首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circular maria - Orientale, Imbrium, Serenitatis, Crisium, Smythii, and Tsiolkovsky -lie nearly on a lunar great circle. This pattern can be considered the result of a very close, non-capture encounter between Moon and Earth early in solar-system history. Of critical importance in analyzing the effects of such an encounter is the position of the weightlessness limit of the Earth-Moon System which is located at about 1.63R e, measured from the center of Earth to center of Moon. Within this weightlessness limit, material can be pulled from the lunar surface and interior by Earth's gravity and either escape from the Moon or be redistributed onto the lunar surface. In the case of an encounter with a non-spinning Moon, backfalling materials would be distributed along a lunar great circle. However, if the Moon is rotating during the encounter, the backfall pattern will deviate from the great circle, the amount depending on the rate and direction of spin. Such a close encounter model may be related to the pattern of circular maria if materials departing from the source region are visualized as spheroids of molten lunar upper mantle basalt. These spheroids, then, would impact onto the lunar surface to form a pattern of lava lakes. Radiometric dates from mare rocks are consistent with this model of mare formation if the older mare rock dates are considered to date the encounter and younger dates are considered to date subsequent volcanic eruptions on a structurally weakened Moon.  相似文献   

2.
Fred L. Whipple 《Icarus》1984,60(3):522-531
The observations of comet P/Holmes 1892III, exhibiting two 8- to 10-mag bursts, have been carefully analyzed. The phenomena are consistent with the grazing encounter of a small satellite with the nucleus on November 4.6, 1892, and the final encounter on January 16.3, 1893. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3 hr and inclination of nearly 180°. After the final encounter, the spin period was essentially unchanged, but two areas became active, separated some 164° in longitude on the nucleus. After the first burst the total magnitude fell less than 2 mag from November 7 to 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely of ever showing a stellar appearance. The fading was much more rapid after the second burst (barely naked eye at maximum) while the nucleus frequently appeared stellar after the first day. It seems reasonable to conclude that the grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks. The final encounter activated a new area on the nucleus, the shock and fall back disturbing the area already exposed by the grazing encounter. Several details of this scenario are fitted rather well.  相似文献   

3.
Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKp. The dynamic cross-correlation between JDW and ΣKp indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period.  相似文献   

4.
5.
The problem of the motion of grains in the protosolar nebula is discussed. Time scales of the vertical and radial displacement are computed. The structure of the dust disk that can be formed is discussed in the framework of different protosolar nebula models.The results obtained under the hypothesis of quiescience of the gas component are compared with those in presence of a fully developed turbulence.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

6.
Öpik's assumptions on the geometry of particle trajectories leading to and through planetary close encounters are used to compute the distribution of changes in heliocentric orbital elements that result from such encounters for a range of initial heliocentric orbits. Behaviour at encounter is assumed to follow two-body (particle—planet) gravitational scattering, while before and after encounter particle motion is only governed by the force of the Sun. Derivation of these distributions allows precise analysis of the probability of various outcomes in terms of the physical characteristics of the bodies involved. For example, they allow an explanation and prediction of the asymmetry of the extreme energy perturbations for different initial orbits. The formulae derived here may be applied to problems including the original accumulation of planets and satellites, and the continuing evolution of populations of small bodies, such as asteroids and comets.  相似文献   

7.
Based on currently available kinematic data, we have searched for stars outside the Hipparcos list that either closely encountered in the past or will encounter in the future the Solar system within several parsecs. For the first time, we have identified two single stars, GJ 3379 (G 099-049) and GJ 3323 (LHS 1723), as candidate for a close encounter with the solar orbit. The star GJ 3379 could encounter the Sunmore closely to aminimumdistance d min = 1.32±0.03 pc at time t min = −163 ± 3 thousand years. We have found two potential candidates for a close encounter that have only photometrical distances: the white dwarf SSSPM J1549-3544 without any data on its radial velocity and the L-dwarf SDSS J1416+1348. The probabilities of their penetration into the Oort cloud region are 0.09 (at a model radial velocity <V r < = 50 km s−1) and 0.05, respectively.  相似文献   

