首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Through the use of fossil fuels as an energy source, mankind is slowly changing the constitution of the atmosphere. The emission of CO2 and other greenhouse gases changes the radiative properties of the earth/atmosphere system, and as a result climate is expected to become warmer. As a starting point for the sea-level rise scenario discussed here it is assumed that the globally-averaged increase of surface air temperatures will amount to 2 to 4°C in the second half of the next century (i.e. around 2085 AD). One of the consequences of this warming is an accelerated rise in sea level, caused by thermal expansion of ocean water and further retreat of mountain glaciers. The Greenland Ice Sheet will also decrease in size, but on the other hand, Antarctica is expected to grow slightly due to increased snowfall. Taken together, the projection for future sea level presented here suggest that by 2085 AD, global sea-level stand will be 28–66 cm higher than the present level, which implies a rate of sea-level rise of about 2 to 4 times that observed during the last 100 yr. Our scenario does not include a contribution resulting from the possible collapse of the West Antarctic Ice Sheet. If this collapse is indeed likely to occur after the major peripheral ice shelves have thinned considerably, the effects on sea level will be small in the coming 100 yr. First, the oceans surrounding Antarctica must have warmed sufficiently to reduce the winter sea-ice extent to allow circumpolar deep water to penetrate into the sub-shelf cavities, thus increasing basal melt rates on the ice shelves. Of course, on longer time scales, West Antarctica could become the major contributor to rising sea level.  相似文献   

2.
利用ICESat数据确定格陵兰冰盖高程和体积变化   总被引:1,自引:0,他引:1       下载免费PDF全文
两极冰盖消融是造成海平面上升的重要原因,作为世界第二大冰盖,格陵兰冰盖消融速度在进入21世纪以后明显加快,引起了广泛关注.本文利用ICESat卫星激光测高数据,探讨了坡度改正的方法,通过改进平差模型解决了病态问题,并采用重复轨道方法计算了2003年9月至2009年10月间格陵兰冰盖的体积和高程变化趋势,对格陵兰冰盖各冰川流域系统的变化情况进行了详细分析.结果表明,格陵兰冰盖在这6年间平均高程变化趋势为-16.79±0.84cm·a^-1,体积变化速率为-301.37±15.16km^3·a^-1,体积流失主要发生在冰盖边缘,其中DS1、DS8等流域的体积损失正在加剧,而高程在2000m以上的冰盖内陆地区表现出高程积聚的状态,但增长速度明显减缓.与现有研究成果的对比表明,算法优化后的本文结果更具可靠性.  相似文献   

3.
We have used satellite solutions to the low degree zonal harmonics of the Earth's gravitational potential, and rates of surface accumulation to partially constrain, by means of repeated forward solution, the time rates of thickness change over the Antarctic and Greenland Ice Sheets (dTA and dTG respectively). In addition to the observed zonal coefficients j2 through j5 we impose only one other constraint: That dTA and dTG are proportional to surface accumulation. The lagged response of the Earth to secular changes in ice thickness spanning recent time periods (up to 2000 years before present) and the late Pleistocene is accounted for by means of two viscoelastic rebound models. The sea level contributions from the ice sheets, calculated from dTA and dTG, lower mantle viscosity, and the start time of present-day thickness change are all variables subject to the constraints. For a given set of post glacial rebound inputs, a family of solutions that have similar characteristics and that agree well with observation are obtained from the large number of forward solutions. The off axis position of the Greenland ice sheet makes its contribution to the low degree zonal coefficients less sensitive to the spatial details of the mass balance than to the overall sea level contribution. dTG is therefore modeled as surface mass balance offset by a uniform and constant mass loss. Though dTA varies widely with choices of input parameters, the combined sea level contribution from both ice sheets is reasonably well constrained by the gravity coefficients, and is predicted to range from -0.9 to +1.6 mm yr-1. The sign of the slope of the low degree zonal coefficients versus sea level contribution for Greenland is positive, but for Antarctica, the sign of the slope is positive for even degree and negative for odd degree harmonics. By using this property of the zonal coefficients, it is possible to determine the individual sea level contributions for Greenland and Antarctica. They vary from -0.6 to +0.3 mm yr-1 for the Greenland Ice Sheet, and from -0.3 to +1.3 mm yr-1 for the Antarctic Ice Sheet.  相似文献   

