首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the fact that some greenstone belts preserve the record of contemporaneous komatiitic and tholeiitic volcanism, a genetic link between the two is not widely accepted. The significance of a compositional gap seperating these magma types and differences in their respective degree of light rare earth element (LREE) enrichment, cited as evidence against a derivative relationship, are complicated by the possibility of crustal assimilation by magmas of komatiitic affinity. In the Archean La Grande Greenstone belt of northern Quebec a succession of metamorphosed tholeiitic basalts and younger, high-Mg, LREE-enriched andesites are preserved. The tholeiites are differentiated basaltic rocks whose chemical compositions appear to have been controlled by low pressure, gabbroic fractional crystallization and are similar to Type 1 MORB. Parental magmas were probably high-Mg liquids of compositions similar to komatiitic basalts which also occur in the greenstone belt. These high-Mg liquids are believed to be themselves the product of high pressure, OLIV+OPX fractional crystallization of more magnesian primary liquids of komatiitic composition. The higher La/Sm ratios of komatiitic basalts and tholeiites relative to komatiites in this belt, can be explained by small degrees of crustal assimilation. In the central part of the belt, late-stage, mafic igneous rocks have chemical compositions similar to Archean examples of contaminated volcanic rocks (e.g., Kambalda, Australia). These late-stage lavas consist of basalts and andesites with high-Mg, Ni and Cr abundances, LREE-enriched profiles and low Ti abundances. They are believed to be the products of crustal assimilation and crystallization of OPX-PLAG-CPX from high-Mg liquids of komatiitic affinity. The volcanic stratigraphy records the progressive effects of crustal contamination through time. A light sialic crust may have initially acted as a density barrier, preventing the eruption of primary high-Mg liquids and forcing fractionation at depth which produced more buoyant compositions. With subsequent thinning of the crust, the density barrier presumably failed, and primary liquids migrated directly toward the surface. Reaction of these liquids with tonalitic crust produced contaminated differentiates.  相似文献   

2.
The Jurassic Bonanza arc, on Vancouver Island, British Columbia, represents an exhumed island arc crustal section of broadly diorite composition. We studied bodies of mafic and ultramafic cumulates within deeper levels of the arc to constrain the conditions and fractionation pathways leading from high-Mg basalt to andesite and dacite. Major element trends coupled with textural information show the intercumulus crystallization of amphibole, as large oikocrysts enclosing olivine in primitive cumulates controls the compositions of liquids until the onset of plagioclase crystallization. This process is cryptic, occurring only in the plutonic section, and explains the paucity of amphibole in mafic arc volcanics and the change in the Dy/Yb ratios in many arc suites with differentiation. The correlation of octahedral Al in hornblende with pressure in liquidus experiments on high-Mg basalts is applied as an empirical barometer to hornblendes from the Bonanza arc. It shows that crystallization took place at 470–880 MPa in H2O-saturated primitive basaltic magmas. There are no magmatic equivalents to bulk continental crust in the Bonanza arc; no amount of delamination of ultramafic cumulates will shift the bulk arc composition to the high-Mg# andesite composition of bulk continental crust. Garnet removal from wet magmas appears to be the key factor in producing continental crust, requiring high pressures and thick crust. Because oceanic island arcs are built on thinner crust, the long-term process generating the bulk continental crust is the accretion of island arcs to continental margins with attendant tectonic thickening.  相似文献   

3.
Two series of anhydrous experiments have been performed in anend-loaded piston cylinder apparatus on a primitive, mantle-derivedtholeiitic basalt at 1·0 GPa pressure and temperaturesin the range 1060–1330°C. The experimental data provideconstraints on phase equilibria, and solid and liquid compositionsalong the liquid line of descent of primary basaltic magmasdifferentiating in storage reservoirs located at the base ofthe continental crust. The first series are equilibrium crystallizationexperiments on a single basaltic bulk composition; the secondseries are fractionation experiments where near-perfect fractionalcrystallization was approached in a stepwise manner using 30°Ctemperature steps and starting compositions corresponding tothe liquid composition of the previous, higher-temperature glasscomposition. Liquids in the fractional crystallization experimentsevolve with progressive SiO2 increase from basalts to dacites,whereas the liquids in the equilibrium crystallization experimentsremain basaltic and display only a moderate SiO2 increase accompaniedby more pronounced Al2O3 enrichment. The principal phase equilibriacontrols responsible for these contrasting trends are suppressionof the peritectic olivine + liquid = opx reaction and earlierplagioclase saturation in the fractionation experiments comparedwith the equilibrium experiments. Both crystallization processeslead to the formation of large volumes of ultramafic cumulatesrelated to the suppression of plagioclase crystallization relativeto pyroxenes at high pressures. This is in contrast to low-pressurefractionation of tholeiitic liquids, where early plagioclasesaturation leads to the production of troctolites followed by(olivine-) gabbros at an early stage of differentiation. KEY WORDS: liquid line of descent; tholeiitic magmas; equilibrium crystallization; fractional crystallization  相似文献   