8.
H. Mizuno  A.P. Boss 《Icarus》1985,63(1):109-133
Tidal disruption is a potentially important process for the accumulation of the planets from planetesimals. The fact that stable equilibria do not exist for circular orbits inside the Roche limit has often been hypothesized to mean that any object that passes within the Roche limit is totally disrupted. We have disproven this hypothesis by solving the dynamic problem of the tidal disruption of a dissipative planetestimal during a close encounter with a protoplanet. The solution consists of a numerical integration of the three-dimensional, nonlinear equations of motion, including an approximate treatment of viscous dissipation in the solid regions of the planetesimal. The numerical methods have been extensively tested on a series of one-, two- (Jeans), and three-(Roche) dimensional test problems involving the equilibrium of a body subjected to tidal forces. The results may be scaled to planetesimals of arbitrary size, providing that the scaled equation of state applied. The calculations show that a strongly dissipative planetesimal which passes by the Earth on a parabolic orbit with a perigee within the Roche limit (≈3REarth) is not tidally disrupted (even for grazing incidence), and loses no more than a few percent of its mass. This result applies to bodies of radius R which have a kinematic viscosity ν ? 1012(R/1000km)2 cm2sec?1. Less dissipative planetesimals (ν ≈ 1013(R/1000 km)2 cm2sec?1) may lose up to about 20% of their mass. There are two coupled reasons why this result differs from previous hypotheses: (1) in a dynamic encounter, there is insufficient time to disrupt the planetesimal, and (2) even in circular orbit, the small velocities in the solid region imply that many orbital periods are necessary to completely disrupt the planetesimal. Hence solid and partially molten planetesimals will not experience substantial tidal disruption; completely molten bodies may be sufficiently inviscid to undergo tidal disruption.  相似文献   

9.
Plasma measurements of the ICE spacecraft at its encounter with comet Giacobini-Zinner are found to be in qualitative agreement with corresponding predictions of a gasdynamic model on the solar wind interaction with the cometary neutral gas.  相似文献   

10.
We investigate the influence of a stellar fly-by encounter on the Edgeworth-Kuiper belt objects through numerical orbital calculations, in order to explain both mass depletion and high orbital inclinations of the classical Edgeworth-Kuiper belt (CEKB) objects, which have semimajor axis of 42-48 AU and perihelia beyond 35 AU. The observationally inferred total mass of the CEKB is ∼1/10 Earth masses, which is only ∼0.02 of that extrapolated from the minimum-mass solar nebula model. The CEKB consists of bimodal population: “hot population” with inclinations i?0.2-0.6 radians and “cold population” with i?0.1. The observationally suggested difference in size and color of objects between the two populations may imply different origins of the two populations. We find that both the depletion of solid materials in the CEKB and the formation of the hot population are accounted for by a single close stellar encounter with pericenter distance of 80-100 AU and inclination relative to the initial protoplanetary disk ?50°-70°. Such a stellar encounter highly pumps up eccentricities of most objects in the CEKB and then their perihelia migrate within 35 AU. These objects would be removed by Neptune's perturbations after Neptune is formed at or migrates to the current position (30 AU). Less than 10% of the original objects remain in stable orbits with small eccentricities and perihelion distances larger than 35 AU, in the CEKB, which is consistent with the observation. We find that i of the remaining objects are as large as that of the observed hot population. The only problem is how to stop Neptune's migration at ∼30 AU, which is addressed in a separate paper. The depletion by the stellar encounter extends deeply into ∼30-35 AU, which provides the basis of the formation model for the cold population through Neptune's outward migration by Levison and Morbidelli (2003, Nature, 426, 419-421). The combination of our model with Levison and Morbidelli's model could consistently explain the mass depletion, truncation at 50 AU, bimodal distribution in i, and differences in size and color between the hot and the cold populations in the CEKB.  相似文献   

11.
The aim of this paper is to show that in the case of a low probability of asteroid collision with the Earth, the appropriate selection and weighting of the data are crucial for the impact investigation and for analysing the impact possibilities using extensive numerical simulations. By means of the Monte Carlo special method, a large number of 'clone' orbits have been generated. A full range of orbital elements in the six-dimensional parameter space, that is, in the entire confidence region allowed by the observational material, has been examined. On the basis of 1000 astrometric observations of (99942) Apophis, the best solutions for the geocentric encounter distance of  6.065 ± 0.081 R  (without perturbations by asteroids) or  6.064 ± 0.095 R  (including perturbations by the four largest asteroids) were derived for the close encounter with the Earth on 2029 April 13. The present uncertainties allow for special configurations ('keyholes') during this encounter that may lead to very close encounters in future approaches of Apophis. Two groups of keyholes are connected with the close encounter with the Earth in 2036 (within the minimal distance of  5.7736−5.7763 R  on 2029 April 13) and 2037 (within the minimal distance of  6.3359–6.3488 R  ). The nominal orbits for our most accurate models run almost exactly in the middle of these two impact keyhole groups. A very small keyhole for the impact in 2076 has been found between these groups at the minimal distance of 5.97347   R  . This keyhole is close to the nominal orbit. The present observations are not sufficiently accurate to eliminate definitely the possibility of impact with the Earth in 2036 and for many years after.  相似文献   

