首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
The 2003 Ml = 5.4 Rambervillers earthquake, north-east of France, is the largest seismic event recorded north of the Alps since the 1992 Ms = 5.3, I0 = VII, Roermond earthquake, Netherlands. With a maximum macroseismic intensity of VI-VII EMS-98, the 2003 event was broadly felt to a distance of 300 km from the epicentre. It provides a unique opportunity to test and compare the different procedures used in France, Germany and Switzerland when evaluating macroseismic intensities. The main purpose of this paper is to present a common transfrontier macroseismic map based on the EMS-98 intensity scale. Maximum horizontal accelerations recorded in the area are compared to the intensity values, and we propose to use a differential technique to re-estimate the magnitude of the 1682 Remiremont, I0 = VIII, earthquake, which occurred 40 km south of Rambervillers.  相似文献   

2.
The Catalan seismic crisis of the years 1427 and 1428 is one of the most destructive seismic episodes that happened in the northeastern Iberian Peninsula in historical times. The main earthquakes of this crisis occurred on March 19th 1427 in the zone around Amer (IEMS-98 = VIII), May 15th 1427 in the vicinity of Olot (IEMS-98 = VIII) and on February 2nd 1428 in the area close to Camprodon (IEMS-98 = IX). There is much evidence that the Amer fault produced the first two events of this crisis, but is still uncertain which fault generated the earthquake on February 2nd 1428. Using newly available macroseismic data, the earthquake area sources of the three main earthquakes of the crisis have been obtained and they corroborate that the Amer fault may be the origin of the first two events. However, the area source corresponding to the last earthquake of the crisis cannot be associated to a single fault and indicates three possible candidates: the Vallfogona and Ribes-Camprodon thrusts and the Amer normal fault. Modeling of the Coulomb failure stress transfer has been performed to help determine the best candidate responsible for the February event. The results of the modeling points to: (a) a triggering relationship between the three main events of the crisis and (b) the Amer fault, or a similar extensional fault close and parallel to it, as the most probable origin of the earthquake on February 2nd 1428.  相似文献   

3.
The seismic history of the city of Ragusa (Italy), the geotechnical characterisation of the subsoil and the site response analysis should be correctly evaluated for the definition of the Seismic Geotechnical Hazard of the city of Ragusa, through geo-settled seismic microzoning maps. Basing on the seismic history of the city of Ragusa, the following earthquake scenarios have been considered: the “Val di Noto” earthquake of January 11, 1693 (with intensity X–XI on MCS scale, magnitude MW=7.41 and epicentral distance of about 53 km); the “Etna” earthquake of February 20, 1818 (with intensity IX on MCS scale, magnitude MW=6.23 and epicentral distance of about 64 km); the Vizzini earthquake of April 13, 1895 (with intensity I=VII–VIII on MCS scale, magnitude MW=5.86 and epicentral distance of about 26 km); the “Modica” earthquake of January 23, 1980 (with intensity I=V–VI on MCS scale, magnitude MW=4.58 and epicentral distance of about 10 km); the “Sicilian” earthquake of December 13, 1990 (with intensity I=VII on MCS scale, magnitude MW=5.64 and epicentral distance of about 50 km). Geotechnical characterisation has been performed by in situ and laboratory tests, with the definition of shear wave velocity profiles in the upper 30 m of soil. Soil response analyses have been evaluated for about 120 borings location by some non-linear 1-D models. Finally the seismic microzonation of the city of Ragusa has been obtained in terms of maps with different peak ground acceleration at the surface; shaking maps for the central area of the city of Ragusa were generated via GIS for the earthquake scenarios.  相似文献   

