taken care of by a user interface.  相似文献   

8.
Slug tests are a widely used technique to estimate aquifer hydraulic parameters and the test data are generally interpreted with analytical solutions under various assumptions. However, these solutions are not convenient when slug tests are required to be analyzed in a three‐dimensional model for complex aquifer‐aquitard systems. In this study, equivalent well blocks (EWB) are proposed in numerical modeling of slug test data with MODFLOW. Multi‐well slug tests in partially penetrating wells with skin zones can be simulated. Accuracy of the numerical method is demonstrated by benchmarking with analytical solutions. The EWB method is applied in a case study on slug tests in aquitards in the Pearl River Delta, China.  相似文献   

9.
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow‐through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream‐aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow‐through streams.  相似文献   

10.
Vic Kelson 《Ground water》2012,50(6):918-926
Groundwater flow models are commonly used to design new wells and wellfields. As the spatial scale of the problem is large and much local‐scale detail is not needed, modelers often utilize two‐dimensional (2D) or quasi three‐dimensional models based on the Dupuit‐Forchheimer assumption. Dupuit models offer a robust set of tools for simulating regional groundwater flow including interactions with surface waters, the potential for well interference, and varying aquifer properties and recharge rates. However, given an assumed operating water level or drawdown at a well screen, Dupuit models systematically overpredict well yields. For design purposes, this discrepancy is unacceptable, and a method for predicting accurate well yields is needed. While published methods exist for vertical wells, little guidance is available for predicting yields in horizontal screens or collector wells. In plan view, a horizontal screen has a linear geometry, and will likely extend over several neighboring cells that may not align with rows or columns in a numerical model. Furthermore, the model must account for the effects of converging three‐dimensional (3D) flow to the well screens and hydraulic interference among the well screens; these all depend on the design of a specific well. This paper presents a new method for simulating the yield of angled or horizontal well screens in numerical groundwater flow models, specifically using the USGS code MODFLOW. The new method is compared to a detailed, 3D analytic element model of a collector well in a field of uniform flow.  相似文献   

11.
Dissolved oxygen (D.O.) concentration has a significant effect upon ground water quality by regulating the valence state of trace metals and by constraining the bacterial metabolism of dissolved organic species. For these reasons, the measurement of dissolved oxygen concentration should be considered essential in most water quality investigations. D.O. measurements have been frequently neglected in ground water monitoring. This is because O2 has often been assumed absent below the water table; measurement of O2, concentrations is not mandated by drinking water standards; and the redox potential has previously been considered an adequate and encompassing electrochemical measurement. Redox potentials, however, cannot adequately predict dissolved oxygen concentrations nor can D.O. concentrations be used to calculate redox potentials.
D.O. concentrations can be measured precisely in the field by titration or electrode methods. The best methods of sample recovery are those that use positive pressure displacement devices. A fully adequate sampling procedure will isolate ground water from the atmosphere and will collect samples at restricted depth intervals at ambient temperature and pressure.  相似文献   

12.
A theory on information prediction process proposed by Weng Wenpo(1991)is applied to the earthquake prediction decision process.Four cycles represent the theory(conception),earthquake prediction decision result,anomalies,and earthquake assemblage,respectively.The interception and overlapping of the four cycles indicate different combinations,resulting in formation of 13 regions.In the case of decision conclusion on earthquake to occur,seven decision results of different characters are distinguished.The six other results were obtained in the case of absence of decision.Results of four characters show correct decision on earthquake to occur and those of three characters show the erroneous decision on earthquake to occur.Until now,theories of earthquake prediction have been incomplete,and the coincidence ratio of decision on earthquake to occur is also considerably low.Systematic analysis of the decision process is beneficial to understanding the causes for missing,virtual,pseudo,false,and correct earthqua  相似文献   

