首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
C2-C6 Nonmethane hydrocarbon (NMHC) concentrations in the atmospheric boundary layer and in surface seawater were simultaneously measured during an oceanographic cruise in the intertropical Indian Ocean. NMHC were found to be mainly C2-C4 alkenes and C2-C3 alkanes. Their concentrations ranged from 1 to 30×10–9 l/l in the seawater and 0.1 to 15 ppbv in the atmosphere. Seawater appeared to be a source because the C2-C6 NMHC were supersaturated with respect to the atmosphere by 2 or 3 orders of magnitude.After a selection of the pure marine atmospheric samples, performed with the help of stable and radioactive continental tracers, we found an identical composition in NMHC of surface air and seawater. This observation enabled us to establish that the gas transfer between sea and air occurred according to nonsteady state processes, and that the fluxes cannot be deduced only from atmospheric measurements. An order of magnitude value of the oceanic source for the different NMHC is however derived from the comparison of their sea water concentrations to that of propane and an independent evluation of the marine source of this last compound.  相似文献   

2.
C2–C6 Nonmethane hydrocarbons (NMHC) and radioactive continental tracers were measured during two oceanographic cruises, in June 1982 in the Mediterranean and Red Sea, and in November 1982 across the North Atlantic and South Pacific oceans. Typical concentrations in marine atmosphere are between 0.05 and 0.2 ppbv. Owing to their similar lifetimes, propane and radon-222 are found to be well correlated. This relationship establishes that propane is mainly produced over lands and enables us to estimate its continental source strength at about 60×106 tons of carbon per year.Also at Université de Picardie  相似文献   

3.
Atmospheric samples from savanna burnings were collected in the Ivory Coast during two campaigns in January 1989 and January 1991. About 30 nonmethane hydrocarbons from C2 to C6, carbon monoxide, carbon dioxide and methane were measured from the background and also at various distances from the burning. Concentrations in the fire plume reached ppmv levels for C2-C4 hydrocarbons, and 5300, 500 and 93 ppmv for CO2, CO and CH4 respectively. The excess in the mixing ratios of these gases above their background level is used to derive emission factors relative to CO and CO2. For the samples collected immediately in the fire plume, a differentiation between high and low combustion efficiency conditions is made by considering the CO/CO2 ratio. Ethene (C2H4), acetylene (C2H2), ethane (C2H6) and propene (C3H6) are the major NMHC produced in the flaming stage, whereas a different pattern with an increasing contribution of alkanes is observed in samples typical of post flaming processes. A strong correlation between methane and carbon monoxide suggests that these compounds are produced during the same stage of the combustion. In samples collected at a distance from the fire and integrated over a period of 30 minutes, the composition is very similar to that of flaming. NMHC/CO2 is of the order of 0.7%, CH4/CO2 of the order of 0.4% and CO/CO2 of the order of 6.3%. From this study, a global production by African savanna fires is derived: 65 Tg of CO-C, 4.2 Tg of CH4-C and 6.7 Tg of NMHC-C. Whereas acetylene can be used as a conservative tracer of the fire plumes, only ethene, propene and butenes can be considered in terms of their direct photochemical impact.  相似文献   

4.
We investigate the composition of 63 C2-C10 nonmethane hydrocarbons (NMHCs), methane (CH4) and carbon monoxide (CO), in Jeddah, Mecca, and Madina (Saudi Arabia), in Lahore, (Pakistan), and in Singapore. We established a database with which to compare and contrast NMHCs in regions where ambient levels and emissions are poorly characterized, but where conditions are favorable to the formation of tropospheric ozone, and where measurements are essential for improving emission inventories and modeling. This dataset will also serve as a base for further analysis of air pollution in Western Saudi Arabia including, but not limited to, the estimation of urban emissions and long range pollution transport from these regions. The measured species showed enhanced levels in all Saudi Arabian cities compared to the local background but were generally much lower than in Lahore. In Madina, vehicle exhaust was the dominant NMHC source, as indicated by enhanced levels of combustion products and by the good correlation between NMHCs and CO, while in Jeddah and Mecca a combination of sources needs to be considered. Very high NMHC levels were measured in Lahore, and elevated levels of CH4 in Lahore were attributed to natural gas. When we compared our results with 2010 emissions from the MACCity global inventory, we found discrepancies in the relative contribution of NMHCs between the measurements and the inventory. In all cities, alkenes (especially ethene and propene) dominated the hydroxyl radical (OH) reactivity (k OH) because of their great abundance and their relatively fast reaction rates with OH.  相似文献   