4.
The Rhodes earthquake of 26 June 1926   总被引:2,自引:0,他引:2  
We use macroseismic and instrumental data to re-examine the large earthquake of 26 June 1926 in the Hellenic Arc and other associated events. The earthquake was felt over a large area in the Eastern Mediterranean region and caused sporadic damage, and in places destruction, over a large area in Rhodes, southwestern Anatolia, eastern Crete and in the Nile Delta. Despite its size, there has been uncertainty as to its position, depth and magnitude. The earthquake was well recorded instrumentally and we have relocated it using the readings listed in the International Seismological Summary and the present location procedure of the International Seismological Centre. We have also inspected seismograms from 14 stations. We find the intermediate depth of the event to be well established at about 115 km, with a formal error of about 10 km and supported by depth phases. There is evidence of complexity in the source, with a secondary release of energy from the same focus after about six seconds. From original records and bulletins we establish the surface-wave magnitude (Ms as 7.4 ± 0.3, corresponding to a moment release of about 2.2 × 1027 dyn.cm. The felt information is consistent with these findings, and although the earthquake was felt very widely, nowhere did it produce excessively high intensities. Our intensity assessments, usually from original sources, tend to be lower than those assigned in previous studies, the highest being IX MSK on Rhodes.  相似文献   

5.
On 24 September 2014, a ML 2.3 earthquake occurred southwest of the urban area of Karlsruhe, Germany, which was felt by a few people (maximum intensity I 0?=?III). It was the first seismic event in this highly populated area since an I 0?=?VII earthquake in 1948. Data of 35 permanent and temporary seismometers were analysed to localise the event and to determine the focal mechanism to compare it to previous seismicity. Restricting the data to P- and S-phases from 18 nearby stations and optimising the local earth model result in an epicentre in the southwest of the city at 48.986°N/8.302°E and in a hypocentral depth of 10 km. To calculate the focal mechanism, 22 P- and 5 SH-polarities were determined that constrain a stable left lateral strike-slip focal mechanism with a minor thrusting component and nodal planes striking NE-SW and NW-SE. The epicentre lies in the vicinity of the I 0?=?VII earthquake of 1948. Both events are part of the graben-parallel flower structure beneath the Upper Rhine Graben, parallel to the active Rastatt source zone, which runs 5 km further east and included the epicentre of the 1933 Rastatt I 0?=?VII earthquake. The focal mechanisms of the 2014 and 1948 earthquakes show NE-SW striking nodal planes that dip to the southeast. However, for the 1948 event, a normal faulting mechanism was determined earlier. Taking the uncertainty of the epicentre and focal mechanism in 1948 and its fault dimensions into account, both events might have happened on the same fault plane.  相似文献   

6.
The JMA (Japan Meteorological Agency) seismic intensity scale has been used in Japan as a measure of earthquake ground shaking effects since 1949. It has traditionally been assessed after an earthquake based on the judgment of JMA officials. In 1996 the scale was revised as an instrumental seismic intensity measure (IJMA) that could be used to rapidly assess the expected damage after an earthquake without having to conduct a survey. Since its revision, Japanese researchers have developed several ground motion prediction equations (GMPEs) for IJMA using Japanese ground motion data. In this paper, we develop a new empirical GMPE for IJMA based on the strong motion database and functional forms used to develop similar GMPEs for peak response parameters as part of the PEER (Pacific Earthquake Engineering Research Center) Next Generation Attenuation (NGA) project. We consider this relationship to be valid for shallow crustal earthquakes in active tectonic regimes for moment magnitudes ( M ) ranging from 5.0 up to 7.5–8.5 (depending on fault mechanism) and rupture distances ranging from 0 to 200 km. A comparison of this GMPE with relationships developed by Japanese researchers for crustal and shallow subduction earthquakes shows relatively good agreement among all of the relationships at M 7.0 but relatively poor agreement at small magnitudes. Our GMPE predicts the highest intensities at small magnitudes, which together with research on other ground motion parameters, indicates that it provides conservative or upwardly biased estimates of IJMA for M <5.5. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In the framework of the UPStrat-MAFA project, a seismic hazard assessment has been undertaken in the volcanic region of Mt. Etna as a first step in studies aimed at evaluating the risk on an urban scale. The analysis has been carried out with the SASHA code which uses macroseismic data in order to calculate, starting from the site seismic history, the maximum intensity value expected in a given site with a probability of exceedance of 10 % (Iref), for a fixed exposure time. Depending on the aims of the project, hazard is estimated for local volcano-tectonic seismicity and short exposure times (10 and 30 years), without taking into account the contribution of “regional” events characterized by much longer recurrence times. Results from tasks A, B and D of the project have produced an updated macroseismic dataset, better performing attenuation models and new tools for SASHA, respectively. The maps obtained indicate that the eastern flank of Etna, the most urbanized sector of the volcano, is characterized by a high level of hazard with Iref values up to degree VIII EMS, and even IX EMS locally. The disaggregated data analysis allows recognizing the “design earthquake” and the seismogenic fault which most contribute to the hazard at a site-scale. The latter analysis is the starting point to select the scenario earthquake to be used in the analyses of tasks C and F of the project dealing with, respectively, synthetic ground motion simulations and the evaluation of the Disruption Index.  相似文献   

