首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enthalpies of formation from ilmenite, FeTiO3, and perovskite, CaTiO3, of two intermediate ordered perovskite phases, CaFeTi2O6 and CaFe3Ti4O12, have been measured at 801°C using oxide melt solution calorimetry. These data, in combination with experiments at high pressure and temperature, indicate that below 1518±50°C CaFe3Ti4O12 is stable at lower pressures (∼7 GPa at 1200°C) than CaFeTi2O6 (∼13 GPa at 1200°C). This relationship should be reversed, and CaFeTi2O6 should become stable at lower pressures than CaFe3Ti4O12, at temperatures above 1518±50°C. These intermediate phases are of petrological interest because they form as a reaction between two minerals, ilmenite and perovskite, which are commonly associated in kimberlites, and because their pressure-temperature range of formation overlaps that of origin of kimberlites. Received: 10 November 1997 / Revised; accepted: 15 January 1998  相似文献   

2.
Synthetic clinopyroxenes of compositions between CaFe3+AlSiO6 and CaFe 0.85 3+ Ti0.15Al1.15Si0.85O6 have been studied by 57Fe Mössbauer spectroscopy. The spectra consist of two doublets assigned to Fe3+ in M1 and T sites. From the area ratios of the doublets the site occupancies of Fe3+ and Al were determined. Si decreases from 1.00 to 0.85 and Al+Fe3+ increases from 1.00 to 1.15 per formula unit with increasing CaTiAl2O6 component of the clinopyroxene. The atomic ratio of Fe3+(T)/Fe3+(total) is 0.11–0.16; 4.5–7.5 percent of the T sites are occupied by Fe3+. Thus the presence of Si-O-Fe3+, Al-O-Fe3+, and Fe3+-O-Fe3+ bonds is expected in addition to Si-O-Si, Si-O-Al and Al-O-Al bonds. However, the possibility of the former bonds being present would be small, because the amount of Fe3+(T) is far less than that of Si and Al. The isomer shift of Fe3+(T) is one of the largest in the values found previously for Fe3+(T) in silicates. It increases with increasing CaTiAl2O6 component and seems to be correlated to the ionic character of the cation — anion bonds calculated from electronegativity. The quadrupole splittings of Fe3+(M1) and Fe3+(T) decrease with the substitution of Fe3+?Ti4+ in the M1 and of Si?Al in the T sites.  相似文献   

3.
Unusual Ti–Cr–Zr-rich garnet crystals from high-temperature melilitic skarn of the Maronia area, western Thrace, Greece, were investigated by electron-microprobe analysis, powder and single-crystal X-ray diffraction, IR, Raman and Mössbauer spectroscopy. Chemical data showed that the garnets contain up to 8 wt.% TiO2, 8 wt.% Cr2O3 and 4 wt.% ZrO2, representing a solid solution of andradite (Ca3Fe3+ 2Si3O12 ≈46 mol%), uvarovite (Ca3Cr2Si3O12 ≈23 mol%), grossular (Ca3Al2Si3O12 ≈10 mol%), schorlomite (Ca3Ti2[Si,(Fe3+,Al3+)2]O12 ≈15 mol%), and kimzeyite (Ca3Zr2[Si,Al2]3O12 ≈6 mol%). The Mössbauer analysis showed that the total Fe is ferric, preferentially located at the octahedral site and to a smaller extent at the tetrahedral site. Single-crystal XRD analysis, Raman and IR spectroscopy verified substitution of Si mainly by Al3+, Fe3+ and Ti4+. Cr3+ and Zr4+ are found at the octahedral site along with Fe3+, Al3+ and Ti4+. The measured H2O content is 0.20 wt.%. The analytical data suggest that the structural formula of the Maronia garnet can be given as: (Ca2.99Mg0.03)Σ=3.02(Fe3+ 0.67Cr0.54Al0.33Ti0.29Zr0.15)Σ=1.98(Si2.42Ti0.24Fe0.18Al0.14)Σ=2.98O12OH0.11. Ti-rich garnets are not common and their crystal chemistry is still under investigation. The present work presents new evidence that will enable the elucidation of the structural chemistry of Ti- and Cr-rich garnets.  相似文献   

