首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Aerosol samples collected on two North Pacific cruises were analyzed for rock-magnetic properties, grain size and <2 μm and 2–20 μm mineralogy. These sedimentological results were compared with isentropic air mass trajectories in order to study the effects of source region and atmospheric transport on the mineral aerosol. The results indicate that there are differences in the aerosol composition and grain size for two broad source regions. Aerosols which originate from west of the Pacific are characterized by abundant, fine-grained aerosol, which has a high coercivity magnetic composition, and is relatively enriched in kaolinite. Aerosols originating from continents to the north and east of the Pacific basin are much less abundant, contain coarse-grained material with a low coercivity magnetic component, and the mineralogy is relatively enriched in plagioclase. Comparison of the mineral aerosol from Asia with atmospheric transport time indicated that the concentration of the mineral aerosol decreases with increasing transport time. The mineral aerosol is compositionally fractionated as it moves away from the continental source region, with a relative decrease in the primary minerals quartz and plagioclase and an increase in the smectite, illite and chlorite concentration with increasing transport time.  相似文献   

2.
The loess-paleosol sequences of the last 1.2 Ma in China have recorded two kinds of climate extremes: the strongly developed S4, S5-1 and S5-3 soils (corresponding to the marine δ18O stages 11, 13, and 15, respectively) as evidence of three episodes of great warmth and two coarse-grained loess units (L9 and L15, corresponding to the marine δ18O stages 22, 23, 24 and 38, respectively) which indicate severest glacial conditions. The climatic and geographical significance of these events are still unclear, and their cause remains a puzzle.Paleopedological, geochemical and magnetic susceptibility data from three loess sections (Xifeng, Changwu and Weinan) suggest that the S4, S5-1 and S5-3 soils were formed under sub-tropical semi-humid climates with a tentatively estimated mean annual temperature (MAT) of at least 4–6°C higher and a mean annual precipitation (MAP) of 200–300 mm higher than for the present-day, indicating a much strengthened summer monsoon. The annual rainfall was particularly accentuated for the southern-most part of the Loess Plateau, suggesting that the monsoon rain belt (the contact of the monsoonal northward warm-humid air mass with the dry-cold southward one) might have stood at the southern part of the Plateau for a relatively long period each year. The loess units L9 and L15 were deposited under semi-desertic environments with a tentatively estimated MAT and MAP of only about 1.5–3°C and 150–250 mm, indicating a much strengthened winter monsoon, and that the summer monsoon front could rarely penetrate into the Loess Plateau region.Correlation with marine carbon isotope records suggests that these climate extremes have large regional, even global, significance rather than being local phenomena in China. They match the periods with greatest/smallest Atlantic–Pacific δ13C gradients, respectively, indicating their relationships with the strength of Deep Water (NADW) production in the North Atlantic. These results suggest that the monsoon climate in the Loess Plateau region was significantly linked with the North Atlantic thermohaline circulation on timescales of 104 years.  相似文献   

3.
We utilize a regional climate model with detailed land surface processes (RegCM2) to simulate East Asian monsoon climates at 0 ka, 6 ka and 21 ka BP, and evaluate the changes in hydrology process, including vapor transportation, precipitation, evapotranspiration and runoff in the eastern and western China during these periods. Results indicate that the Tibetan Plateau climate presents a wet–cold status during the LGM while it exhibits a wet–warm climate at 6 ka BP. The LGM wetter climate over the Tibetan Plateau mainly results from the increased vapor inflow through its south boundary, while the increase in the vapor import over the Tibetan Plateau at 6 ka BP mostly sources from its west boundary. The increase in the LGM runoff over the Tibetan Plateau is mainly caused by the decrease in evapotranspiration, while the increase in runoff at the 6 ka BP mainly by the enhanced precipitation. Eastern China (including southern China) presents a dry status during the LGM, which precipitation and runoff decreases significantly due largely to weakened Asian summer monsoon that results in the decreased vapor inflow through the south boundary of eastern China. The variation pattern in the hydrological cycle in eastern China is contrary to that in western China during the LGM. The increase in precipitation and runoff at 6 ka BP in eastern China is tightly related to the strong Asian summer monsoon that leads to increased vapor import through the south boundary. Long term decrease trend in precipitation and runoff in northern China since the last 20 000 years may be attributed to the steady increase in vapor export through the east boundary as a result of the changes of East Asian monsoon and the adjustments of local atmospheric circulations in this area.  相似文献   