13.
In cases when an equivalent porous medium assumption is suitable for simulating groundwater flow in bedrock aquifers, estimation of seepage into underground mine workings (UMWs) can be achieved by specifying MODFLOW drain nodes at the contact between water bearing rock and dewatered mine openings. However, this approach results in significant numerical problems when applied to simulate seepage into an extensive network of UMWs, which often exist at the mine sites. Numerical simulations conducted for individual UMWs, such as a vertical shaft or a horizontal drift, showed that accurate prediction of seepage rates can be achieved by either applying grid spacing that is much finer than the diameter/width of the simulated openings (explicit modeling) or using coarser grid with cell sizes exceeding the characteristic width of shafts or drifts by a factor of 3. Theoretical insight into this phenomenon is presented, based on the so-called well-index theory. It is demonstrated that applying this theory allows to minimize numerical errors associated with MODFLOW simulation of seepage into UMWs on a relatively coarse Cartesian grid. Presented examples include simulated steady-state groundwater flow from homogeneous, heterogeneous, and/or anisotropic rock into a vertical shaft, a horizontal drift/cross-cut, a ramp, two parallel drifts, and a combined system of a vertical shaft connected to a horizontal drift.  相似文献   

14.
To evaluate the use of general‐purpose graphics processing units (GPGPUs) to improve the performance of MODFLOW, an unstructured preconditioned conjugate gradient (UPCG) solver has been developed. The UPCG solver uses a compressed sparse row storage scheme and includes Jacobi, zero fill‐in incomplete, and modified‐incomplete lower‐upper (LU) factorization, and generalized least‐squares polynomial preconditioners. The UPCG solver also includes options for sequential and parallel solution on the central processing unit (CPU) using OpenMP. For simulations utilizing the GPGPU, all basic linear algebra operations are performed on the GPGPU; memory copies between the central processing unit CPU and GPCPU occur prior to the first iteration of the UPCG solver and after satisfying head and flow criteria or exceeding a maximum number of iterations. The efficiency of the UPCG solver for GPGPU and CPU solutions is benchmarked using simulations of a synthetic, heterogeneous unconfined aquifer with tens of thousands to millions of active grid cells. Testing indicates GPGPU speedups on the order of 2 to 8, relative to the standard MODFLOW preconditioned conjugate gradient (PCG) solver, can be achieved when (1) memory copies between the CPU and GPGPU are optimized, (2) the percentage of time performing memory copies between the CPU and GPGPU is small relative to the calculation time, (3) high‐performance GPGPU cards are utilized, and (4) CPU‐GPGPU combinations are used to execute sequential operations that are difficult to parallelize. Furthermore, UPCG solver testing indicates GPGPU speedups exceed parallel CPU speedups achieved using OpenMP on multicore CPUs for preconditioners that can be easily parallelized.  相似文献   

15.
We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface–groundwater exchange than standard particle-tracking simulations.  相似文献   

16.
17.
A numerical model for the global tsunamis computation constructed by Kowalik et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80°S to 69°N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.  相似文献   

18.
Izvestiya, Physics of the Solid Earth - Abstract—The formation of supershear rupture (with a slip front propagation velocity higher than S-wave velocity in the material) along a model fault...  相似文献   

19.
The majority of slug tests done at sites of shallow groundwater contamination are performed in wells screened across the water table and are affected by mechanisms beyond those considered in the standard slug‐test models. These additional mechanisms give rise to a number of practical issues that are yet to be fully resolved; four of these are addressed here. The wells in which slug tests are performed were rarely installed for that purpose, so the well design can result in problematic (small signal to noise ratio) test data. The suitability of a particular well design should thus always be assessed prior to field testing. In slug tests of short duration, it can be difficult to identify which portion of the test represents filter‐pack drainage and which represents formation response; application of a mass balance can help confirm that test phases have been correctly identified. A key parameter required for all slug test models is the casing radius. However, in this setting, the effective casing radius (borehole radius corrected for filter‐pack porosity), not the nominal well radius, is required; this effective radius is best estimated directly from test data. Finally, although conventional slug‐test models do not consider filter‐pack drainage, these models will yield reasonable hydraulic conductivity estimates when applied to the formation‐response phase of a test from an appropriately developed well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号