4.
The blue colors of several minerals and gems, including aquamarine (beryl, Be3Al2Si6O18) and cordierite (Al3(Mg, Fe)2Si5AlO18), have been attributed to charge transfer (CT) between adjacent Fe2+ and Fe3+ cations, while Fe2+→Ti4+ CT has been proposed for blue kyanites (Al2SiO5). Such assignments were based on chemical analyses and on polarization-dependent absorption bands measured in visible-region spectra. We have attempted to characterize the Fe cations in each of these minerals by Mössbauer spectroscopy (MS). In blue kyanites, significant amounts of both Fe2+ and Fe3+ were detected with MS, indicating that Fe2+→Fe3+ CT, Fe2+→Ti4+ CT, and Fe2+ and Fe3+ crystal field transitions each could contribute to the electronic spectra. In aquamarines, coexisting Fe2+ and Fe3+ ions were resolved by MS, supporting our assignment of the broad, relatively weak band at 16,100 cm?1 in Ec spectra to Fe2+→Fe3+ CT between Fe cations replacing Al3+ ions 4.6Å apart along c. A band at 17,500 cm?1 in Ec spectra of cordierite is generally assigned to Fe2+ (oct)→Fe3+ (tet) CT between cations only 2.74 Å apart. However, no Fe3+ ions were detected in the MS at 293K of several blue cordierites showing the 17,500 cm?1 band and reported to contain Fe3+. A quadrupole doublet with parameters consistent with tetrahedral Fe3+ appears in 77K MS, but the Fe3+/Fe2+ ratios from MS are much smaller than values from chemical analysis. These results sound a cautionary note when correlating Mössbauer and chemically determined Fe3+/Fe2+ ratios for minerals exhibiting Fe2+→Fe3+ CT.  相似文献   

5.
The cluster variation method, in the single prism approximation, is used to model phase relations in the system, Fe2O3-FeTiO3. Ordering in FeTiO3 is analyzed, and it is shown that the stabilization of FeTiO3 (relative to mechanical mixing of Fe2O3 and Ti2O3) includes: (1) a contribution from the redox reaction, Fe3++Ti3+→Fe2++Ti4+ (ΔH redox~?70kJ mole?1); and (2) a contribution from ordering (ΔH OD~?8kJ mole?1). A theoretical phase diagram is presented and compared with available experimental data. Semiquantitative agreement between theory and experiment (on the location of phase boundaries) is achieved; but, owing to the paucity of experimental data on coexisting phases, these results may be fortuitous.  相似文献   

6.
A new Cu-rich variety of lyonsite has been found from fumarolic sublimates of the Tolbachik volcano (Kamchatka, Russia). The empirical formula is Cu4.33Fe 2.37 3+ Ti0.26Al0.26Zn0.07(V5.85As0.07Mo0.07P0.01S0.01)O24. The crystal structure was studied on single crystal using synchrotron radiation, R = 0.0514. The mineral is orthorhombic, Pnma, a = 5.1736(7), b =10.8929(12), c = 18.220(2) Å, V = 1026.8(2) Å3, and Z = 2. The structural formula is (Cu0.6Ti0.3Al0.3Fe 0.2 3+ 0.6)Σ2Cu2(Fe 2.2 3+ Cu1.8)Σ4(V5.8As0.1Mo0.1)Σ6O24. It is proposed to recast the simplified formula of lyonsite as Cu3+x (Fe 4?2x 3+ Cu2x )(VO4)6, where 0 ≤ x ≤ 1.  相似文献   