4.
The impacts of dynamic vegetation on interannual and interdecadal variability of Asian summer monsoon in modern (0 kyr) and mid-Holocene (6 kyr) climates are investigated by contrasting simulations with and without dynamic vegetation in a coupled ocean-atmosphere model.According to a dynamic index of South Asian summer monsoon, it has been found that the strengths of interannual and interdecadal westerly wind tend not to be affected by the dynamic vegetation over South Asia in the lower troposphere for 0 kyr and 6 kyr. However, based on a dynamic index of western North Pacific (WNP) monsoon, the strengths of tropical westerly wind and south–north cross-equatorial transport are weakened over the tropical western Pacific in the lower troposphere for 0 kyr and 6 kyr. It suggests the impact of dynamic vegetation is more obvious for the WNP monsoon than for the South Asian monsoon. Also, it implies the impact of dynamic vegetation on the interannual and interdecadal circulations is distinctly regional.Singular value decomposition (SVD) analysis shows that the impact of dynamic vegetation can remodel the leading correlation mode (SVD1) between precipitation and surface temperature. All of the interannual and interdecadal precipitation patterns with and without the impact of dynamic vegetation are associated with positive anomalies over India and southeastern China. However, the impact of dynamic vegetation tends to enhance (keep) the positive interannual temperature anomalies of SVD1 over the midlatitudinal Eurasia (WNP) for 0 kyr, but to reduce the anomalies over the midlatitudinal Eurasia and WNP for 6 kyr. Furthermore, the La Niña-like sea surface temperature (SST) anomalies always dominate the tropics for 0 kyr and 6 kyr. It suggests La Niña-like SST anomalies are the important mechanism to induce the above-mentioned precipitation pattern no matter whether for 0 kyr or for 6 kyr. For the interdecadal surface temperature pattern of SVD1, the impact of dynamic vegetation tends to enhance (reduce) positive anomalies over the midlatitudinal Eurasia (WNP) for 0 kyr, but to reduce (keep) positive anomalies over the midlatitudinal Eurasia (WNP) for 6 kyr. Also, all of the above implies the impact of dynamic vegetation is a mechanism to induce the long-term change of leading interannual and interdecadal surface temperature pattern over the midlatitudinal Eurasia and/or WNP.  相似文献   

5.
Understanding of past climatic variability over the Tibetan Plateau is still limited because of the lack of long-term climatic records. Here we reconstruct the mean summer (June–August) minimum temperature for the past 379 years based on tree-ring data in the source region of the Yangtze River. This reconstruction successfully captures recent abrupt climatic changes and agrees in general with other temperature reconstructions for the Tibetan Plateau on a decadal timescale. The cold and warm periods coincide with documented glacier advances and retreats on the east and southeast Tibetan Plateau. The interval 1816–22 is among the coldest periods in the reconstruction and may be related to the influence of the Tambora eruption in Indonesia in 1815. Comparisons with other paleoclimatic proxies imply a high degree of confidence for our reconstruction and its indicative power for a large-scale climate variability on the Tibetan Plateau.  相似文献   