5.
During a cruise of RV Polarstern over the Atlantic in September/October 1988, C2–C4 hydrocarbons were measured in surface sea water. The ship passed through three different ocean regions divided by divergences at 8° N and 3° S. Hydrocarbon concentrations differed considerably in these regions. The highest values were obtained for ethene with mean concentrations of 246 pMol/l between 35° N and 8° N, 165 pMol/l between 8° N and 3° S, and 63 pMol/l between 3° S and 30° S. Low values were found for i- and n-butane and acetylene between 32 pMol/l and 1 pMol/l. The alkene concentrations were in general higher than the concentrations of their saturated homologs. Concentrations decreased with increasing carbon numbers. The various alkenes were well correlated with one another as were the various alkanes. Oceanic emission rates of the light hydrocarbons were calculated from their sea water concentrations using an ocean atmosphere exchange model. The averaged fluxes ranged from about 108 molec cm-2 s-1 for the alkenes and ethane to less than 107 molec cm-2 s-1 for the C4 alkanes. Acetylene emissions were below 3×106 molec cm-2 s-1. Based upon these rates budget estimates of NMHC in the ocean surface layer were made with a simple model considering production and destruction processes in the water. The emissions to the atmosphere appear to be the dominant loss process between 35° N and 8° N, whereas destruction in the water seems to be dominant in the latitude ranges 8° N-3° S and 3° S-30° S.  相似文献   

6.
A one-dimensional photochemical model was used to explore the role of chlorine atoms in oxidizing methane and other nonmethane hydrocarbons (NMHCs) in the marine troposphere and lower stratosphere. Where appropriate, the model predictions were compared with available measurements. Cl atoms are predicted to be present in the marine troposphere at concentrations of approximately 103 cm-3, mostly as a consequence of the reaction of OH with HCl released from sea spray. Despite this low abundance, our results indicate that 20 to 40% of NMHC oxidation in the troposphere (0–10 km) and 40 to 90% of NMHC oxidation in the lower stratosphere (10–20 km) is caused by Cl atoms. At 15 km, NMHC-Cl reactions account for nearly 80% of the PAN produced.The model was also used to test the longstanding hypothesis that NOCl is an intermediate to HCl formation from sea salt aerosols. It was found that the NOCl concentration required (10 ppt) would be incompatible with field observations of reactive nitrogen and ozone abundance. Chlorine nitrate (ClONO2) and methyl nitrate (CH3ONO2) were shown to be minor components of the total NO y abundance. Heterogeneous reactions that might enhance photolysis of halocarbons or convert ClONO2 to HOCl or Cl2 were determined to be relatively unimportant sources of Cl atoms. Specific and reliable measurements of HCl and other reactive chlorine species are needed to better assess their role in tropospheric chemistry.  相似文献   

7.
A box model is used to explore the detailed chemistry of C2 and C3 organic compounds in the marine troposphere by tracing the individual reaction paths resulting from the oxidation of ethane, ethene, acetylene, propane, propene and acetic acid. The mechanisms include chemical reactions in the gas phase and in the aqueous phase of clouds and aerosol particles at cloud level under conditions resembling those in the northern hemisphere. Organic hydroperoxides are found to be important intermediate products, with subsequent reactions leading partly to the formation of mixed hydroxy or carbonyl hydroperoxides that are readily absorbed into cloud water, where they contribute significantly to the formation of multifunctional organic compounds and organic acids. Organic hydroperoxides add little to the oxidation of sulfur dioxide dissolved in the aqueous phase, which is dominated by H2O2. Next to acetaldehyde and acetone, glycol aldehyde, glyoxal, methyl glyoxal and hydroxy propanone are prominent oxidation products in the gas and the aqueous phase. Acetaldehyde is not efficiently converted to acetic acid in clouds; the major local sources of acetic acid are gas-phase reactions. Other acids produced include hydroperoxy acetic, glycolic, glyoxylic, oxalic, pyruvic, and lactic acid. The mechanism of Schuchmann et al. (1985), which derives glycolic and glyoxylic acid from the oxidation of acetate, is found unimportant in the marine atmosphere. The principal precursors of glyoxylic acid are glyoxal and glycolic acid. The former derives mainly from acetylene and ethene, the latter from glycolaldehyde, also an oxidation product of ethene. The oxidation of glyoxylic acid leads to oxalic acid, which accumulates and is predicted to reach steady state concentrations in the range 30–90 ng m−3. This is greater, yet of the same magnitude, than the concentrations observed over the remote Pacific Ocean.  相似文献   