8.
Excavations in the former Roman provincial capital of Pannonia Superior, Carnuntum, 40 km east of Vienna revealed damaged masonry structures from many parts of the ancient settlements. A compilation of structurally damaged buildings has formerly been given by Kandler (Acta Archaeol Acad Sci Hung, 41:313–336, 1989), who related damage to an earthquake in the middle of the fourth century a.d. This paper reviews and supplements these data, and discusses the significance of the style of damage. It is concluded that seismic damage is the only likely interpretation for the damaging mechanism. Although archaeological age dating for the individual collapsed buildings only constrains the timing of their destruction to a few decades around 350 a.d., we assume a single damaging event. In spite of the restrictions on damage assessment by the nature of the archaeological data, it is possible to give a reasonable appraisal of macroseismic intensity. The tentative seismological interpretation of damage leads to an intensity estimate of about nine of the European macroseismic scale (EMS-1998). Comparison with macroseismic data of modern earthquakes in the region, which show a rapid decrease of intensity with distance form the epicentre, indicate a near-by seismic source unless exceptionally high epicentral intensities are assumed for the fourth century event. The most likely source is an active sinistral strike-slip fault (Lassee Fault) passing about 8 km NW of the archaeological site. The fault belongs to Vienna Basin fault system with about 2 mm sinistral movement per year. The system is characterized by fault segmentation and distinct seismicity along the different segments. Moderate seismicity during the last centuries at the southern segments (e.g., Schwadorf 1927, I 0=8) strongly contrasts from the Lassee fault segment with Carnuntum as the only known severe earthquake. The earthquake of Carnuntum provides evidence for the overall seismic style of deformation along this segment, which previously has not been regarded seismically active. Also, the fourth century earthquake is the strongest event known from the Vienna Basin fault so far.  相似文献   

9.
Historically, large and potentially hazardous earthquakes have occurred within the interior of Alaska. However, most have not been adequately studied using modern methods of waveform modeling. The 22 July 1937, 16 October 1947, and 7 April 1958 earthquakes are three of the largest events known to have occurred within central Alaska (M s =7.3,M s =7.2 andM s =7.3, respectively). We analyzed teleseismic body waves to gain information about the focal parameters of these events. In order to deconvolve the source time functions from teleseismic records, we first attempted to improve upon the published focal mechanisms for each event. Synthetic seismograms were computed for different source parameters, using the reflectivity method. A search was completed which compared the hand-digitized data with a suite of synthetic traces covering the complete parameter space of strike, dip, and slip direction. In this way, the focal mechanism showing the maximum correlation between the observed and calculated traces was found. Source time functions, i.e., the moment release as a function of time, were then deconvolved from teleseismic records for the three historical earthquakes, using the focal mechanisms which best fit the data. From these deconvolutions, we also recovered the depth of the events and their seismic moments. The earthquakes were all found to have a shallow foci, with depths of less than 10 km.The 1937 earthquake occurred within a northeast-southwest band of seismicity termed the Salcha seismic zone (SSZ). We confirm the previously published focal mechanism, indicating strike-slip faulting, with one focal plane parallel to the SSZ which was interpreted as the fault plane. Assuming a unilateral fault model and a reasonable rupture velocity of between 2 and 3 km/s, the 21 second rupture duration for this event indicates that all of the 65 km long SSZ may have ruptured during this event. The 1947 event, located to the south of the northwest-southeast trending Fairbanks seismic zone, was found to have a duration of about 11 seconds, thus indicating a rupture length of up to 30 km. The rupture duration of the 1958 earthquake, which occurred near the town of Huslia, approximately 400 km ENE of Fairbanks, was found to be about 9 seconds. This gives a rupture length consistent with the observed damage, an area of 16 km by 64 km.  相似文献   