6.
Abstract— The 40 km diameter Mjølnir Crater is located on the central Barents Sea shelf, north of Norway. It was formed about 142 ± 2.6 Myr ago by the impact of a 1–2 km asteroid into the shallow shelf clays of the Hekkingen Formation and the underlying Triassic to Jurassic sedimentary strata. A core recovered from the central high within the crater contains slump and avalanche deposits from the collapse of the transient crater and central high. These beds are overlain by gravity flow conglomerates, with laminated shales and marls on top. Here, impact and post‐impact deposits in this core are studied with focus on clay mineralogy obtained from XRD decomposition and simulation analysis methods. The clay‐sized fractions are dominated by kaolinite, illite, mixed‐layered clay minerals and quartz. Detailed analyses showed rather similar composition throughout the core, but some noticeable differences were detected, including varying crystal size of kaolinite and different types of illites and illite/smectite. These minerals may have been formed by diagenetic changes in the more porous/fractured beds in the crater compared to time‐equivalent beds outside the crater rim. Long‐term post‐impact changes in clay mineralogy are assumed to have been minor, due to the shallow burial depth and minor thermal influence from impact‐heated target rocks. Instead, the clay mineral assemblages, especially the abundance of chlorite, reflect the impact and post‐impact reworking of older material. Previously, an ejecta layer (the Sindre Bed) was recognized in a nearby well outside the crater, represented by an increase in smectite‐rich clay minerals, genetically equivalent to the smectite occurring in proximal ejecta deposits of the Chicxulub crater. Such alteration products from impact glasses were not detected in this study, indicating that little, if any, impact glass was deposited within the upper part of the crater fill. Crater‐fill deposits inherited their mineral composition from Triassic and Jurassic sediments underlying the impact site.  相似文献   

7.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   

8.
We obtained the high-resolution record of terrestrial biomarkers (C29 and C31 n-alkanes) for the last 26,000 years from Oki Ridge in the south Japan Sea that enabled us to discuss millennial scale climate changes. Our sampling resolution for the biomarker during the major deglaciation period (10–19.5 cal ka BP) is 300 years and for the elemental analyses (total organic carbon and total nitrogen) is as good as ca 200 years. The estimated mass accumulation rate of these molecules during the last glacial period is substantially higher than during the Holocene. They also exhibited two distinct peaks at 17.6 cal ka BP and 11.4 cal ka BP, which are coincident with Heinrich Event 1 and the latest stage of the Younger Dryas, respectively. The unique oceanographic setting of the Japan Sea tends to preferentially preserve organic material of aeolian origin. The nature of our biomarker record in fact suggests a strong aeolian signal, and hence their flux to the Japan Sea potentially reflects the climate conditions of the dust source regions and transport intensity. Our results are consistent with previously reported monsoon variations based on other proxies that is indicative of a strong linkage between North Atlantic climate and Asian monsoon intensity.  相似文献   

9.
Abstract The 65 Ma Chicxulub impact crater formed in the shallow coastal marine shelf of the Yucatán Platform in Mexico. Impacts into water‐rich environments provide heat and geological structures that generate and focus sub‐seafloor convective hydrothermal systems. Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled by the Chicxulub Scientific Drilling Project (CSDP), allowed testing for the presence of an impact‐induced hydrothermal system by: a) characterizing the secondary alteration of the 100 m‐thick impactite sequence; and b) testing for a chemical input into the lower Tertiary sediments that would reflect aquagene hydrothermal plume deposition. Interaction of the Yax‐1 impactites with seawater is evident through redeposition of the suevites (unit 1), secondary alteration mineral assemblages, and the subaqueous depositional environment for the lower Tertiary carbonates immediately overlying the impactites. The least‐altered silicate melt composition intersected in Yax‐1 is that of a calc‐alkaline basaltic andesite with 53.4–56 wt% SiO2(volatile‐free). The primary mineralogy consists of fine microlites of diopside, plagioclase (mainly Ab 47), ternary feldspar (Ab 37 to 77), and trace apatite, titanite, and zircon. The overprinting alteration mineral assemblage is characterized by Mg‐saponite, K‐montmorillonite, celadonite, K‐feldspar, albite, Fe‐oxides, and late Ca and Mg carbonates. Mg and K metasomatism resulted from seawater interaction with the suevitic rocks producing smectite‐K‐feldspar assemblages in the absence of any mixed layer clay minerals, illite, or chlorite. Rare pyrite, sphalerite, galena, and chalcopyrite occur near the base of the impactites. These secondary alteration minerals formed by low temperature (0–150°C) oxidation and fixation of alkalis due to the interaction of glass‐rich suevite with down‐welling seawater in the outer annular trough intersected at Yax‐1. The alteration represents a cold, Mg‐K‐rich seawater recharge zone, possibly recharging higher temperature hydrothermal activity proposed in the central impact basin. Hydrothermal metal input into the Tertiary ocean is shown by elevated Ni, Ag, Au, Bi, and Te concentrations in marcasite and Cd and Ga in sphalerite in the basal 25 m of the Tertiary carbonates in Yax‐1. The lower Tertiary trace element signature reflects hydrothermal metal remobilization from a mafic source rock and is indicative of hydrothermal venting of evolved seawater into the Tertiary ocean from an impact‐generated hydrothermal convective system.  相似文献   