4.
Geological, mineralogical, petrographic, geochemical, and geochronological data are reported for granitoids of the Aturkol Massif (Gorny Altai). It is shown that it was formed in within-plate setting in the Early Triassic, nearly simultaneously with flood basalts of the Kuznetsk Basin and alkalic basite and lampropyre dike swarms in the western Altai-Sayan Fold Region. At the same time, the mineralogical-petrographic, geochemical, and isotope characteristics of the considered granitoids are close to those of I-type granites. Intraplate signatures (elevated HFSE and REE) are recognized only in the least silicic rocks (granosyenites). Obtained data suggest mantle–crustal nature of the granitoids. They were formed by mixing of lamprophyre magmas with high pressure (>10 kbar) crustal melts derived from a mixed source consisting mainly of N-MORB-type metabasites with insignificant admixture of high-Ti basalts and metasedimentary rocks. The contribution of mantle component in the granitoids was insignificant (<20%). Proposed petrogenetic mechanism can provide the formation of large volumes of granitoid magmas with “crustal” geochemical and isotope signatures in an intraplate setting.  相似文献   

5.
This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years b.p.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ∼3000 14C years b.p.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (<0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes. Received: 4 January 1999 / Accepted: 30 August 1999  相似文献   

6.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987113001072   总被引:6,自引:1,他引:5  
The late Permian Emeishan large igneous province(ELIP) covers ~0.3 x 106 km2 of the western margin of the Yangtze Block and Tibetan Plateau with displaced,correlative units in northern Vietnam(Song Da zone).The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian(~260 Ma) mass extinction.The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered maficultramafic and silicic plutonic rocks exposed.The ELIP is divided into three nearly concentric zones(i.e.inner,middle and outer) which correspond to progressively thicker crust from the inner to the outer zone.The eruptive age of the ELIP is constrained by geological,paleomagnetic and geochronological evidence to an interval of 3 Ma.The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle(i.e.asthenosphere or mantle plume) sources or both.The range of Sr(I_(Sr) = 0.7040-0.7132),Nd(ε_(Nd)(t) ≈-14 to +8),Pb(~(206)Pb/~(204)Pb_1≈ 17.9-20.6) and Os(γ_(Os) =-5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compositions suggests that there is a sub-lithospheric mantle component in the system.The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting,crustal melting or by interactions between mafic and crustal melts.The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion.The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing(e.g.uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived,plume-like upwelling of mantle-derived magmas.The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota during the late Capitanian.  相似文献   

8.
Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust.  相似文献   

9.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

10.
Petrographic and chemical analyses demonstrate that late Cenozoic mafic lavas from the Basin-Range Province, western United States, are predominantly alkali-olivine basalts. Associated with these lavas are lesser volumes of basaltic andesite which appear to be differentiates from the more primitive alkali basalts. Late Cenozoic basalts from adjacent regions (Columbia River Plateau, Snake River Plain, Yellowstone area, High Cascades and Sierra Nevada) are predominantly tholeiitic. This apparent petrologic provincialism is supported by complementary variations in heat flow, seismic velocities, crustal thickness, magnetic anomalies and geologic setting.Alkali-olivine basalts from Japan and eastern Australia are analogous to those from the Basin-Range province both in composition and tectonic environment. It is suggested that these lavas are the products of a unique environment characterized by high heat flow and a thin crust.Recent melting experiments on peridotites and basalts and measurements of heat flow allow limits to be placed on the depth of origin of Basin-Range alkali-olivine basalt magmas. It is proposed that these lavas are produced by partial melting (less than 20%) of peridotitic mantle material at depths between 40 and 60 km in response to an elevated geothermal gradient. The basaltic andesites may be derived from hydrous alkali basalt magma by fractionation at depths of 30 to 40 km.  相似文献   