8.
The size-segregated chemical composition of aerosol particles was investigated during 1?year at the puy de D?me (1,465?m?a.s.l.), France. These measurements aimed to a better understanding of the influence of the air mass origin on the size-segregated chemical composition of the aerosol at an altitude site. Mountain site measurements are important because they are representative of long range transport and useful for model validation. PM1 mass concentration exhibits a seasonal variability with a summer maximum. The composition of PM1 did not change significantly in terms of relative contribution of water soluble inorganic ions but is rather variable in term of total mass concentrations. For the PM10-1, a different seasonal behaviour was found with maxima concentrations in autumn-winter. Aerosols were classified into four different categories according to their air mass origin: marine, marine modified, continental and Mediterranean. The PM10 aerosol mass at 50?% relative humidity was close to 2.5???g?m?3 in the marine, 4.3???g?m?3 in the marine modified, 10.3???g?m?3 in the continental and 7.7???g?m?3 in the Mediterranean sectors. We noted that the influence of the air mass origin (on the chemical properties) could be seen especially on the PM10-1. A significant PM10-1 mode was found in marine, modified marine, and Mediterranean air masses, and PM1 dominated in the continental air masses samples. As a result, the aerosol chemical composition variability at the puy de D?me is a function of both the season and air mass type and we provide a chemical composition of the aerosol as a function of each of these environmental factors.  相似文献   

9.
During the cruise ANT VII/1 (September/October 1988) of the German research vessel Polarstern the latitudinal distributions of several nonmethane hydrocarbons were measured over the Atlantic between 45°N and 30°S by in-situ gas chromatography.On the average, the highest mixing ratios of ethane, propane, i- and n-butane, ethene and acetylene were observed in the Northern Hemisphere around 40° N and just north of the intertropical convergence zone, respectively. South of the equator, a bulge in the mixing ratios of ethane and acetylene was observed indicating aged biomass burning emissions. This observation coincided with enhanced tropospheric ozone found in this region at this season. On the average ethane and acetylene mixing ratios were around 500 and 100 ppt, respectively, whereas the levels of the other NMHC were in the range of some ppt up to 100 ppt.compared with the results of the cruise ANT V/5 (March/April, 1987), the ethane mixing ratios in September/October proved to be a factor of 3 lower in the Northern Hemisphere and a factor of 2 higher in the Southern Hemisphere, probably due to seasonal effects. Possible causes are the higher OH radical concentrations in summer, which result in a faster removal of ethane or stronger emission from biomass burning which also peaks in the dry season.The relative pattern of the hydrocarbons just north of the ITCZ was very similar for both measurement series. In this region, the NMHC were advected by long-range transport from the continent, whereas generally the ocean itself acts as a major NMHC source. This is supported by the results of a balance calculation between oceanic emissions and atmospheric removal rates.  相似文献   

10.
During the Berlin Ozone Experiment BERLIOZ in July–August 1998 quasi-continuous measurements ofC2–C12 nonmethane hydrocarbons (NMHCs) were carried out at 10 sites in and around the city of Berlin using on-line gas-chromatographic systems (GCs) with a temporal resolution of 20–120 minutes. Additional airborne NMHCmeasurements were made using canister sampling on three aircraft and an on-line GC system on a fourth aircraft. The ground based data are analyzed to characterize the different sites and to identify the influence of emissions from Berlin on its surroundings. Benzene mixing ratios at the 4 rural sites were rather low (<0.5 ppbv). Berlin (and the surrounding highway ring) was identified as the main source of anthropogenic NMHCs at Eichstädt and Blossin, whilst other sources were important at the furthermost site Menz. The median toluene/benzene concentration ratio in Berlin was 2.3 ppbv/ppbv, agreeing well with measurements in other German cities. As expected, the ratios at the background sites decreased with increasing distance to Berlin and were usually around one or below. On 20 and 21 July, the three northwesterly sites were situated downwind of Berlin and thus were influenced by its emissions. Considering the distance between the sites and the windspeed, the city plume was observed at reasonable time scales, showing decreasing toluene/benzene ratios of 2.3, 1.6 and 1.3 with increasing distance from Berlin. Isoprene was the only biogenic NMHC measured at BERLIOZ. It was themost abundant compound at the background sites on the hotter days, dominating the local NMHC reactivity with averaged contributions to the total OH loss rate of 51% and 70% at Pabstthum and Blossin, respectively. Emissionratios (relative to CO and to the sum of analysed NMHCs) were derived from airborne measurements. The comparison with an emission inventory suggests traffic-related emissions to be the predominating source of the considered hydrocarbon species. Problems were identified with the emission inventory for propane, ethene and pentanes.  相似文献   

