首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Rock magnetic and palaeomagnetic studies were performed on Mesozoic redbeds collected from the central and southern Laos, the northeastern and the eastern parts of the Khorat Plateau on the Indochina Block. Totally 606 samples from 56 sites were sampled and standard palaeomagnetic experiments were made on them. Positive fold tests are demonstrated for redbeds of Lower and Upper Cretaceous, while insignificant fold test is resulted for Lower Jurassic redbeds. The remanence carrying minerals defined from thermomagnetic measurement, AF and Thermal demagnetizations and back-field IRM measurements are both magnetite and hematite. The positive fold test argues that the remanent magnetization of magnetite or titanomagnetite and hematite in the redbeds is the primary and occurred before folding. The mean palaeomagnetic poles for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous are defined at Plat./Plon. = 56.0°N/178.5°E (A95 = 2.6°), 63. 3°N/170.2°E (A95 = 6.9°), and 67.0°N/180.8°E (A95 = 4.9°), respectively. Our palaeomagnetic results indicate a latitudinal translations (clockwise rotations) of the Indochina Block with respect to the South China Block of −10.8 ± 8.8° (16.4 ± 9.0°); −11.1 ± 6.2° (17.8 ± 6.8°); and −5.3 ± 4.7° (13.3 ± 5.0°), for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous, respectively. These results indicate a latitudinal movement of the Indochina Block of about 5–11° (translation of about 750–1700 km in the southeastward direction along the Red River Fault) and clockwise rotation of 13–18° with respect to the South China Block. The estimated palaeoposition of the Khorat Plateau at ca. 21–26°N during Jurassic to Cretaceous argues for a close relation to the Sichuan Basin in the southwest of South China Block. These results confirm that the central part of the Indochina Block has acted like a rigid plate since Jurassic time and the results also support an earlier extrusion model for Indochina.  相似文献   

2.
The Late Cretaceous location of the Lhasa Terrane is important for constraining the onset of India-Eurasia collision. However, the Late Cretaceous paleolatitude of the Lhasa Terrane is controversial. A primary magnetic component was isolated between 580 °C and 695 °C from Upper Cretaceous Jingzhushan Formation red-beds in the Dingqing area, in the northeastern edge of the Lhasa Terrane, Tibetan Plateau. The tilt-corrected site-mean direction is Ds/Is = 0.9°/24.3°, k = 46.8, α95 = 5.6°, corresponding to a pole of Plat./Plon. = 71.4°/273.1°, with A95 = 5.2°. The anisotropy-based inclination shallowing test of Hodych and Buchan (1994) demonstrates that inclination bias is not present in the Jingzhushan Formation. The Cretaceous and Paleogene poles of the Lhasa Terrane were filtered strictly based on the inclination shallowing test of red-beds and potential remagnetization of volcanic rocks. The summarized poles show that the Lhasa Terrane was situated at a paleolatitude of 13.2° ± 8.6°N in the Early Cretaceous, 10.8° ± 6.7°N in the Late Cretaceous and 15.2° ± 5.0°N in the Paleogene (reference point: 29.0°N, 87.5°E). The Late Cretaceous paleolatitude of the Lhasa Terrane (10.8° ± 6.7°N) represented the southern margin of Eurasia prior to the collision of India-Eurasia. Comparisons with the Late Cretaceous to Paleogene poles of the Tethyan Himalaya, and the 60 Ma reference pole of East Asia indicate that the initial collision of India-Eurasia occurred at the paleolatitude of 10.8° ± 6.7°N, since 60.5 ± 1.5 Ma (reference point: 29.0°N, 87.5°E), and subsequently ~ 1300 ± 910 km post-collision latitudinal crustal convergence occurred across the Tibet. The vast majority of post-collision crustal convergence was accommodated by the Cenozoic folding and thrust faulting across south Eurasia.  相似文献   