7.
The crystal structure of a synthetic CaFe3+Al-SiO6 pyroxene (20 kb, 1,375° C) with unit cell dimensions a=9.7797(16), b=8.7819(14), c=5.3685(5) Å, =105.78(1), space group C2/c has been refined by the method of least squares to an R-factor of 0.025 based on 812 reflections measured on an automatic single crystal diffractometer. The octahedral M1 site is occupied by 0.82 Fe3+ and 0.18 Al3+. Within the tetrahedral T site, Si4+ (0.50), Al3+ (0.41) and Fe3+ (0.09) ions are completely disordered, although submicroscopic domains with short-range order are very likely. The octahedral site preference energy of the Fe3+ ions with respect to Al3+ ions in CaFe3+AlSiO6 is about 10 kcal/mole, which is much higher than that found in Y3Al x Fe5–2O12 garnets. Topologically the structure of CaFe3+AlSiO6 is intermediate between that of diopside and calcium Tschermak's pyroxene, CaAlAlSiO6. For CaM3+ AlSiO6 clinopyroxenes an increase in the size of the M1 octahedron is accompanied by an increase in the average M2-0, bridging T-0 and 03-03 distances and kinking of the tetrahedral chain.  相似文献   

8.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

9.
Kyzylkumite has been found in Cr-V-bearing metamorphic rocks of the Sludyanka Complex, Southern Baikal region; it has been identified by X-ray powder diffraction method. This is a late secondary mineral developed after Ti-V-oxides (schreyerite, berdesinskiite) and V-bearing rutile and titanite. Kyzylkumite represents a new structural type with composition Ti4V 2 3+ O10(OH)2 corresponding to octahedral coordination of Ti4+ and V3+. Its unit-cell dimensions are: a = 8.4787(1), b = 4.5624(1), c = 10.0330(1) Å, β = 93.174(1)°. The ideal formula of kyzylkumite Ti4V 2 3+ O10(OH)2 corresponds to composition, wt %: 65.56 TiO2, 30.75 V2O3, 3.69 H2O. Indeed, the contents (wt %) of these constituents range from 62 to 70 TiO2 and from 23 to 33 V2O3. Variations in contents and the Ti/V value are caused by partial substitution V3+ for V4+, isovalent substitutions Ti4+ and V3+ for V4+ and Cr3+, respectively, and coupled substitution V3+ + OH? ? Ti4+ + O2?. Smyslova et al. (1981)—the discovereres of kyzylkumite—assumed its composition to be the same as for schreyerite V 2 3+ Ti3O9 that principally different from kyzylkumite from the Sludyanka Complex. Therefore, re-examination of the kyzylkumite holotype or cotype from its type locality is needed.  相似文献   

10.
Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where \( {\text{Fe}}^{ 3+ } /\Upsigma {\text{Fe}}\sim 20\,\% \) based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., \( {\text{Mg}}^{ 2+ } - {\text{Fe}}^{ 2+ } \) or \( {\text{Mg}}^{ 2+ } {\text{Si}}^{ 4+ } - {\text{Fe}}^{ 3+ } {\text{Al}}^{ 3+ } \) substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.  相似文献   

11.
Ti-andradites were synthesized at a pressure of P(H2O)=3 kbar and temperatures of 700–800° C. Oxygen fugacities were controlled by solid state buffers (Ni/NiO; SiO2 + Fe/Fe2SiO4). The Fe2+-and Fe3+-distribution was determined by low temperature Mössbauer spectroscopy. The water content was measured by a solid's moisture analyzer. The chemical composition of the synthetic and the natural sample has been determined by electron microprobe. Ti-andradites from runs at high oxygen fugacities have Fe3+ on octahedral and tetrahedral sites; Ti-andradites from runs at low oxygen fugacities have tetrahedrally and octahedrally coordinated Fe2+ as well. These “reduced” garnets must also contain Ti3+ on octahedral sites. Charge balance is maintained due to substitution of O2? by (OH)? by two mechanisms: (SiO4)4? ? (O4H4)4? and (Fe3+O6)9? ? (Fe2+O5OH)9?. FTIR spectra of the synthetic samples do show the presence of structurally bound (OH)?. In a natural sample tetrahedrally and octahedrally coordinated Fe3+ are observed together with Fe2+ on all three cation sites of the garnet structure.  相似文献   