11.
In the western Trans-Mexican Volcanic Belt voluminous silicic volcanism has been associated with the rifting of the Jalisco block from mainland Mexico. Rhyolitic volcanism started at 7.5 Ma after a major pulse of basaltic volcanism aged 11–8.5 Ma associated with slab detachment. This was followed by a second period, between 4.9 and 2.9 Ma, associated with rhyolitic domes and ignimbrite coexisting with basaltic volcanism. The similarity in rare earth element contents between basalts and rhyolites excludes a simple liquid line of descent. The low Ba and Sr contents and the ferroan character of the rhyolites suggest extensive fractional crystallization. Late Miocene–early Pliocene rhyolite Sr isotope values are only slightly more radiogenic than the basalts, whereas Nd isotope ratios are indistinguishable. We successfully modelled the 7.5–3 Ma silicic magmatism as a result of partial melting of crustal gabbroic complexes that we infer to have formed in the mid-lower crust due to the high-density Fe-enriched composition of the late Miocene basaltic volcanism. Slab rollback since ~7.5 Ma favoured decompression melting and arrival of additional mafic magmas that intruded in the lower crust. These basalts heated and melted the gabbroic complexes forming the silicic magmas, which subsequently underwent assimilation and fractional crystallization processes. The first silicic pulse was emplaced during a period of low tectonic activity. Extensional faulting since the Pliocene favours the eruption of both silicic magma and lesser amount of mafic lavas.  相似文献   

12.
塔里木盆地夏河南玄武岩露头以水平层状分布为最大特征,其玄武岩层和沉积夹层保持了较原始的产状,是研究塔里木盆地二叠纪多期次玄武质岩浆活动的理想场所,是对比盆地内其他玄武质岩浆活动的最佳剖面。本文通过详细的野外和遥感解译工作,报道了夏河南玄武岩的野外产状、岩相学特征和各层玄武岩的地球化学特征,探讨了夏河南玄武岩的岩浆源区和岩浆演化过程。研究认为夏河南玄武岩质岩浆来源于富集的岩石圈地幔,为尖晶石-石榴石二辉橄榄岩经历低程度部分熔融的产物,各层玄武岩的成分差异与部分熔融程度有关,单一层内玄武岩的岩浆演化以分离结晶为主,地壳混染程度较小。夏河南各层玄武岩来源于同一岩浆源区,其特征与柯坪玄武岩相似,可对应于柯坪地区开派兹雷克组的6层玄武岩。研究进一步明确了塔里木盆地早二叠世玄武岩的空间分布特征,证实塔里木早二叠世大火成岩省的玄武质岩浆作用可从柯坪地区延伸到夏河南、塔中、塔西南等地。  相似文献   

13.
The nature of the source of continental flood basalts (CFB) is a highly debated topic. Proposed mantle sources for CFBs, including both high- and low-Ti basalts, include subcontinental lithospheric mantle (SCLM), asthenospheric mantle, and deep, plume-related mantle. Re-Os isotope systematics can offer important constraints on the sources of both ocean island basalts (OIB) and CFB, and may be applied to distinguish different possible melt sources. This paper reports the first Re-Os isotope data for the Late Permian Emeishan large igneous province (LIP) in Southwest China. Twenty one CFB samples including both low- and high-Ti basalts from five representative sites within the Emeishan LIP have been analyzed for Os, Nd, and Pb isotopic compositions. The obtained Os data demonstrate that crustal assimilation affected Os isotopic compositions of some Emeishan basalt samples with low Os concentrations but not all of the samples, and the Emeishan basalts with high Os contents likely experienced the least crustal contamination. The low and high-Ti basalts yield distinct Os signatures in terms of 187Os/188Os and Os content. The low-Ti basalt with the highest Os concentration (400 ppt) has a radiogenic Os isotopic composition (γOs(t), +6.5), similar to that of plume-derived OIB. Because the Os isotopic composition of basalts with relatively high Os concentrations (typically >50 ppt) likely represents that of their mantle source, this result implies a plume-derived origin for the low-Ti basalts. On the other hand, the high-Ti basalts with high Os concentration (over 50 ppt) have unradiogenic Os isotopic signatures (γOs(t) values range from −0.8 to −1.4), suggesting that a subcontinental lithosphere mantle (SCLM) component most likely contributed to the generation of these magmas. Combining Pb and Nd isotopic tracers with the Os data, we demonstrate that the low-Ti basaltic magmas in the Emeishan CFB were mainly sourced from a mantle plume reservoir, whereas the high-Ti basaltic magmas were most likely derived from a SCLM reservoir or were contaminated by a significant amount of lithospheric mantle material during plume-related magma ascent through the SCLM.  相似文献   