3.
We have conducted a paleomagnetic investigation on the Middle–Upper Jurassic marine strata exposed in the hanging wall of the Tanggula Thrust system near the Yanshiping area, northern Tibet. Progressive demagnetization experiments successfully isolated stable magnetization over a broad spectrum of demagnetization temperatures. The mean direction of the characteristic remanent magnetizations for the Middle–Late Jurassic Yanshiping Group in stratigraphic coordinates (D/I (Declination/Inclination) = 5.6°/60.3°, k = 22.9, α95 = 12.9°, N = 7 s) is much more clustered than the mean direction in geographic coordinates (D/I = 345.5°/37.2°, k = 2.5, α95 = 48.4°), indicating magnetization was not acquired after folding. Although the conventional fold test is positive, incremental untilting test on the characteristic remanent magnetization reveals that a maximum value of precision parameter k occurs at 82.1 ± 4.6% untilting (D/I = 3.3°/57.8°, k = 43.9, α95 = 9.2°), which indicates the ChRMs are probably acquired during Late Cretaceous folding. This synfolding magnetization component is therefore secondary. The corresponding pole position (84.4°N, 119.4°E with dp/dm = 13.5/9.9°) is inconsistent with Jurassic–Early Cretaceous paleopoles of the region, but the paleolatitude is consistent with the Late Cretaceous paleolatitude observed in the Qiangtang terrane and its periphery. The synfolding component is carried by both magnetite and hematite, which were identified by isothermal remnant magnetization acquisition experiments, unblocking temperatures of stable magnetic components, and Curie temperature determination and correlated with observed hydrothermal veins. Available geological evidences indicate that the synfolding magnetization is probably the result of chemical remagnetization caused by orogenic fluids or hydrothermal sources during the early uplift of the Tibetan Plateau.  相似文献   

4.
Magmatic arcs are zones of high heat flow; however, examples of metamorphic belts formed under magmatic arcs are rare. In the Pontides in northern Turkey, along the southern active margin of Eurasia, high temperature–low pressure metamorphic rocks and associated magmatic rocks are interpreted to have formed under a Jurassic continental magmatic arc, which extends for 2800 km through the Crimea and Caucasus to Iran. The metamorphism and magmatism occurred in an extensional tectonic environment as shown by the absence of a regional Jurassic contractional deformation, and the presence of Jurassic extensional volcaniclastic marine basin in the Pontides, over 2 km in thickness, where deposition was coeval with the high‐T metamorphism at depth. The heat flow was focused during the metamorphism, and unmetamorphosed Triassic sequences crop out within a few kilometres of the Jurassic metamorphic rocks. The heat for the high‐T metamorphism was brought up to crustal levels by mantle melts, relicts of which are found as ultramafic, gabbroic and dioritic enclaves in the Jurassic granitoids. The metamorphic rocks are predominantly gneiss and migmatite with the characteristic mineral assemblage quartz + K‐feldspar + plagioclase + biotite + cordierite ± sillimanite ± garnet. Mineral equilibria give peak metamorphic conditions of 4 ± 1 kbar and 720 ± 40 °C. Zircon U–Pb and biotite Ar–Ar ages show that the peak metamorphism took place during the Middle Jurassic at c. 172 Ma, and the rocks cooled to 300 °C at c. 162 Ma, when they were intruded by shallow‐level dacitic and andesitic porphyries and granitoids. The geochemistry of the Jurassic porphyries and volcanic rocks has a distinct arc signature with a crustal melt component. A crustal melt component is also suggested by cordierite and garnet in the magmatic assemblage and the abundance of inherited zircons in the porphyries.  相似文献   

5.
 Characteristic samples of Upper Cretaceous pelagic red sediments from different parts of the Eastern Pontides (NE Turkey) have been investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy coupled with energy dispersive analyses (SEM/EDAX). The red sediments are composed of limestone and muddy limestone, and characterized by abundant planktonic foraminifers. Hematite content ranges from 0.5 to 3.0 wt.%. Electron microscope observations suggest that the hematite pigment has a diagenetic origin. The red colour is due to presence of hematite pigment, and indicates oxidizing conditions during early diagenesis in a relatively deep marine environment. Received: 4 January 1999 / Accepted: 8 July 1999  相似文献   

6.
A combined paleomagnetic and geochronological investigation has been performed on Cretaceous rocks in southern Qiangtang terrane (32.5°N, 84.3°E), near Gerze, central Tibetan Plateau. A total of 14 sites of volcanic rocks and 22 sites of red beds have been sampled. Our new U–Pb geochronologic study of zircons dates the volcanic rocks at 103.8 ± 0.46 Ma (Early Cretaceous) while the red beds belong to the Late Cretaceous. Rock magnetic experiments suggest that magnetite and hematite are the main magnetic carriers. After removing a low temperature component of viscous magnetic remanence, stable characteristic remanent magnetization (ChRM) was isolated successfully from all the sites by stepwise thermal demagnetization. The tilt-corrected mean direction from the 14 lava sites is D = 348.0°, I = 47.3°, k = 51.0, α95 = 5.6°, corresponding to a paleopole at 79.3°N, 339.8°E, A95 = 5.7° and yielding a paleolatitude of 29.3° ± 5.7°N for the study area. The ChRM directions isolated from the volcanic rocks pass a fold test at 95% confidence, suggesting a primary origin. The volcanic data appear to have effectively averaged out secular variation as indicated by both geological evidence and results from analyzing the virtual geomagnetic pole (VGP) scatter. The mean inclination from the Late Cretaceous red beds, however, is 13.1° shallower than that of the ~ 100 Ma volcanic rocks. After performing an elongation/inclination analysis on 174 samples of the red beds, a mean inclination of 47.9° with 95% confidence limits between 41.9° and 54.3° is obtained, which is consistent with the mean inclination of the volcanic rocks. The site-mean direction of the Late Cretaceous red beds after tilt-correction and inclination shallowing correction is D = 312.6°, I = 47.7°, k = 109.7, α95 = 3.0°, N = 22 sites, corresponding to a paleopole at 49.2°N, 1.9°E, A95 = 3.2° (yielding a paleolatitude of 28.7° ± 3.2°N for the study area). The ChRM of the red beds also passes a fold test at 99% confidence, indicating a primary origin. Comparing the paleolatitude of the Qiangtang terrane with the stable Asia, there is no significant difference between our sampling location in the southern Qiangtang terrane and the stable Asia during ~ 100 Ma and Late Cretaceous. Our results together with the high quality data previously published suggest that an ~ 550 km N–S convergence between the Qiangtang and Lhasa terranes happened after ~ 100 Ma. Comparison of the mean directions with expected directions from the stable Asia indicates that the Gerze area had experienced a significant counterclockwise rotation after ~ 100 Ma, which is most likely caused by the India–Asia collision.  相似文献   