4.
The majority of freshwater input from Greenland to the global ocean stems from the Greenland Ice Sheet. Currently, almost a quarter of the freshwater flowing from Greenland is derived from catchments that are disconnected from the Greenland Ice Sheet. Despite their importance to the total freshwater flux and influence on fjord geochemistry, there is relatively little monitoring data available for those catchments and therefore the drivers of regional differences in export are largely unknown. We present a dataset of 12 years of discharge of four catchments less than 15 km apart, that are different in size (between 7 and 32 km2), local glacier coverage (4%–11%) and lake cover (0%–5%). They all drain into Kobbefjord, a well-studied fjord in West Greenland, near Greenland's capital Nuuk. Between catchments, the magnitude of discharge varies at annual, seasonal and sub-daily timescales, due to differences in physical catchment properties as well as local climate variability. We find that annual specific discharges vary greatly (between 1.2 and 1.9 m/year on a 12-year average) due to a longitudinal precipitation gradient from West to East caused by different amount of orographic precipitation shading. The seasonal cycle of discharge (amplitude, timing and minimum flow) differs among the sites mainly due to different exposure to solar radiation as a driver for major snowmelt; the small ice coverage in the catchments plays only a minor role in discharge variability. Dry years generally increase the relative differences in annual specific discharge and no significant temporal trends have been found in the studied catchments. On a sub-daily timescale, the difference in timing of maximum discharge during fair-weather days (>80% maximum solar radiation and no precipitation) ranged between 7 and 12 h, which is attributed to differences between the presence and elevation of lakes among the catchments. The response of discharge to major precipitation events is discussed, where a delay of between 5 and 7 h is found for the catchments that do not contain lakes near the gauge.  相似文献   

5.
全球变暖背景下的冰盖消融以及由此带来海平面上升日益明显,直接影响地球表面的陆地水质量平衡,以及固体地球瞬间弹性响应,研究冰盖质量变化的海平面指纹能够帮助深入了解未来海平面区域变化的驱动因素.本文基于海平面变化方程并考虑负荷自吸效应(SAL)与地球极移反馈的影响,借助美国德克萨斯大学空间研究中心(Center for Space Research,CSR)发布的2003年到2012年十年期间的GRACE重力场月模型数据(RL05),结合加权高斯平滑的区域核函数,反演得到格陵兰与南极地区冰盖质量变化的时空分布,并利用海平面变化方程计算得到了相对海平面的空间变化,结果表明:格陵兰与南极冰盖质量整体呈明显的消融趋势,变化速率分别为-273.31 Gt/a及-155.56 Gt/a,由此导致整个北极圈相对海平面降低,最高可达约-0.6 cm·a-1;而南极地区冰盖质量变化趋势分布不一,导致西南极近海相对海平面下降,而东南极地区近海相对海平面上升,最高可达约0.2 cm·a-1.远离质量负荷区域的全球海平面以上升趋势为主,平均全球相对海平面上升0.71 mm·a-1,部分远海地区相对海平面上升更加突出(例如北美与澳大利亚),高出全球平均海平面上升速率将近30%.此外,本文也重点探讨了GRACE监测冰盖消融结果中由于极地近海海平面变化导致的泄漏影响,经此项影响校正后的结果表明:海平面指纹效应对GRACE监测格陵兰与南极地区2003-2012期间整体冰盖消融速率的贡献分别为约3%与9%,建议在后期利用GRACE更精确地估算研究区冰盖质量变化时,应考虑海平面指纹效应的渗透影响.  相似文献   