10.
On March 20, 2006, a moderate-magnitude earthquake of Mw 5.2 hit the region of the Babors mountains, a region located two hundred km east of Algiers (capital of Algeria). More precisely, the epicentre occurred 40 km south-east of Béjaïa, the second most important city in the Kabylian region. The earthquake impacted an area with a radius of about 70 km and caused the death of four persons and injured 68. Damage was mainly observed in Lâalam village (district of Kherrata) where some buildings and old houses were affected. Damage was mainly due to a moderate landslide triggered by the earthquake. Rock falls were also observed near the main cliffs. The maximum observed intensity I0 was estimated to VII (EMS-98 scale). According to the main shock focal mechanism solution and the spatial distribution of aftershocks, the main shock was reliably found to have been generated by an NS sinistral strike-slip fault. The compressive stress axis σ1, oriented N325, is in agreement with the direction of convergence between Eurasia and Africa.  相似文献   

11.
In this study we use the term record threshold of a historical earthquake for the seismic intensity (EMS92) in an area where a given percentage P of the serial sources of places have recorded the event as been noticed there. The record threshold is understood as a limiting measure, below which warranted statements about the intensity cannot be given. P defines the acceptable uncertainty and can be chosen according to the demands of the special task, for instance, 10%. It is shown that the record threshold of historical earthquakes is not the same as the human perceptibility threshold of earthquakes of the 20th Century. The historical sources have to be selected using criteria such as completeness and homogenity of data. This demand is approximately met by inquiries for sources covering an area greater than the expected felt area of the historical earthquake.The Friuli event of 25 January 1348 is presented as an example. It is compared with the well known Friuli event of 6 May 1976 in order to calibrate its intensity. The record threshold of the 1348 event was probably IV or less than IV EMS92 for P = 10%. The method, properly modified, can be applied to different cultural epochs and areas. This result throws a light on the possible error in determining the felt area of historical events.  相似文献   

12.
The Zaisang earthquake (M s=7.3) on June 14, 1990 occurred in the boundary between China and Kazakstan. During the great shock, 3 persons lost their lives, 30 people had been hurt and 340 houses collapsed. The intensity of the epicentre is VIII Degree. The economic losses equals to about 320 000 000 Yuan. This large earthquake was occurred on a new born fault, it belongs to main shock-aftershock type earthquake. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 360–365, 1993.  相似文献   

13.
The 23 April 1909 earthquake, with epicentre near Benavente (Portugal), was the largest crustal earthquake in the Iberian Peninsula during the twentieth century (M w = 6.0). Due to its importance, several studies were developed soon after its occurrence, in Portugal and in Spain. A perusal of the different studies on the macroseismic field of this earthquake showed some discrepancies, in particular on the abnormal patterns of the isoseismal curves in Spain. Besides, a complete list of intensity data points for the event is unavailable at present. Seismic moment, focal mechanism and other earthquake parameters obtained from the instrumental records have been recently reviewed and recalculated. Revision of the macroseismic field of this earthquake poses a unique opportunity to study macroseismic propagation and local effects in central Iberian Peninsula. For this reasons, a search to collect new macroseismic data for this earthquake has been carried out, and a re-evaluation of the whole set has been performed and it is presented here. Special attention is paid to the observed low attenuation of the macroseismic effects, heterogeneous propagation and the distortion introduced by local amplifications. Results of this study indicate, in general, an overestimation of the intensity degrees previously assigned to this earthquake in Spain; also it illustrates how difficult it is to assign an intensity degree to a large town, where local effects play an important role, and confirms the low attenuation of seismic propagation inside the Iberian Peninsula from west and southwest to east and northeast.  相似文献   