12.
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2V meas = 50(10)°, 2V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe 0.53 2+ Mn0.38Mg0.08)Σ0.99(Ti2.44Fe 0.80 3+ Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [d, Å (I, %) (hkl)]: 5.19 (40) (110), 3.53 (40) ( $\overline 3 $ 11), 2.96 (100) ( $\overline 3 $ 13, 311), 2.80 (50) (020), 2.14 (50) ( $\overline 4 $ 22, $\overline 3 $ 15, 313), 1.947 (50) (024, 223), 1.657 (40) ( $\overline 4 $ 07, $\overline 4 $ 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.  相似文献   

13.
Examination of schorlomite from ijolite at Magnet Cove (USA) and silicocarbonatite at Afrikanda (Russia), using electron-microprobe and hydrogen analyses, X-ray diffraction and Mössbauer spectroscopy, shows the complexity of substitution mechanisms operating in Ti-rich garnets. These substitutions involve incorporation of Na in the eightfold-coordinated X site, Fe2+ and Mg in the octahedrally coordinated Y site, and Fe3+, Al and Fe2+ in the tetrahedrally coordinated Z site. Substitutions Ti4+Fe3+Fe3+–1Si–1 and Ti4+Al3+Fe3+–1Si–1 are of major significance to the crystal chemistry of schorlomite, whereas Fe2+ enters the Z site in relatively minor quantities (<3% Fe). There is no evidence (either structural or indirect, such as discrepancies between the measured and calculated Fe2+ contents) for the presence of [6]Ti3+ or [4]Ti4+ in schorlomite. The simplified general formula of schorlomite can be written as Ca3Ti4+2[Si3-x(Fe3+,Al,Fe2+)xO12], keeping in mind that the notion of end-member composition is inapplicable to this mineral. In the published analyses of schorlomite with low to moderate Zr contents, x ranges from 0.6 to 1.0, i.e. Ti4+ in the Y site is <2 and accompanied by appreciable amounts of lower-charged cations (in particular, Fe3+, Fe2+ and Mg). For classification purposes, the mole percentage of schorlomite can be determined as the amount of [6]Ti4+, balanced by substitutions in the Z site, relative to the total occupancy in the Y site: ([6]Ti4+[6]Fe2+[6]Mg2+[8]Na+)/2. In addition to the predominant schorlomite component, the crystals examined in this work contain significant (>15 mol.%) proportions of andradite (Ca3Fe3+2Si3O12), morimotoite (Ca3Fe2+TiSi3O12), and Ca3MgTiSi3O12. The importance of accurate quantitative determination and assignment of Fe, Ti and other cations to the crystallographic sites for petrogenetic studies is discussed.
A. R. ChakhmouradianEmail: Phone: +1-204-4747278Fax: +1-204-4747623
  相似文献   

14.
A new mineral, droninoite, was found in a fragment of a weathered Dronino iron meteorite (which fell near the village of Dronino, Kasimov district, Ryazan oblast, Russia) as dark green to brown fine-grained (the size of single grains is not larger than 1 μm) segregations up to 0.15 × 1 × 1 mm in size associated with taenite, violarite, troilite, chromite, goethite, lepidocrocite, nickelbischofite, and amorphous Fe3+ hydroxides. The mineral was named after its type locality. Aggregates of droninoite are earthy and soft; the Mohs hardness is 1–1.5. The calculated density is 2.857 g/cm3. Under a microscope, droninoite is dark gray-green and nonpleochroic. The mean (cooperative for fine-grained aggregate) refractive index is 1.72(1). The IR spectrum indicates the absence of S O 4 2? and C O 3 2? anions. Chemical composition (electron microprobe, partition of total iron into Fe2+ and Fe3+ made on the basis of the ratio (Ni + Fe2+): Fe3+ = 3: 1; water is calculated from the difference) is as follows, wt %: 36.45 NiO, 12.15 FeO, 17.55 Fe2O3, 23.78 H2O, 13.01 Cl, ?O=Cl2 ?2.94, total is 100.00. The empirical formula (Z = 6) is Ni2.16Fe 0.75 2+ Fe 0.97 3+ Cl1.62(OH)7.10 · 2.28H2O. The simplified formula is Ni3Fe3+Cl(OH)8 · 2H2O. Droninoite is trigonal, space group R \(\bar 3\) m, R3m, or R32; a = 6.206(2), c = 46.184(18) Å; V = 1540.4(8) Å3. The strong reflections in the X-ray powder diffraction pattern [d, Å (I, %) (hkl)] are 7.76(100)(006), 3.88(40)(0.0.12), 2.64(25)(202, 024), 2.32(20)(0.2.10), 1.965(0.2.16). The holotype specimen is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 3676/1.  相似文献   