11.
Two years of individual nonmethane hydrocarbon (NMHC) measurements at a rural site close to the south coast of Norway show that there was a distinct annual cycle with a late winter maximum and late summer minimum in the slowly reacting NMHCs acetylene, ethane, propane and i- and n-butane. The average January—March concentrations were a factor 2–4 higher than the July-September concentrations. Also ethene, propene and the pentanes show a similar annual cycle, but the individual scatter in the measurements in particular of propene, is large. The highest concentrations of NMHC were found in winter for easterly transport on a regional scale (out to 1500 km from the site), and for southeasterly transport in the summer.  相似文献   

12.
Air samples were collected covering a full diurnal cycle during each month of the year 2002 at a mountaintop of Mt. Abu (24.6^∘ N, 72.7^∘ E, 1680 amsl). These samples were analyzed for C2−C4 NMHCs using a gas chromatograph (GC) equipped with flame ionization detector (FID). The seasonally averaged diurnal distributions of these NMHCs do not show significant variations in the summer season. While sharp peaks in the diurnal variation of some species during evening hours are additional features apart from higher levels in all NMHCs in the winter season. The seasonal variations in relatively long lived species (e.g. ethane, propane and acetylene) are observed to be more pronounced compared to those in reactive species (e.g. ethene, propene and butanes). The seasonal changes in transport patterns seem to be more dominant factor at this site for the observed variations in NMHCs than changes in OH radical concentration. The annual mean mixing ratios of ethane, ethene, propane, propene, i-butane, acetylene, and n-butane are 1.22 ± 0.58, 0.34 ± 0.24, 0.46 ± 0.20, 0.17 ± 0.14, 0.21 ± 0.18, 0.41 ± 0.43, and 0.31 ± 0.35 ppbv, respectively. Only few pairs of NMHCs are observed to show good correlations, mainly due to transport of air masses with different degree of photochemical processing. A comparison of this measurement with data reported for other remote sites of the globe indicates lower levels of light NMHCs in the tropical sites. The annual mean mixing ratios of various C2−C4 NMHCs at Mt. Abu are lower by factors ranging between 3 to 9 compared to a nearest urban site of Ahmedabad. The annual mean propylene (propene) equivalent concentrations of about 1.12 and 8.62 ppbC were calculated for Mt. Abu and Ahmedabad, respectively.  相似文献   

13.
In remote marine aerosol samples collected from the North Pacific ocean, Enewetak Atoll, American Samoa, and New Zealand, series of mid-chain ketocarboxylic acids in the range of C6-C18 were detected. All the positional isomers, except for the 2-oxo and 3-oxo species, were detected for major ketoacid families (e.g. C9, C11 and C13). Higher ketoacid concentrations (up to 19 ng/m3) were obtained in the northern North Pacific aerosol samples, which generally showed an odd carbon-numbered predominance with 5-oxoundecanoic acid being the major species. By contrast, lower concentrations were obtained in the lower-latitude or subtropical aerosol samples, where even carbon-numbered ketoacids were relatively abundant.The distribution patterns of the odd carbon-numbered ketoacids could not be explained by the primary emissions from source materials including terrestrial higher plants, soil particles, and ocean surfaces. We consider that the isomeric ketocarboxylic acids are produced in the atmosphere by the photochemical oxidation of semi-volatile monocarboxylic acids, which are counterparts of the oxidative degradation of unsaturated fatty acids emitted from seawater surfaces. Atmospheric production of the ketoacids is seemingly enhanced in the northern North Pacific, probably due to an enhanced primary productivity.  相似文献   