14.
The estimation of strength of shaking at a site from the initial P-wave portion of ground motion is the key problems for shortening the alert time of the earthquake Early Warning (EEW). The most of the techniques proposed for the purpose utilize (a) ground motion models based on the estimated magnitude and hypocentral distance, or (b) the interim proxies, such as initial vertical displacement P d . We suggest the instrumental Japan Meteorological Agency (JMA) intensity (JMAI) as a characteristic for fast estimation of damage potential in the EEW systems. We investigated the scaling relations between JMAI measured using the whole earthquake recordings (overall intensity) and using particular time intervals of various duration (2.0–8.0 s) starting from the P-wave arrival (preliminary intensity). The dataset included 3,660 records (K-NET and the KiK-net networks) from 55 events (M W 4.1–7.4) occurred in 1999–2008 in Japan. We showed that the time interval of 4–5 s from the P-wave arrival can be used for reliable estimations of the overall intensity with the average standard error of about 0.5 JMA units. The uncertainty in the prediction may be reduced by consideration of local site conditions or by development of the station-specific models.  相似文献   

15.
This study aims to develop a new earthquake strong motion-intensity catalog as well as intensity prediction equations for Iran based on the available data. For this purpose, all the sites which had both recorded strong motion and intensity values throughout the region were first searched. Then, the data belonging to the 306 identified sites were processed, and the results were compiled as a new strong motion-intensity catalog. Based on this new catalog, two empirical equations between the values of intensity and the ground motion parameters (GMPs) for the Iranian earthquakes were calculated. At the first step, earthquake “intensity” was considered as a function of five independent GMPs including “Log (PHA),” “moment magnitude (MW),” “distance to epicenter,” “site type,” and “duration,” and a multiple stepwise regression was calculated. Regarding the correlations between the parameters and the effectiveness coefficients of the predictors, the Log (PHA) was recognized as the most effective parameter on the earthquake “intensity,” while the parameter “site type” was removed from the equations since it was determines as the least significant variable. Then, at the second step, a simple ordinary least squares (OLS) regression was fitted only between the parameters intensity and the Log (PHA) which resulted in more over/underestimated intensity values comparing to the results of the multiple intensity-GMPs regression. However, for rapid response purposes, the simple OLS regression may be more useful comparing to the multiple regression due to its data availability and simplicity. In addition, according to 50 selected earthquakes, an empirical relation between the macroseismic intensity (I0) and MW was developed.  相似文献   

16.
This paper describes the damage survey in the city of L??Aquila after the 6 April 2009 earthquake. The earthquake, whose magnitude and intensity reached Mw?=?6.3 and Imax?=?9?C10 MCS, struck the Abruzzi region of Central Italy producing severe damage in L??Aquila and in many villages along the Middle Aterno River valley. After the event, a building-to-building survey was performed in L??Aquila downtown aiming to collect data in order to perform a strict evaluation of the damage. The survey was carried out under the European Macroseismic Scale (EMS98) to evaluate the local macroseismic intensity. This damage survey represents the most complex application of the EMS98 in Italy since it became effective. More than 1,700 buildings (99% of the building stock) were taken into account during the survey at L??Aquila downtown, highlighting the difficult application of the macroseismic scale in a large urban context. The EMS98 revealed itself to be the best tool to perform such kind of analysis in urban settings. The complete survey displayed evidence of peculiar features in the damage distribution. Results revealed that the highest rate of collapses occurred within a delimited area of the historical centre and along the SW border of the fluvial terrace on which the city is settled. Intensity assessed for L??Aquila downtown was 8?C9 EMS.  相似文献   