10.
The Mars Exploration Rover Spirit investigated the igneous and alteration mineralogy and chemistry of Home Plate and its surrounding deposits. Here, we focus on using thermochemical modeling to understand the secondary alteration mineralogy at the Home Plate outcrop and surrounding Columbia Hills region in Gusev crater. At high temperatures (300 °C), magnetite occurs at very high W/R ratios, but the alteration assemblage is dominated by chlorite and serpentine over most of the W/R range. Quartz, epidote, and typical high‐T phases such as feldspar, pyroxene, and garnet occur at low W/R. At epithermal temperatures (150 °C), hematite occurs at very high W/R. A range of phyllosilicates, including kaolinite, nontronite, chlorite, and serpentine are precipitated at specific W/R. Amphibole, with garnet, feldspar, and pyroxene occur at low W/R. If the CO2 content of the system is high, the assemblage is dominated by carbonate with increasing amounts of an SiO2‐phase, kaolinite, carpholite, and chlorite with lower W/R. At temperatures of hydrous weathering (13 °C), the oxide phase is goethite, silicates are chlorite, nontronite, and talc, plus an SiO2‐phase. In the presence of CO2, the mineral assemblage at high W/R remains the same, and only at low W/R, i.e., with increasing salinity, carbonate precipitates. The geochemical gradients observed at Home Plate are attributed to short‐lived, initially high (300 °C) temperature, but fast cooling events, which are in agreement with our models and our interpretation of a multistage alteration scenario of Home Plate and Gusev in general. Alteration at various temperatures and during different geological processes within Gusev crater has two effects, both of which increase the habitability of the local environment: precipitation of hydrous sheet silicates, and formation of a brine, which might contain elements essential for life in diluted, easily accessible form.  相似文献   

11.
A palynological study of oil exploration wells in the Gippsland Basin southeastern Australia has provided a record of southern high latitude climate variability for the last 12 million years of the Cretaceous greenhouse world. During this time, the vegetation was dominated by a cool to temperate flora of Podocarpaceae, Proteaceae and Nothofagidites spp. at a latitude of 60°S. Milankovitch forced cyclic alternations from drier to wetter climatic periods caused vegetation variability from 72 to 77 Ma. This climate change was probably related to the waxing and waning of ephemeral (100 ky) small ice sheets in Antarctica during times of insolation minima and maxima. Drying and cooling after 72 Ma culminated from 68 to 66 Ma, mirroring trends in global δ18O data. Quantitative palynofloral analyses have the potential to provide realistic proxies for small-scale climate variability in the predominantly ice-free Late Cretaceous.  相似文献   

12.
Sediments from ODP Site 1128 in the Great Australian Bight record isotopic and mineralogic variations corresponding to orbital parameters and regional climate change during the early Oligocene climate transition and Oi1 glacial event. Bulk carbonate stable isotope analyses reveal prominent positive oxygen and carbon isotope shifts related to the inferred major increase in glaciation at approximately 33.6 to 33.48 Ma. The oxygen isotope excursion corresponds to a prolonged period of low eccentricity, suggesting ice-sheet growth during low seasonality conditions. The clay mineralogy is dominated by smectite throughout. The exclusive occurrence of highly crystalline smectite from 33.6 to 33.5 Ma suggests the occurrence of explosive volcanism that correlates with the positive oxygen isotope shift. The dominance of mixed-layer smectite from 33.5 to 33.4 Ma and an increase in illite following 33.4 Ma indicates a transition from cool, wet conditions to cool, dry conditions over Australia during the Oi1 glaciation. Clay mineralogy and carbonate percentages reveal precession-scale oscillations during the Oi1 event. Kaolinite varies inversely with smectite and percent carbonate. Variations in precipitation and runoff, and wind velocities during southern hemisphere summer perihelion and high eccentricity intervals may account for the precession-scale oscillations.  相似文献   