6.
Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.  相似文献   

7.
We use the concentration of in situ 10Be in quartz isolated from fluvial and morainal sand to trace sediment sources and to determine the relative contribution of glacerized and deglaciated terrain to Greenland's sediment budget. We sampled along the western, eastern, and southern margins of the Greenland Ice Sheet, and collected sediment sourced from glacerized (n = 19) and non‐glacerized terrain (n = 10), from channels where sediment from glacerized and non‐glacerized terrain is mixed (n = 28), from Holocene glacial‐fluvial terraces (n = 4), and from one sand dune. In situ 10Be concentrations in sediment range from 1600 to 34 000 atoms g‐1. The concentration of in situ 10Be in sediment sourced from non‐glacerized terrain is significantly higher than in sediment sourced from glacerized areas, in mixed channel sediment, and in terrace sediment that was deposited during the Holocene. To constrain the timing of landscape exposure for the deglaciated portion of the Narsarsuaq field area in southern Greenland, we measured in situ 10Be concentration in bedrock (n = 5) and boulder (n = 6) samples. Paired bedrock and boulder ages are indistinguishable at 1σ uncertainty and indicate rapid exposure of the upland slopes at ~10.5 ka. The isotope concentration in sediment sourced from non‐glacerized terrain is higher than in sediment sourced from glacerized terrain because the non‐glacerized landscape has been exposed to cosmic radiation since early Holocene deglaciation. Sediment from glacerized areas contains a low, but measurable concentration of 10Be that probably accumulated at depth during a prolonged period of exposure, probably before the establishment of the Greenland Ice Sheet. The concentration of 10Be in mixed fluvial sediment and in terrace sediment is low, and similar to the concentration in sediment from glacerized areas, which indicates that the Greenland Ice Sheet is the dominant source of sediment moving through the landscape outside the glacial margin in the areas we sampled. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The landscape of Antarctica, hidden beneath kilometre-thick ice in most places, has been shaped by the interactions between tectonic and erosional processes. The flow dynamics of the thick ice cover deepened pre-formed topographic depressions by glacial erosion, but also preserved the subglacial landscapes in regions with moderate to slow ice flow. Mapping the spatial variability of these structures provides the basis for reconstruction of the evolution of subglacial morphology. This study focuses on the Jutulstraumen Glacier drainage system in Dronning Maud Land, East Antarctica. The Jutulstraumen Glacier reaches the ocean via the Jutulstraumen Graben, which is the only significant passage for draining the East Antarctic Ice Sheet through the western part of the Dronning Maud Land mountain chain. We acquired new bed topography data during an airborne radar campaign in the region upstream of the Jutulstraumen Graben to characterise the source area of the glacier. The new data show a deep relief to be generally under-represented in available bed topography compilations. Our analysis of the bed topography, valley characteristics and bed roughness leads to the conclusion that much more of the alpine landscape that would have formed prior to the Antarctic Ice Sheet is preserved than previously anticipated. We identify an active and deeply eroded U-shaped valley network next to largely preserved passive fluvial and glacial modified landscapes. Based on the landscape classification, we reconstruct the temporal sequence by which ice flow modified the topography since the beginning of the glaciation of Antarctica.  相似文献   

9.
Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.  相似文献   

10.
The present study utilises different satellite and ground-based geodetic observations in order to assess the current evolution of the Greenland Ice Sheet (GIS). Satellite gravimetry data acquired by the Gravity Recovery and Climate Experiment are used to derive ice-mass changes for the period from 2003 to 2012. The inferred time series are investigated regarding long-term, seasonal and interannual variations. Laser altimetry data acquired by the Ice, Cloud, and land Elevation Satellite (ICESat) are utilised to solve for linear and seasonal changes in the ice-surface height and to infer independent mass-change estimates for the entire GIS and its major drainage basins. We demonstrate that common signals can be identified in the results of both sensors. Moreover, the analysis of a Global Positioning System (GPS) campaign network in West Greenland for the period 1995–2007 allows us to derive crustal deformation caused by glacial isostatic adjustment (GIA) and by present-day ice-mass changes. ICESat-derived elastic crustal deformations are evaluated comparing them with GPS-observed uplift rates which were corrected for the GIA effect inferred by model predictions. Existing differences can be related to the limited resolution of ICESat. Such differences are mostly evident in dynamical regions such as the Disko Bay region including the rapidly changing Jakobshavn Isbræ, which is investigated in more detail. Glacier flow velocities are inferred from satellite imagery yielding an accelerated flow from 1999 to 2012. Since our GPS observations cover a period of more than a decade, changes in the vertical uplift rates can also be investigated. It turns out that the increased mass loss of the glacier is also reflected by an accelerated vertical uplift.  相似文献   