14.
Along strike of the Quaternary magmatic arc in the SouthernVolcanic Zone of the Andes, there is a south to north increasein crustal thickness, and the lavas define systematic geochemicaltrends which have been attributed to variations in the proportionsand compositions of mantle-and crustal-derived components. Realisticinterpretations of these regional geochemical trends requiresan understanding of the sources and processes that control lavacompositions at individual volcanoes. Because it is in an importantgeophysical and geochemical transition zone, we studied theAzufre—Planchon—Peteroa volcanic complex, a nestedgroup of three volcanoes <055 m.y. in age located at 3515'Sin the Southern Volcanic Zone of the Andes. North of this complexat 33–35S the continental crust is thick, basalts areabsent, and there is abundant evidence for crustal componentsin the evolved lavas, but south of 37S, where the crust isrelatively thin, basaltic lavas are abundant and the contributionof continental crust to the lavas is less obvious. In additionto its location, this volcanic complex is important becausethere is a diversity of lava compositions, and it is the northernmostexposure of recent basaltic volcanism on the volcanic front.Therefore, the lavas of this complex can be used to identifythe relative roles of mantle, lower-crustal and upper-crustalsources and processes at a single location. Volcan Azufre is the oldest and largest volcano of the complex;it is a multi-cycle, bimodal, basaltic andesite–dacitestratovolcano. Volcan Planchon is the northernmost basalt-bearingvolcano along the volcanic front of the Southern Andes, andVolcan Peteroa, the youngest volcano of the complex, has eruptedmixed magmas of andesitic and dacitic composition. Most basalticandesite lavas at Azufre and Planchon are related by a plagioclase-poor,anhydrous mineral fractionating assemblage. High-alumina basaltis produced from a tholeiitic parent by an 4–8 kbar fractionatingassemblage. During this moderatepressure crystallization, themagmas also incorporated a crustal component with high La/Yband high abundances of Rb, Cs and Th. Based on the chemicalcharacteristics of the added component and the inferred depthof crystallization, the crustal source may have been garnetgranulite derived from solidified arc magmas in the lower tomiddle continental crust. At Planchon, the role of crustal assimilationhas increased with decreasing eruption age probably becausecrustal temperatures have increased during continued volcanism.Azufre dacite lavas formed at low pressures by fractionationof a plagioclase-rich assemblage. These dacite lavas containan upper-crustal component, probably derived in part from limestone,with high values of 87Sr/86Sr and 18O/16O. Thus two depths (upperand lower crust) of crystallization and associated crustal assimilationare evident in Planchon–Azufre lavas. Peteroa, the focusof recent volcanism, consists of calc-alkaline andesite anddacite eruptive products whose textures and compositions indicatean important role for magma mixing. Therefore, the volcanismevolved from a tholeiitic system of basalt and subordinate dacite(Planchon–Azufre) to a calc-alkaline system with abundantmixed lavas of intermediate composition (Peteroa). In additionto crustal thickness, two important parameters which controlledthe diversity of lava composition in this complex are magmasupply rate from the mantle and crustal temperature. Both parametersvaried with time, and they must be considered in broader interpretationsof along-strike geochemical trends. KEY WORDS: arc magmas; Andes; Peteroa; Planchan; geochemistry *Corresponding author. Present address: ENTRIX, Inc., 4II North Central Avenue, Glendale, CA 91203, USA  相似文献   

15.
浙闽沿海大面积出露的中生代酸性火山岩区有少量早白垩世玄武岩分布,它们具典型钾富集和铌等元素亏损特征,其同位素组成表现为较高ISr(0.7055-0.7106)、低的εNd(1.2--10.6,大多介于-3.2--10.6之间)及富放射性成因铅(206Pb/204Pb=18.355-18.726,207Pb/204Pb=15.455-15.799,208Pb/204Pb=38.530-39.319).这些特征表明玄武岩源区为一富集型的陆下岩石圈地幔,由古老的俯冲地壳物质再循环进入并交代地幔而形成。没有证据表明本区早白垩世基性和酸性岩浆之间发生过大规模的化学混合,但不排除同位素之间的交换以及局部的化学和机械混合。壳-幔混合与地壳混染仅在少数玄武岩的形成过程中起着较重要的作用。  相似文献   

16.
Pb, O, Nd, and Sr isotopic data for the Columbia River basalts paint a complex picture for the origin of this flood basalt province. At least 3 distinct mantle sources appear to have been involved, superimposed upon which are the effects of crystal fractionation and mass exchange with evolved crustal wallrocks. To a large degree, the initiation of Columbia River volcanism and the geochemical characteristics of the basalts appear to have been influenced by subduction of the Juan de Fuca plate beneath the North American plate in a manner analogous to the origin of back-arc basins. The physical structure of the crust appears to have influenced the late stage evolution of the magmas by directing the locus of eruption to the border between the ancient continental interior and much younger crust to the south and west. This proximity to the continental interior also allowed old enriched subcontinental mantle to become involved in the very late stages of Columbia River volcanism. An important consequence of the existence of enriched mantle regions beneath continents is that the combination, crust plus enriched mantle, requires more incompatible elements to have been extracted from the remainder of the mantle than would be the case if no enriched mantle existed.  相似文献   