13.
An integrated explanation is proposed for the Late Cenozoic crustal deformation in Yunnan, SW China, using sedimentary and geomorphological evidence from the Yangtze and Red River systems. The observed fluvial incision indicates up to ~ 15 km of crustal thickening, associated with ~ 3 km of uplift, apparently triggered at ~ 8 Ma by monsoon-induced erosion drawing mobile lower crust from beneath Tibet to the northwest. The mobile lower-crustal layer beneath Yunnan was initially very thin, but a positive feedback loop developed, whereby each incremental influx of lower-crust widened and heated this layer, facilitating the next increment. At ~ 5 Ma, the shear tractions exerted on the brittle upper-crust by this flowing lower crust became sufficient to reactivate pre-existing lines of weakness, dragging blocks of the brittle layer southward and creating the region′s modern active fault systems. This region thus provides a dramatic example of crustal deformation induced by Late Cenozoic climate change, notwithstanding its location adjoining the India–Eurasia plate boundary.  相似文献   

14.
Z.C. Ling  Alian Wang 《Icarus》2011,211(1):101-113
Laser Raman spectroscopy is used to investigate four lunar soils, focusing on mineralogy of grains of <45 μm size. Apollo samples 14163, 15271, 67511, and 71501 were selected as endmembers to study, based on their soil chemistry, maturity, and sample locations. Typical Raman spectral features for major and minor lunar minerals are discussed on the basis of major vibrational modes. We used the Raman peak shift to calculate Mg/(Mg + Fe + Ca) and Ca/(Mg + Fe + Ca) for pyroxene and Mg/(Mg + Fe) for olivine, and thus obtained the compositional distributions of these two minerals in each of the four lunar soils. Classification of feldspar grains was made based on recognition of their Raman patterns. A Raman point-counting procedure was applied to derive mineral modes of the soils, and these are found to be consistent with published modal analysis of these soils. The compositional distributions of pyroxene and olivine grains in each soil sample, as well as the mineral modes, reflect characteristics of the main source materials for these soils. Raman patterns and peak positions also reflect shock effects on plagioclase and quartz, found in 14163.  相似文献   

15.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   

16.
Modeling mineral dust emissions from Chinese and Mongolian deserts   总被引:6,自引:0,他引:6  
The present study investigates the frequency and intensity of mineral dust emissions over the deserts of eastern Asia from 1996 to 2001. Mineral dust emissions are simulated using a physical dust emission scheme over a region extending from 35.5°N to 47°N and from 73°E to 125°E. The input parameters required by the dust emission model are (1) surface features data including aerodynamic roughness length, soil dry size distribution and texture; and (2) meteorological surface data, mainly wind speed, soil moisture and snow cover. The way by which these surface features and meteorological data can be assessed is described and discussed. The influence of soil moisture and snow cover is taken into account and their effects on simulated dust emission are quantified.The simulations reproduce on a daily basis the location and intensity of the severe events of April 1998 and spring 2001 as recorded by the meteorological stations and/or described in various studies. Based on 6 yr of simulations, the main dust source regions are identified and their relative contributions to the total dust emissions are quantified.The seasonal cycle of the dust storms frequency is well reproduced with a maximum in spring. The simulations suggest that it is mainly controlled by the emissions occurring in the Taklimakan desert in latter spring and in summer, and by those occurring in the northern deserts of China in winter. The Taklimakan desert appears to be the most frequent and steady source of dust emissions during the studied period. On the other hand, in the Gobi desert, only a few dust emission events are simulated, but the dust amount emitted during each event is generally very large. In the northern deserts of China, dust emissions are frequent and their intensity is variable.These results show an important annual and inter-annual variability of the emitted dust (between 100 Mt yr− 1 and 460 Mt yr− 1), mainly controlled by the occurrence of severe events in the Gobi desert and in the northern deserts of China.  相似文献   