7.
The Eastern Pontides Orogenic Belt represents one of the best examples of fossil convergent margins in the eastern Mediterranean region. However, the origin and geodynamic setting of the late Mesozoic–Cenozoic magmatism in this belt remain controversial due to lack of systematic geological, geochemical and chronological data. The general consensus is that the late Mesozoic–Cenozoic igneous activity is related to northward subduction of oceanic lithosphere in the late Mesozoic and following collision between Tauride and Pontide blocks in the early Cenozoic. Here we present a comprehensive study focusing on the origin and geodynamic setting of gabbro bodies exposed along a narrow zone, parallel to the southeastern coast of the eastern Black Sea basin, in the Northern Zone of the Eastern Pontides Orogenic Belt.The studied gabbro bodies are hosted within late Cretaceous basaltic, andesitic, and dacitic volcanics including pyroclastic rocks and interbedded sedimentary rocks. The gabbro bodies range in size from 0.1 km2 to 1.5 km2, and outcrop patterns vary from round or elliptical to markedly elongate with sharp and discordant contact with the host rocks. Their mineral assemblage includes mainly clinopyroxene, plagioclase, minor olivine, amphibole, magnetite and rarely orthopyroxene, biotite, zircon and titanite. The occurrence of sutured grain boundaries on clinopyroxene and plagioclase, and the presence of reverse compositional zoning in clinopyroxene and olivine suggest mixing between magmas of contrasting compositions during mineral growth. Thermobarometric computations indicate that the temperature at the beginning of crystallization was ~ 1250 °C and crystallization was polybaric. Zircon and titanite U–Pb ages indicate that these small intrusions were emplaced into crustal rocks of the Eastern Pontides Orogenic Belt during Lutetian (45 ± 2 Ma). The depletion of HFSE is consistent with the involvement of an arc-related source in the petrogenesis of these rocks, and low to moderate enrichment Ce, Rb, Ba, K, Pb, Sr and Th suggests that involvement of subducted oceanic sediment was modest. The low Th content and low Th/Yb indicate that the role of sediment addition was nevertheless limited. The Nd, Sr and Pb isotopic data are consistent with the interpretation that the dominant source component in these gabbros is a depleted, peridotitic mantle, and that crustal contamination is relatively unimportant. We suggest that mafic magmas that produced the gabbroic intrusions were derived from melting of a depleted mantle source under the forearc region of the Eastern Pontides Orogenic Belt during southward subduction of two oceanic plates separated by a mid-ocean ridge, leading to the formation of a slab window. We also infer fractional crystallization and assimilation during both magma storage in the crust–mantle transition zone and transfer into the overlying arc crust.  相似文献   