11.
The GLATIS project (Greenland Lithosphere Analysed Teleseismically on the Ice Sheet) with collaborators has operated a total of 16 temporary broadband seismographs for periods from 3 months to 2 years distributed over much of Greenland from late 1999 to the present. The very first results are presented in this paper, where receiver-function analysis has been used to map the depth to Moho in a large region where crustal thicknesses were previously completely unknown. The results suggest that the Proterozoic part of central Greenland consists of two distinct blocks with different depths to Moho. North of the Archean core in southern Greenland is a zone of very thick Proterozoic crust with an average depth to Moho close to 48 km. Further to the north the Proterozoic crust thins to 37–42 km. We suggest that the boundary between thick and thin crust forms the boundary between the geologically defined Nagssugtoqidian and Rinkian mobile belts, which thus can be viewed as two blocks, based on the large difference in depth to Moho (over 6 km). Depth to Moho on the Archean crust is around 40 km. Four of the stations are placed in the interior of Greenland on the ice sheet, where we find the data quality excellent, but receiver-function analyses are complicated by strong converted phases generated at the base of the ice sheet, which in some places is more than 3 km thick.  相似文献   

12.
Subglacial conditions strongly influence the flow of ice‐sheets, in part due to the availability of melt water. Contemporary ice sheets are retreating and are affected by increased melting as climate warms. The south Swedish uplands (SSU) were deglaciated during the relatively warm Bølling‐Allerød interval, and by studying the glacial landforms there it is possible to increase the understanding of the subglacial environment during this period of warming. Across the study area, vast tracts of hummocks have long been recognized. However, recent mapping shows a pattern of elongated zones of hummocks radially oriented, hereafter referred to as ‘hummock corridors’. Morphometric parameters were measured on the hummock corridors using a 2 m horizontal resolution digital elevation model. Corridor width varies between 0.2 and 4.9 km and their length between 1.5 and 11.8 km. A majority of hummock corridors are incised in drumlinised till surfaces. The pattern of hummock corridors shows a clear relation to the overall ice‐flow. Further, hummock corridors do not follow topographic gradients, and in at least one place an esker overlies hummocks on the corridor floor. The lateral spacing of hummock corridors and corridor morphology are similar to tunnel valleys, eskers and glaciofluvial corridors reported elsewhere. Such relationships support a subglacial genesis of the corridors in the SSU by water driven by the subglacial hydraulic gradient and that hummock corridors are forms that can be identified as tunnel valleys and glaciofluvial corridors (GFC). Ages were assigned to hummock‐corridor cross‐sections from a deglacial reconstruction of the Fennoscandian Ice Sheet. By comparing the frequency of corridors per age interval with climate variations from a Greenland ice core, we hypothesize that an increase in the number of corridors is related to the Bølling‐Allerød warming, indicating a higher rate of delivery of surface melt water to the bed at this time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Ice shelf breakups account for most mass loss from the Antarctic Ice Sheet as the consequence of the propagation of crevasses(or rift)in response to stress.Thus there is a pressing need for detecting crevasses’location and depth,to understand the mechanism of calving processes.This paper presents a method of crevasse detection using the ICESat-1/GLAS data.A case study was taken at the Amery Ice Shelf of Antarctica to verify the accuracy of geo-location and depth of crevasses detected.Moreover,based on the limited crevasse points,we developed a method to detect the peak stress points which can be used to track the location of the crack tips and to identify the possible high-risk area where an ice shelf begins to break up.The spatial and temporal distribution of crevasse depth and the spatial distribution of peak stress points of the Amery Ice Shelf were analyzed through 132 tracks in 16 campaign periods of ICESat-1/GLAS between 2003 and 2008.The results showed that the depth of the detected crevasse points ranged from 2 to 31.7 m,which were above the sea level;the crevasse that advected downstream to the front edge of an ice shelf has little possibility to directly result in breakups because the crevasse depth did not show any increasing trend over time;the local stress concentration is distributed mainly in the suture zones on the ice shelves.  相似文献   