17.
Climatic changes over the Mediterranean basin in 2031–2060, when a 2 °C global warming is most likely to occur, are investigated with the HadCM3 global circulation model and their impacts on human activities and natural ecosystem are assessed. Precipitation and surface temperature changes are examined through mean and extreme values analysis, under the A2 and B2 emission scenarios. Confidence in results is obtained via bootstrapping. Over the land areas, the warming is larger than the global average. The rate of warming is found to be around 2 °C in spring and winter, while it reaches 4 °C in summer. An additional month of summer days is expected, along with 2–4 weeks of tropical nights. Increase in heatwave days and decrease in frost nights are expected to be a month inland. In the northern part of the basin the widespread drop in summer rainfall is partially compensated by a winter precipitation increase. One to 3 weeks of additional dry days lead to a dry season lengthened by a week and shifted toward spring in the south of France and inland Algeria, and autumn elsewhere. In central Mediterranean droughts are extended by a month, starting a week earlier and ending 3 weeks later. The impacts of these climatic changes on human activities such as agriculture, energy, tourism and natural ecosystems (forest fires) are also assessed. Regarding agriculture, crops whose growing cycle occurs mostly in autumn and winter show no changes or even an increase in yield. In contrast, summer crops show a remarkable decrease of yield. This different pattern is attributed to a lengthier drought period during summer and to an increased rainfall in winter and autumn. Regarding forest fire risk, an additional month of risk is expected over a great part of the basin. Energy demand levels are expected to fall significantly during a warmer winter period inland, whereas they seem to substantially increase nearly everywhere during summer. Extremely high summer temperatures in the Mediterranean, coupled with improved climate conditions in northern Europe, may lead to a gradual decrease in summer tourism in the Mediterranean, but an increase in spring and autumn.  相似文献   

18.
Modern-day synoptic-scale eastern Mediterranean climatology provides a useful context to synthesize the diverse late Pleistocene (60–12 ka) paleohydrologic and paleoenvironmental indicators of past climatic conditions in the Levant and the deserts to its south and east. We first critically evaluate, extract, and summarize paleoenvironmental and paleohydrologic records. Then, we propose a framework of eastern Mediterranean atmospheric circulation features interacting with the morphology and location of the southeast Mediterranean coast. Together they strongly control the spatial distribution of rainfall and wind pattern. This cyclone–physiography interaction enforces the observed rainfall patterns by hampering rainfall generation south and southeast of the latitude of the north Sinai coast, currently at 31°15′.The proposed framework explains the much-increased rains in Lebanon and northern Israel and Jordan as deduced from pollen, rise and maintenance of Lake Lisan, and speleothem formation in areas currently arid and semiarid. The proposed framework also accounts for the southward and eastward transition into semiarid, arid, and hyperarid deserts as expressed in thick loess accumulation at the deserts' margins, dune migration from west to east in the Sinai and the western Negev, and the formation of hyperarid (< 80 mm yr− 1) gypsic–salic soils in the southern Negev and Sinai. Our climatic synthesis explains the hyperarid condition in the southern Negev, located only 200–250 km south of the much-increased rains in the north, probably reflecting a steeper rainfall gradient than the present-day gradient from the wetter Levant into its bordering southern and eastern deserts.At present, the rainiest winter seasons in Lebanon and northern and central Israel are associated with more frequent (+ 20%), deeper Cyprus Lows traversing the eastern Mediterranean at approximately the latitude of southern Turkey. Even these wettest years in northern Israel do not yield above average annual rainfall amounts in the hyperarid southern Negev. This region is mainly influenced by the Active Red Sea Troughs that produce only localized rains. The eastern Mediterranean Cyprus Lows also produce more dust storms and transport higher amounts of suspended dust to the loess area than any other atmospheric pattern. Concurrent rainfall and dust are essential to the late Pleistocene formation of the elongated thick loess zone along the desert northern margin. Even with existing dust storms, the lack of rain and very sparse vegetation account for the absence of late Pleistocene loess sequences from the southern Negev and the formation of hyperarid soils.When the north Sinai coast shifted 30–70 km northwest due to last glacial global sea level lowering, the newly exposed coastal areas supplied the sand and dust to these active eastern Mediterranean cyclones. This enforced the latitude of the northern boundary of the loess zone to be directly due east of the LGM shoreline. This shift of coast to the northwest inhibited rainfall in the southern Levant deserts and maintained their hyperaridity. Concurrently, frequent deep eastern Mediterranean Cyprus Lows were funneled along the northern Mediterranean increasing (probably doubling) the rains in central and northern Israel, Lebanon, southwestern Syria and northern Jordan. These storms and rains formed lakes, forests, and speleothems only a short distance north of the deserts in the southern Levant.  相似文献   