15.
For the first time we report alluaudite from India, which is metamict and is hosted in a zoned pegmatite, near Pisangan, Ajmer district, Rajasthan. Alluaudites known till date, all over the world, are non-metamict type. Therefore, the alluaudite reported from the area is the first locality in the world for the metamict-type of alluaudite. The most conspicuous features exhibited by the alluaudite are various types of cracks in different directions and shapes, including its isotropic nature. The calculated crystallographic parameters of the reported alluaudite are: a0 = 11.9874 Å, b0 = 12.5144 Å, and c0 = 6.4136 Å, β = 114.240 with unit-cell volume (V) = 877.31 Å3, which are in agreement with the values of alluaudite standard. Geochemical data indicates high content of P (32.30% P2O5), Fe (30.2% Fe2O3), Mn (10.62% MnO), besides Mg (7.71% MgO), Ca (5.60% CaO), Na (3.40% Na2O) and Si (2.30% SiO2), and appreciable amount of water of hydration (3.50% LOI). It is highly radioactive due to uranium (2.28% U3O8) and thorium (185 ppm Th). Calculated structural formula of the alluaudite is Na1+0.59Ca2+0.54Mn2+0.80Mg2+1.02Fe3+2.03Al3+0.037U4+0.043P5+2.45O12. The chondrite-normalised plot shows enrichment of HREE relative to LREE with pronounced negative Eu-anomaly (Eu/Eu* = 0.46). Such a high negative Eu-anomaly suggests extremely fractionated nature of the host pegmatite.  相似文献   

16.
Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15–0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220–1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm—R max /R min ): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P \(\overline 1\); the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)(hkl)] are: 3.09(8)(12\(\overline 2\)); 2.84, 2.85(10)(021, 120); 2.64(8)(21\(\overline 3\)); 2.12(8)(31\(\overline 3\)); 1.785(8)(32\(\overline 4\)), 1.581(10)(24\(\overline 2\)); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses, wt %) is: 0.26 Nb2O5, 6.16 SiO2, 31.76 TiO2, 1.81 Al2O3, 8.20 VO2, 26.27 V2O3, 12.29 Cr2O3, 1.48 Fe2O3, 0.08 MgO, 11.42 BaO; the total is 99.73. The VO2/V2O3 ratio has been calculated. The simplified empirical formula is (V 4.8 3+ Cr2.2V 0.7 4+ Fe0.3)8.0(Ti5.4V 0.6 4+ )6.0[Ba(Si1.4Al0.5O0.9)]O28. An alternative to the title formula could be a variety (with the diorthogroup Si2O7) V8Ti6[Ba(Si2O7)]O22. Batisivite probably pertains to the V 8 3+ Ti 6 4+ [Ba(Si2O)]O28-Cr 8 3+ Ti 6 4+ [Ba(Si2O)]O28 solid solution series. The type material of batisivite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