14.
Global mean sea level is a potentially sensitive indicator of climate change. Global warming will contribute to worldwide sea-level rise (SLR) from thermal expansion of ocean water, melting of mountain glaciers and polar ice sheets. A number of studies, mostly using tide-gauge data from the Permanent Service for Mean Sea Level, Bidston Observatory, England, have obtained rates of global SLR within the last 100 years that range between 0·3 and 3 mm yr?1, with most values concentrated between 1 and 2 mm yr?1. However, the reliability of these results has been questioned because of problems with data quality and physical processes that introduce a high level of spatial and temporal variability. Sources of uncertainty in the sea-level data include variations in winds, ocean currents, river runoff, vertical earth movements, and geographically uneven distribution of long-term records. Crustal motions introduce a major source of error. To a large extent, these can be filtered by employing palaeo-sea-level proxies, and geophysical modelling to remove glacio-isostatic changes. Ultimately, satellite geodesy will help resolve the inherent ambiguity between the land and ocean level changes recorded by tide gauges. Future sea level is expected to rise by ~ 1 m, with a ‘best-guess’ value of 48 cm by the year 2100. Such rates represent an acceleration of four to seven times over present rates. Local land subsidence could substantially increase the apparent SLR. For example, Louisiana is currently experiencing SLR trends nearly 10 times the global mean rate. These recently reduced SLR estimates are based on climate models that predict a zero to negative contribution to SLR from Antarctica. Most global climate models (GCMs) indicate an ice accumulation over Antarctica, because in a warmer world, precipitation will exceed ablation/snow-melt. However, the impacts of attritional processes, such as thinning of the ice shelves, have been downplayed according to some experts. Furthermore, not all climate models are in agreement. Opposite conclusions may be drawn from the results of other GCMs. In addition, the West Antarctic Ice Sheet is potentially subject to dynamic and volcanic instabilities that are difficult to predict. Because of the great uncertainty in SLR projections, careful monitoring of future sea-level trends by upgraded tide-gauge networks and satellite geodesy will become essential. Finally, because of the high spatial variability in crustal subsidence rates, wave climates and tidal regimes, it will be the set of local conditions (especially the relative sea-level rise), rather than a single global mean sea-level trend, that will determine each locality's vulnerability to future SLR.  相似文献   

15.
As fundamental parameters of the Antarctic Ice Sheet, ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica. During CHINARE 24 (the 24th Chinese National Antarctic Research Expedition, 2007/08), the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the “Chinese Wall” around Kunlun Station, East Antarctica. Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the “Chinese Wall”, with the thickest ice being 3444 m, and the thinnest ice 1255 m. The average bedrock elevation is 1722 m, while the minimum is just 604 m. Compared with the northern side of the ice divide, the ice thickness is a little greater and the subglacial topography lower on the southern side, which is also characterized by four deep valleys. We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area, subglacial lakes, or water bodies along the “Chinese Wall”. Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the “Chinese Wall” are consistent with our results, but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely. The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this “inaccessible” region. These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM’s geological and deep ice core drilling sites in the Dome A region.  相似文献   