14.
The levels of low molecular weight hydrocarbons were measured at pristine sites and rural locations affected by hydrocarbon emissions from oil and gas producing fields in Venezuela. At the clean sites, lower concentrations of C2 to C6 alkanes were observed, whereas, in comparison with remotes sites, very much higher levels were measured at the polluted sites. Alkenes present relatively high concentrations, with isoprene being the most abundant, all over the study region. The main sources of alkenes are likely to be natural, mainly from vegetation. The levels of alkanes recorded at the clean sites and the alkene levels found everywhere in the region are in agreement with the values reported for other clean sites in the tropics. The increase of ozone production capacity due to the anthropogenic emissions of alkanes from oil and gas fields was estimated. Due to the presence in the atmosphere of important amounts of naturally emitted isoprene, ethene and propene, which makes a substantial contribution to the reactivity of the hydrocarbon mixture, a small increase (<5%) was estimated to occur in the capacity of the ozone production at a regional scale during the rainy season.  相似文献   

15.
During the summer of 1980–81, a rudimentary form of wet-only event sampling was employed to collect a total of 294 rainwater samples at 12 sites spread across the metropolitan region of Sydney, Australia's largest city. From the samples were determined conductivity, pH, ammonium, chloride and nitrate ion concentrations as well as deposited water volume. Supplementary data consisting of city-wide averaged SO2, NO2, NO, and O3 concentrations and 950 mb wind speed and direction were obtained for times coinciding with the period during which each event occurred.The pH of rainwater upwind of the city and unaffected by urban/industrial emissions was found to be usually 5, whereas the volume-weighted mean pH of all the metropolitan samples was 4.4, indicating that local emissions significantly increased rainwater acidity in the near field. Time available for conversion of precursors to acids averaged 1–2 h only.Considerable day-to-day variability in rainwater composition was observed. Factors identified as contributing to this variability included precursor gas concentration, wind speed, wind direction, amount of water deposited per event and possibly time of day. These results show that physical/meteorological factors cannot be excluded from consideration if variance in rainwater composition data is to be explained.  相似文献   

16.
The impact of natural and anthropogenicnon-methane hydrocarbons (NMHC) on troposphericchemistry is investigated with the global,three-dimensional chemistry-transport model MOGUNTIA.This meteorologically simplified model allows theinclusion of a rather detailed scheme to describeNMHC oxidation chemistry. Comparing model resultscalculated with and without NMHC oxidation chemistryindicates that NMHC oxidation adds 40–60% to surfacecarbon monoxide (CO) levels over the continents andslightly less over the oceans. Free tropospheric COlevels increase by 30–60%. The overall yield of COfrom the NMHC mixture considered is calculated to beabout 0.4 CO per C atom. Organic nitrate formationduring NMHC oxidation, and their transport anddecomposition affect the global distribution of NO x and thereby O3 production. The impact of theshort-lived NMHC extends over the entire tropospheredue to the formation of longer-lived intermediateslike CO, and various carbonyl and carboxyl compounds.NMHC oxidation almost doubles the net photochemicalproduction of O3 in the troposphere and leads to20–80% higher O3 concentration inNO x -rich boundarylayers, with highest increases over and downwind ofthe industrial and biomass burning regions. Anincrease by 20–30% is calculated for the remotemarine atmosphere. At higher altitudes, smaller, butstill significant increases, in O3 concentrationsbetween 10 and 60% are calculated, maximizing in thetropics. NO from lightning also enhances the netchemical production of O3 by about 30%, leading to asimilar increase in the global mean OH radicalconcentration. NMHC oxidation decreases the OH radicalconcentrations in the continental boundary layer withlarge NMHC emissions by up to 20–60%. In the marineboundary layer (MBL) OH levels can increase in someregions by 10–20% depending on season and NO x levels.However, in most of the MBL OH will decrease by10–20% due to the increase in CO levels by NMHCoxidation chemistry. The large decreases especiallyover the continents strongly reduce the markedcontrasts in OHconcentrations between land and oceanwhich are calculated when only the backgroundchemistry is considered. In the middle troposphere, OHconcentrations are reduced by about 15%, although dueto the growth in CO. The overall effect of thesechanges on the tropospheric lifetime of CH4 is a 15%increase from 6.5 to 7.4 years. Biogenic hydrocarbonsdominate the impact of NMHC on global troposphericchemistry. Convection of hydrocarbon oxidationproducts: hydrogen peroxides and carbonyl compounds,especially acetone, is the main source of HO x in theupper troposphere. Convective transport and additionof NO from lightning are important for the O3 budgetin the free troposphere.  相似文献   