17.
On 3 December 1828 at half past six in the evening, the border region between Belgium and Germany was stricken by a moderate earthquake. Up to now, the available information on this event has been essentially provided by a few contemporaneous scientific studies. To better evaluate its impact, location and magnitude, we have searched for new original historical reports. We collected 57 additional witness testimonies, which complete those previously collected about the earthquake effects. Among the testimonies, we also retrieved a questionnaire sent by the Prussian government to local authorities with the purpose of quickly obtaining information on the earthquake effects in the western part of the kingdom of Prussia. This inquiry is the oldest of its kind that has been discovered to date in this part of Europe, suggesting a rare concern by a national authority about the seismic hazard, and prefiguring the seismic inquiries that scientific institutions use today. The analysis of these new data made it possible to evaluate the intensity in 50 cities out of the 75 where the earthquake was observed. From these intensity data, we determine that the epicentre was in the Hautes-Fagnes region [lat. 50.38°N/long. 6.19°E?±?30 km] where moderate damage, corresponding to EMS-98 intensity VI–VII, was observed. At large distances, the earthquake was felt as far as Düsseldorf to the north, Brussels to the west, Metz to the south and Wiesbaden to the east. These distances correspond to a perceptibility radius of about 150 km. The magnitude of this earthquake is evaluated to be ML?=?4.7 (?0.2/+0.5) and MW?=?4.2 (+0.4/?0.2).  相似文献   

18.
On April 29, 2017 at 0:56 UTC (2:56 local time), an MW =?2.8 earthquake struck the metropolitan area between Leipzig and Halle, Germany, near the small town of Markranstädt. The earthquake was felt within 50 km from the epicenter and reached a local intensity of I0 = IV. Already in 2015 and only 15 km northwest of the epicenter, a MW =?3.2 earthquake struck the area with a similar large felt radius and I0 = IV. More than 1.1 million people live in the region, and the unusual occurrence of the two earthquakes led to public attention, because the tectonic activity is unclear and induced earthquakes have occurred in neighboring regions. Historical earthquakes south of Leipzig had estimated magnitudes up to MW ≈?5 and coincide with NW-SE striking crustal basement faults. We use different seismological methods to analyze the two recent earthquakes and discuss them in the context of the known tectonic structures and historical seismicity. Novel stochastic full waveform simulation and inversion approaches are adapted for the application to weak, local earthquakes, to analyze mechanisms and ground motions and their relation to observed intensities. We find NW-SE striking normal faulting mechanisms for both earthquakes and centroid depths of 26 and 29 km. The earthquakes are located where faults with large vertical offsets of several hundred meters and Hercynian strike have developed since the Mesozoic. We use a stochastic full waveform simulation to explain the local peak ground velocities and calibrate the method to simulate intensities. Since the area is densely populated and has sensitive infrastructure, we simulate scenarios assuming that a 12-km long fault segment between the two recent earthquakes is ruptured and study the impact of rupture parameters on ground motions and expected damage.  相似文献   

19.
A catalogue of historical landslides, 1951–2002, for three provinces in the Emilia‐Romagna region of northern Italy is presented and its statistical properties studied. The catalogue consists of 2255 reported landslides and is based on historical archives and chronicles. We use two measures for the intensity of landsliding over time: (i) the number of reported landslides in a day (DL) and (ii) the number of reported landslides in an event (Sevent), where an event is one or more consecutive days with landsliding. From 1951–2002 in our study area there were 1057 days with 1 ≤ DL ≤?45 landslides per day, and 596 events with 1 ≤ Sevent ≤ 129 landslides per event. In the first set of analyses, we find that the probability density of landslide intensities in the time series are power‐law distributed over at least two‐orders of magnitude, with exponent of about ?2·0. Although our data is a proxy for landsliding built from newspaper reports, it is the first tentative evidence that the frequency‐size of triggered landslide events over time (not just the landslides in a given triggered event), like earthquakes, scale as a power‐law or other heavy‐tailed distributions. If confirmed, this could have important implications for risk assessment and erosion modelling in a given area. In our second set of analyses, we find that for short antecedent rainfall periods, the minimum amount of rainfall necessary to trigger landslides varies considerably with the intensity of the landsliding (DL and Sevent); whereas for long antecedent periods the magnitude is largely independent of the cumulative amount of rainfall, and the largest values of landslide intensity are always preceded by abundant rainfall. Further, the analysis of the rainfall trend suggests that the trigger of landslides in the study area is related to seasonal rainfall. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号