16.
In this paper, we quantify the terrestrial flux of freshwater runoff from East Greenland to the Greenland‐Iceland‐Norwegian (GIN) Seas for the periods 1999–2004 and 2071–2100. Our analysis includes separate calculations of runoff from the Greenland Ice Sheet (GrIS) and the land strip area between the GrIS and the ocean. This study is based on validation and calibration of SnowModel with in situ data from the only two long‐term permanent automatic meteorological and hydrometric monitoring catchments in East Greenland: the Mittivakkat Glacier catchment (65°N) in SE Greenland, and the Zackenberg Glacier catchment (74°N) in NE Greenland. SnowModel was then used to estimate runoff from all of East Greenland to the ocean. Modelled glacier recession in both catchments for the period 1999–2004 was in accordance with observations, and dominates the annual catchment runoff by 30–90%. Average runoff from Mittivakkat, ~3·7 × 10?2 km3 y?1, and Zackenberg, ~21·9 × 10?2 km3 y?1, was dominated by the percentage of catchment glacier cover. Modelled East Greenland freshwater input to the North Atlantic Ocean was ~440 km3 y?1 (1999–2004), dominated by contributions of ~40% from the land strip area and ~60% from the GrIS. East Greenland runoff contributes ~10% of the total annual freshwater export from the Arctic Ocean to the Greenland Sea. The future (2071–2100) climate impact assessment based on the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 scenarios indicates an increase of mean annual East Greenland air temperature by 2·7 °C from today's values. For 2071–2100, the mean annual freshwater input to the North Atlantic Ocean is modelled to be ~650 km3 y?1: ~30% from the land strip area and ~70% from the GrIS. This is an increase of approximately ~50% from today's values. The freshwater runoff from the GrIS is more than double from today's values, based largely on increasing air temperature rather than from changes in net precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This briefing describes the first deployment of a new electronic tracer (E‐tracer) for obtaining along‐flowpath measurements in subsurface hydrological systems. These low‐cost, wireless sensor platforms were deployed into moulins on the Greenland Ice Sheet. After descending into the moulin, the tracers travelled through the subglacial drainage system before emerging at the glacier portal. They are capable of collecting along‐flowpath data from the point of injection until detection. The E‐tracers emit a radio frequency signal, which enables sensor identification, location and recovery from the proglacial plain. The second generation of prototype E‐tracers recorded water pressure, but the robust sensor design provides a versatile platform for measuring a range of parameters, including temperature and electrical conductivity, in hydrological environments that are challenging to monitor using tethered sensors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
On the high altitude polar plateau of Amundsenisen, western Dronning Maud Land, East Antarctica, a subglacial valley, with a broad horizontal valley floor interpreted as a sediment floodplain or valley delta, was studied by radio echo sounding. In addition, a small, probably glacial, valley was mapped within the same subglacial massif. Basal ice temperatures were calculated using field data on precipitation, air temperature and ice sheet thickness. Discoveries of old landforms which have been preserved more or less intact beneath the former Fennoscandian and Laurentide ice sheets have received increasing attention during the last decade. The aim of this study is to investigate whether preservation of landforms occurs under the East Antarctic Ice Sheet, and to discuss under that climatological and glaciological circumstances preservation may take place. The results show that the ice sheet covering the investigated localities is frozen to bed, and therefore has an insignificant erosional capability. The observations suggest that a large-scale subglacial sediment deposit and a small valley formed by glacial erosion have survived beneath a cold-based ice sheet marginal zone for a long time period. The process of glacial preservation, recognized for bedrock features and tentatively observed for sediment accumulations, should act on similar large-scale landforms under any cold-based ice sheet, present or past. On the basis of existing studies of the age and stability of the East Antarctic Ice Sheet, a Middle Pliocene age is suggested for the preserved landforms. The presence of the presumed sediment-filled valley further indicates that no prolonged periods of basal melting have occurred at the Amundsenisen study area during the ice sheet history, which includes the Quaternary glaciation periods. Finally, calculations of basal temperature for localities at different altitudes within the same subglacial massif were used to demonstrate local altitudinal control of glacial preservation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.

Glacier is a special medium which can conserve a long time chronological information of microorganism. As a preliminary research, from Ice Core3 of Malan glacier (91°45.3′ E, 35°48.4′ N; drilled at 5620 m a.s.l.), we successfully isolated live microorganisms. 75 strains of bacteria in 10 genera and 6 strains of actinomycetes in 2 genera were isolated from 23 samples. 32 strains bacteria were identified to beBacillus and 25 strains wereB. circulans, B. firmus, B. subtilis andB. alvei. The genera of bacteria in Malan ice core were similar to that in Greenland and Antarctic ice core. We cannot isolate fungi and alga from Malan ice core, although they are widely distributed in Greenland and Antarctica.

  相似文献   

20.
Changes of mean annual net accumulation at the surface on the grounded ice sheets of East Antarctica, West Antarctica and Greenland in response to variations in sea ice extent are estimated using grid-point values 100 km apart. The data bases are assembled principally by bilinear interpolation of remotely sensed brightness temperature (Nimbus-5 ESMR, Nimbus-7 SMMR), surface temperature (Nimbus-7 THIR), and surface elevation (ERS-1 radar altimeter). These data, complemented by field data where remotely sensed data are not available, are used in multivariate analyses in which mean annual accumulation (derived from firn emissivity) is the dependent variable; the independent variables are latitude, surface elevation, mean annual surface temperature, and mean annual distance to open ocean (as a source of energy and moisture). The last is the shortest distance measured between a grid point and the mean annual position of the 10% sea ice concentration boundary, and is used as an index of changes in sea ice extent as well as of mean concentration. Stepwise correlation analyses indicate that variations in sea ice extent of ± 50 km would lead to changes in accumulation inversely of ± 4% on East Antarctica, ± 10% on West Antarctica, and ±4% on Greenland. These results are compared with those obtained in a previous study using visually interpolated values from contoured compilations of field data; they substantiate the findings for the Antarctic ice sheets (±4% on East Antarctica, ±9% in West Antarctica), and suggest a reduction by one half of the probable change of accumulation on Greenland (from ±8%). The results also suggest a reduction of the combined contribution to sea level variability to ±0.19 mm a-1 (from ±0.22 mm a-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号