17.
An updated version of the Regional Acid Deposition Model(RADM)driven by meteorologicalfields derived from Chinese Regional Climate Model(CRegCM)is used to simulate seasonal variationof tropospheric ozone over the eastern China.The results show that:(1)Peak O_3 concentration moves from south China to north China responding to the changing ofsolar perpendicular incidence point from south to north.When solar perpendicular incidence pointmoves from north to south,so does the peak O_3 concentration.(2)In the eastern China.the highest O_3 month-average concentration appears in July.thelowest in January and the medium in April and October.The pattern mainly depends on the solarradiation,the concentration of O_3 precursors NO_x and NMHC and the ratio of NMHC/NO_x.(3)Daily variations of O_3 over the eastern China are clear.Namely,O_3 concentrations rise withthe sun rising and the maximums appear at noon.then O_3 concentrations decrease.The highest dailyvariation range of O_3 appears in summer(40×10~(-9) in volume fraction)and the lowest in winter(20×10~(-9) in volume fraction).(4)Daily variations of O_3 over the western China are not clear.The daily variation range of O_3 isless than 10×10~(-9) in volume fraction.  相似文献   

18.
The nitric acid formed from trans-2-butene, propene, ethene, toluene, and n-butane in single hydrocarbon/NO2/purified air systems was examined in smog chamber experiments. The effect of hydrocarbon and NO2 concentrations on the maximum HNO3 yield, defined as percentages of initial NO2 converted to HNO3, was studied in two sets of experiments. In every hydrocarbon system, we found no effect of hydrocarbon concentration variation on the nitric acid formed. Out of initially added 100 ppb NO2, in the hydrocarbon-rich systems, ethene formed most HNO3 (45%), followed by propene, toluene, and n-butane (24%), and trans-2-butene (13%). When the initial NO2 concentration was varied with a constant hydrocarbon concentration, the amount of HNO3 formed was found to linearly increase with the added NO2 down to |HC|/|NO2| ratios, which depended on the nature of the hydrocarbon studied. The initial rate of HNO3 formation in hydrocarbon excess experiments varied between 50, 35, 23, 16, and 8 ppb/hr for butene, propene, toluene, ethene, and butane systems, respectively.  相似文献   

19.
The results from a one-dimensional photochemical model of the troposphere representative of summertime conditions at Northern Hemisphere mid-latitudes are presented. A parameterization of mixing processes within the planetary boundary layer (PBL) has been incorporated into the model for both the daytime convective PBL and the formation of the nocturnal PBL. One result of the parameterized PBL is that the concentrations of some trace species in the free troposphere are 20–30% higher than when mixing processes are described by a vertical eddy diffusion coefficient which is held constant with respect to height and time.The calculations indicate that the lifetime of the oxides of nitrogen (NO x =NO+NO2) against photochemical conversion to nitric acid (HNO3) during summertime conditions is on the order of 6 h. This lifetime is short enough to deplete most of the NO x in the PBL, resulting in the finding that other reactive nitrogen species (HNO3 and peroxyacetyl nitrate) are more abundant than NO x throughout the free troposphere, even though NO x is the most abundant reactive nitrogen species at the surface. The effects of the inclusion of anthropogenic nonmethane hydrocarbon (NMHC) chemistry are also discussed. The inclusion of NMHC chemistry has a pronounced effect on the photochemistry of tropospheric oxone and increases thein situ column production by more than 30%.  相似文献   

20.
Oak pollen concentrations over the Houston-Galveston-Brazoria (HGB) area in southeastern Texas were modeled and evaluated against in-situ data. We modified the Community Multi-scale Air Quality (CMAQ) model to include oak pollen emission, dispersion, and deposition. The Oak Pollen Emission Model (OPEM) calculated gridded oak pollen emissions, which are based on a parameterized equation considering a plant-specific factor (C e ), surface characteristics, and meteorology. The simulation period was chosen to be February 21 to April 30 in the spring of 2010, when the observed monthly mean oak pollen concentrations were the highest in six years (2009-2014). The results indicated C e and meteorology played an important role in the calculation of oak pollen emissions. While C e was critical in determining the magnitude of oak pollen emissions, meteorology determined their variability. In particular, the contribution of the meteorology to the variation in oak pollen emissions increased with the oak pollen emission rate. The evaluation results using in-situ surface data revealed that the model underestimated pollen concentrations and was unable to accurately reproduce the peak pollen episodes. The model error was likely due to uncertainty in climatology-based C e used for the estimation of oak pollen emissions and inaccuracy in the wind fields from the Weather Research and Forecast (WRF) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号