19.
We estimate the intensity of Late-glacial and Holocene methane emissions from peatlands based on their paleo net primary production (PNPP). The PNPP is derived from the carbon accumulation rates of the studied bog profile (Etang de la Gruère, Switzerland), which are corrected for the degree of peat degradation. The obtained PNPP curve is taken as a proxy for methane emissions. It shows relatively high values (90 g C m− 2 yr− 1) early in the Bolling/Allerod and drops to low values (40 g C m− 2 yr− 1) during the Younger Dryas cold period. With the onset of the Holocene the PNPP increases strongly up to 150 g C m− 2 yr− 1 around ca. 10,000 Cal. yr bp. This is followed by a decline to minimum values (30 to 40 g C m− 2 yr− 1) between 6500 and 4000 Cal. yr bp. Thereafter, the PNPP starts to increase again to reach its highest value (175 g C m− 2 yr− 1) around 1000 Cal. yr bp.The PNPP curve correlates well with the evolution of the atmospheric methane concentrations as derived from Greenland ice-cores. For example, minima in atmospheric methane reported during the Younger Dryas and around 5200 Cal. yr bp are coinciding with the lowest values of PNPP and the negative atmospheric methane peak at 8200 Cal. yr bp corresponds to a marked decrease in PNPP.Our PNPP curve suggests that the methane emissions from northern peatlands evolved similar to those of low latitude wetlands and together they largely determined the evolution of atmospheric methane throughout the Late-glacial and the Holocene. The abruptness of the rise of atmospheric methane at the end of the Younger Dryas probably points to an additional source (e.g. marine gas hydrates), but very early in the Holocene the peatlands have likely become the dominant source of atmospheric methane.  相似文献   

20.
Summer 2007 was abnormally warm for many areas of southeastern Europe, the Balkan peninsula and parts of Asia Minor with departures from the seasonal means exceeding 4 °C in some areas but also distinct periods of extremely hot weather. Greece experienced very likely the warmest summer of its instrumental history with record breaking temperatures being observed at a number of stations. The historical air temperature record of the National Observatory of Athens (NOA), extending back to the 19th century, was used in order to highlight the rarity of the event. Seasonal (June to August) temperature anomalies at NOA exceeded 3 °C corresponding to more than 3 standard deviations with respect to the 1961–1990 reference period. The record value of 44.8 °C was observed at NOA on 26 June 2007 (previous record 43 °C in June 1916) during the first and most intense heat wave that affected the area. The study places summer 2007 in the climatology of the previous century and also examines whether the statistics of summer 2007 have similarities with Mediterranean summers of the future. An ensemble of regional climate model simulations undertaken for the European domain indicate that summer 2007 reflects the daily maximum temperatures that are projected to occur in the latter part of the 21st century. The analysis of temperature data from other less urbanized stations indicates that the urban heat effect in Athens contributed positively to the anomalies of the nocturnal temperatures. The abnormally hot summer of 2007 is perhaps not the proof but a strong indicator of what eastern Mediterranean summers could resemble in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号