12.
The objective of this paper is to develop a simple model of an encounter between a comet and a planet, with a subsequent capture or an escape, and to study the potential consequences. The hypothetical scenario is as follows: a comet with a conic orbit meets close to one of its vertices (located near the ecliptic plane), a jovian planet, and transforms its orbit. There are two hypotheses which are made for the shock: this vertex becomes one of the final vertices and the orbital plane of the comet is unchanged during the encounter as it was the case for Brooks 2 in 1886. In this model, it was able to find an equation which was then used to obtain the pre‐ and post‐encounter orbits elements and the kind of orbit (ellipse, hyperbola, parabola) with respect to the initial inclination. The numerical experiments with the observed comets often provide pre‐encounter orbits with an aphelion point located near another jovian planet farther from the Sun, and so on with sometimes several planets, or with an aphelion point located beyond the Pluto orbit. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Low-mass stars during their pre-main sequence contraction phase are expected to be surrounded by a certain amount of the primordial gas. At low luminosities, accretion of this gas can make the stars to follow a peculiar evolutionary course which can account for certain types of red subluminous stars. The efficiency of the accretion mechanism can also account for some peculiarities in the spectra of the stars of low mass.
Sommario Stelle di bassa massa in fase di contrazione pre-sequenza sono con ogni probabilità circondate da abbondante gas. In queste condizioni al diminuire della luminosità può divenire efficiente il meccanismo di accrescimento, cosi da condurre la stella su una linea evolutiva del tutto peculiare. Una simile evoluzione può rendere conto di oggetti sottoluminosi e a bassa temperatura, come pure di alcune peculiarità negli spettri di stelle di bassa massa.
  相似文献   

14.
The aureole materials that form an annulus of corrugated terrain surrounding Olympus Mons are considered to be the product of mass movement. The scarp at the mountain's foot formed as a result of this massive removal of material from the volcano's outer flanks. This interpretation is supported by a comparison of the amount of material originally available before scarp formation, and the present volume of aureole materials. On the basis of distribution, surface textures and theoretical considerations it is considered that the aureole was produced by a series of megaslides, rather than by a flow mechanism. Production of the megaslides may have been assisted by a period of widespread melting of permafrost.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

15.
In helium-burning horizontal-branch stars, transformation of helium into carbon increases opacity in the convective core. Such a situation can drive an increase of the core-mass extension via the mixing by overshooting. The efficiency of this mechanism is investigated in order to obtain an indication of the time scale for the propagation of the convective boundary. Schwarzschild's criterion is shown to be fulfilled within a few percent at the innermost interface of the core boundary.
Riassunto Nei primi stadi evolutivi di stelle di ramo orizzontale, la combustione di elio in carbonio aumenta l'opacità nel nucleo convettivo. Ne segue che il rimescolamento al bordo della convezione (overshooting) induce una progressiva instabilità convettiva negli strati contornanti il nucleo con conseguente incremento della massa del nucleo stesso. E' studiata l'efficienza di tale meccanismo al fine di ottenere indicazioni sui tempi scala caratteristici del processo di propagazione. Si mostra come il criterio di Schwarzschild risulti verificato entro qualche percento al bordo interno del nucleo convettivo.
  相似文献   

16.
Recognizing that grains in the cometary dust tail are electrically charged, we study the effect of an interplanetary sector boundary crossing on their distribution. We specifically consider Halley's comet around the time of encounter by the GIOTTO and VEGA 1 and 2 spacecrafts in March 1986. The smallest dust particles (r g0.3 m) are strongly effected, and the projection of their distributions in a plane containing the Sun-Comet axis and normal to the orbital plane show a wavy appearance. Also, since reversals in the interplanetary magnetic field occur with a periodicity of 5 to 10 days, the spacecrafts, which follow 3 to 4 days apart are likely to encounter entirely different dust distributions at the lower end of the mass spectrum.  相似文献   

17.
It is shown that close encounters between Jupiter and minor bodies are generally more efficient if the initial orbit of the small body is nearly tangent to that of the planet. Starting from the analysis of the results of previous numerical simulations, some indications on the mobility of the small bodies in the semiaxis-eccentricity diagram are given.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratory di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

18.
19.
In this work, we continue revising the theoretical basis ofnumerical models describing the transport of matter andenergy inside a porous dust-ice mixture at low temperature. Amodel of a light-absorbing near-surface layer of a comet nucleus isinvestigated. Gas transport is considered simultaneously with thesolution of the general heat transfer equation. Thequasi-stationary temperature distribution and the H2O massflux and sublimation rate are computed for a nucleus model ofcomet 19P/Borrelly at the Deep Space 1 (DS1) encounter. Theenergy is deposited in a layer of about 20 particle radii: Thiscorresponds to a solid-state greenhouse effect. The surfacetemperature of the layer-absorbing model as well as the gasproduction rate are significantly smaller than the ones in thesurface-absorbing model. An active fraction of 40–50% would berequired to explain the observed water production rate ofP/Borrelly with our layer-absorption model at the time of the DS1encounter.  相似文献   

20.
The discussion of tidal friction in the Earth-Moon system given in successive editions ofThe Earth by Jeffreys is shown to contain a serious dynamical error. When the treatment is corrected, it shows that the moment of inertia of the Earth must be changing. The apparent secular accelerations of the Moon and Sun require a diminishing moment of inertia, and the rate is in agreement with the phase-change hypothesis for the nature of the core.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号