17.
Summary The mixed valent iron silicate ilvaite CaFe 2 2 +Fe3+ [Si2O7/O/(OH)] has been synthesized under hydrothermal conditions at temperatures between 300 and 500°C, pressures between 1.5 and 4 Kbars and oxygen fugacities controlled by the solid state buffers Fe3O4/Fe2O3, Fe/Fe3O4 and Ni/NiO. All these ilvaites are monoclinic (P21/a with cell parameters a0 = 13.0065 (9) Å, b0 = 8.8073 (7) Å, c0 = 5.8580 (4) Å, and = 90.332 (6)°. The quality of the samples has been checked by Mössbauer spectroscopy. Scanning electron microscopic pictures show small euhedral crystals with a size up to 30 .
Synthese und Charakterisierung des gemischt valenten Eisensilikates Ilvait, CaFe3 [Si2O7/ 0/(OH)]
Zusammenfassung Das gemischt valente Eisensilikat Ilvait CaFe 2 2 +Fe3+ [Si2O7/0/(OH)] wurde unter hydrothermalen Bedingungen bei Temperaturen zwischen 300 und 500 °C, Drucken zwischen 1,5 und 4,0 Kbar und bei Sauerstoff-Fugazitäten, die durch Festkörperpuffer (Fe3O4/Fe2O3, Fe/Fe3O4 and Ni/NiO) kontrolliert wurden, hergestellt. Diese Ilvaite sind alle monoklin mit den Zellparameters a0=13,0065 (9) Å, b0 = 8,8073 (7) Å, c0 = 5,8580 (4) Å und = 90,332 (6)°. Die Qualität der Proben wurde mit Mössbauer Spektroskopie überprüft. Rasterelektronenmikroskopische Aufnahmen zeigten idiomorphe Kristalle mit einer Größe bis 30 .


With 6 Figures  相似文献   

18.
1 Introduction Chevkinite groups can be assigned to the chevkinite-(Ce) subgroup and perrierite-(Ce) subgroup in accord with the angle β : β ≈ 100o for the chevkinite subgroup and β ≈ 113o for the perrierite subgroup. Chevkinite-(Ce), polykovite-(Ce) and Maoniupingite (new mineral No. 017 of 2003) belong to the former subgroup, while renjeite and matsubaraite belong to the latter group. As strontio-chevkinite is a Sr-analogue of perrierite, usually the natural chevkinite-(Ce) group min…  相似文献   

19.
Three minerals of the mayenite supergroup have been found in fluorellestadite-bearing metacarbonate rock (former fragment of petrified wood of ankeritic composition) from the dump at the Baturinskaya-Vostochnaya-1-2 mine. These are eltyubyuite Ca12Fe1°Si4O32Cl6, its fluorine analog Ca12Fe103+Si4O30F10, and chlormayenite-wadalite Ca12(Al,Fe)14O32Cl2-Ca12(Al,Fe)10Si4O32Cl2. The first two phases occur in the reaction mantle around hematite, magnesioferrite, and Ca-ferrite aggregates (“calciohexaferrite” CaFe12O19, “grandiferrite” CaFe4O7, and “dorrite phase” Ca2(Fe53 +Mn00.5Mg0.5)(Si0.5Fe5.53+)O20) and, rarely, as individuals in grained aggregates of fluorellestadite-cuspidine (± lar- nite ± rusinovite Ca10(Si2O7)3Cl2). Assemblages of zoned chlormayenite-wadalite crystals are found in grained aggregates of fluorellestadite- cuspidine, which lack Ca-ferrite. Also, harmunite CaFe2O4, chlorellestadite, fluorapatite, anhydrite, rondorfite CasMg(SiO4)4Cl2, fluorine analog of rondorfite CasMg(SiO4)4F2, “Mg-cuspidine” Ca3.5(Mg,Fe)0.5(Si2O7)F2, fluorite, barioferrite BaFe12O19, zhangpeishanite BaFCl, and other rare phases are identified in this rock. Data on the chemical composition and Raman spectroscopy of the mayenite-supergroup minerals are given. The genesis of metacarbonate rock is considered in detail: “oxidizing calcination” of Ca-Fe-carbonates with the formation of hematite and lime; reaction between hematite and lime with the formation of different Ca-ferrites; formation of larnite as a result of reaction between SiO2 and lime or CaCO3; and reactionary impact of hot Cl-F-S-bearing gases on early assemblages. Eltyubyuite and its fluorine analog crystallized at the stages of gas impact. It is presumed that the maximum temperature during the formation of rock reached 1200–1230 °C. © 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号