17.
Volcanic rocks in the Middle–Lower Yangtze River Valley (MLYRV) constitute a bimodal magmatic suite, with a significant compositional gap (between 50% and 63% SiO2) between the mafic and felsic members. The suite is characterized by a relatively wide spectrum of rock types, including basalts, trachytes, and rhyolites. The basaltic rocks have low-to-moderate SiO2 contents of 46.00–50.01%, whereas the trachytes and rhyolites possess SiO2 contents in the range of 63.08–77.61%. Rocks of the bimodal suite show moderate enrichment of LILEs, negative Nb, Ta, and Ti anomalies, and are significantly enriched in LREEs. The basalts were most likely generated by parental mafic magmas derived from enriched lithospheric mantle with minor assimilation of crustal materials involving coeval crystal fractionation during magma evolution. The results of energy-constrained assimilation and fractional crystallization simulations demonstrate that the felsic magma was produced by the mixing of 5–20% lower crustal anatectic melts with an evolved mafic magma (~48% SiO2) and accompanied by extensive clinopyroxene, plagioclase, biotite, and Fe–Ti oxide fractionation. Our model for the genesis of felsic rocks in bimodal suites is different from the traditional models of crustal melting and fractional crystallization or assimilation–fractional crystallization of basaltic liquids.  相似文献   

18.
Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust. Received: 26 March 1996 / Accepted: 14 November 1996  相似文献   

19.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

20.
O'HARA  M. J. 《Journal of Petrology》2000,41(11):1545-1651
There is a conspicuous dichotomy in the conventional model oflunar petrogenesis between the total intra-crustal differentiationpostulated for the products of feldspathic volcanism in thelunar highlands and the near absence of differentiation postulatedfor the products of mare volcanism. Both the cumulate mantlemodel, and the selenotherm postulated to accompany genesis ofalleged ‘primary’ mare magmas by remelting of thosecumulates, imply supra-adiabatic thermal gradients in near-solidusmaterials throughout the lunar mantle 4·3–3·2Ga ago. This should have resulted in vigorous convective motion,which has not occurred. There is no positive europium anomalyin the average lunar highland crust. That crust cannot, therefore,have formed by plagioclase flotation from a lunar magma ocean,for which there is no other requirement. There is no negativeeuropium anomaly in the average mantle to be inherited by latermare basalts. Other rocky bodies of lunar size in the SolarSystem have accreted at rates that allowed incorporation ofplenty of volatiles and without forming global magma oceans.Partial melting in the presence of water, followed by near-surfacefractionation and volatile losses can explain the feldspathiccharacter, high incompatible element concentrations and lackof Eu anomaly in the lunar highlands. Volcanic eruption on theMoon must have been accompanied by selective volatilizationlosses of sodium, sulphur and other elements similar to theprocess seen on Io, which can account for the major differencesbetween terrestrial and lunar basalts. Siderophile element depletionin lunar lavas may reflect immiscible sulphide liquid and metalseparation, rather than global impoverishment in such elements,and large ore bodies may have formed close to the lunar surface.Mare basalt volcanism appears to have been a protracted, lowmagma productivity event with few similarities to terrestrialocean-floor, ocean-island, continental flood basalt or komatiitevolcanism. At low pressure the crystallization of plagioclasewell before pyroxene typifies those terrestrial mid-ocean ridgebasalt, ocean-island basalt and continental flood basalt magmas.A similar sequence is demanded of the postulated lunar primarymagmas. Mare basalt hand-specimen and pyroclastic glass beadcompositions do not, however, display the required crystallizationsequence and cannot represent the required primary melt compositions.The true erupted lava compositions which gave rise to the regolithcompositions across all the maria are much more feldspathicthan the majority of large hand specimens and, in common withbasalts on other planets, they are close to low-pressure plagioclase-saturatedcotectic residual liquids which have evolved by removal of gabbrosin crustal magma chambers, or perhaps in giant lava lakes akinto topless Bushveld complexes. Any further debate could be resolvedby a 100 m drill core in a few mare locations. Field provenanceof samples from Mars, a planet half covered by flood basaltsand products of central volcanoes, will be little better thanfor those from the Moon. It will be important to encourage multipleworking hypotheses, rather than to rush to a consensus. KEY WORDS: lunar; basalt; highland; magma ocean; europium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号