8.
A systematic sedimentologic and paleomagnetic study was carried out in the Vaca Muerta Formation, cropping out in the northern Neuquén Basin, west-central Argentina. The studied section is c. 280 m-thick and represents a carbonate ramp system bearing ammonites that indicate Late Jurassic–Early Cretaceous ages. The Vaca Muerta Formation is one of the most important unconventional hydrocarbon reservoirs in the world and its thorough study has become a relevant target in Argentina. The J-K boundary is comprised within this unit, and although it is well-dated through biostratigraphy (mainly ammonites), the position of particularly the boundary is yet a matter of hot debate. Therefore, the systematic paleomagnetic and cyclostratigraphic study in the Vaca Muerta Formation was considered relevant in order to obtain the first Upper Jurassic–Lower Cretaceous magnetostratigraphy of the southern hemisphere on the first place and to precise the position of the J-K boundary in the Neuquén Basin, on the other. Biostratigraphy is well studied in the area, so that paleomagnetic sampling horizons were reliably tied, particularly through ammonites. Almost 450 standard specimens have been processed for this study distributed along 56 paleomagnetic sampling horizons that were dated using ammonites. Paleomagnetic behaviours showed to be very stable, and their quality and primary origin have been proved through several paleomagnetic field tests The resultant magnetostratigraphic scale is made up of 11 reverse and 10 normal polarity zones, spanning the Andean Virgatosphinctes mendozanus (lower Tithonian) to Spiticeras damesi Zones (upper Berriasian). These polarity zones were correlated with those of the International Geomagnetic Polarity Time Scale 2012 and 2016 through the correlation between Andean and Tethyan ammonite zones. Cyclostratigraphy on the other hand, proved to be quite consistent with the magnetostratigraphy. Through the correlation of the resultant paleomagnetic and cyclostratigraphic data, it was possible to date the section with unprecedented precision, and therefore, to establish the position of the Jurassic-Cretaceous boundary. The paleomagnetic pole calculated from the primary magnetization is located at: Lon = 191.6°E, Lat = 76.2°S, A95 = 3.5°, indicating a c. 24° clockwise rotation for the studied section, which is consistent with structural data of the region.  相似文献   

9.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

10.
Iodine contents of soils developed over the major rock formations of the northern zone of the Eastern Pontide Tectonic Belt (Northeastern Turkey) have been investigated with respect to soil-parent rock relationship, effect of topography, elevation, and climate to construe its effect on the health of the local population. Samples were collected from the A and B horizons of the soils developed over the major stratigraphic units constituting the eastern Pontides, including the Lower Basic Complex of Jurassic-Lower Cretaceous age, the Berdiga limestone (Jurassic-lower Cretaceous), the Dagbasi granitoid (Upper Cretaceous), volcano-sedimentary sequence of Upper Cretaceous age, ore-bearing and barren dacites of Upper Cretaceous age, and Neogene alkaline basalts. Chemical analyses of soil samples indicate significantly lower iodine abundances for all the soils studied (5–28 ppm) in comparison to the average abundance of iodine in analogous soils of other parts of the world (22–93 ppm). The concentration of iodine in soils developed over the same geologic formation decrease with increasing elevation. In certain cases, this decrease may reach up to 70%. Goiter is highly common throughout this region in Turkey. The results of this study suggest that the iodine deficiency of region’s soils may be a principal underlying cause for this area of Turkey being an endemic goiter region.  相似文献   

11.
Faruk Aydin  Orhan Karsli  Bin Chen 《Lithos》2008,104(1-4):249-266
Whole-rock geochemistry, Sr–Nd–Pb isotopes and K–Ar data are reported for alkaline samples collected from the Neogene alkaline volcanics (NAVs) in the Eastern Pontides, northeastern Turkey, in order to investigate their source and petrogenesis and geodynamic evaluation of the region. The NAVs were made of three groups that comprise of basanite–tephrite (feldspar-free; Group A), tephrite–tephriphonolite (feldspar and feldspathoid-bearing; Group B) and alkaline basalt–rhyolite (feldspathoid-free; Group C) series. These rocks cover a broad compositional range from silica-undersaturated to silica-oversaturated types, almost all of which are potassic in character. They show enrichment of LREE and LILE and depletion of HFSE, without a Eu anomaly in most of the mafic samples. Textural features and calculated pressures based on the Cpx-barometer in each series indicate that the alkaline magma equilibrated at shallow crustal depths under a pressure of about 3–4.5 kbar and approximating a crystallization depth of 9–14 km. The NAVs are slightly depleted in isotopic composition, with respect to 87Sr/86Sr (ranging from 0.705018 to 0.705643) and 143Nd/144Nd (ranging from 0.512662 to 0.512714) that indicate young Nd model ages (0.51–059 Ga). This may indicate that the parent melts tapped a homogeneous and young lithospheric mantle source which was metasomatized by subduction-derived sediments during the Late Mesozoic. Pb isotopic compositions (206Pb/204Pb = 18.85–18.95; 207Pb/204Pb = 15.60–15.74; 208Pb/204Pb = 38.82–39.25) may also be consistent with a model for an enriched subcontinental lithospheric mantle source. Lithospheric thinning and resultant upwelling of asthenosphere induced by lithospheric delamination may have favoured partial melting of chemically enriched, young lithospheric mantle beneath the Eastern Pontides. Then, the melt subsequently underwent a fractional crystallization process along with or without minor amounts of crustal assimilation, generating a wide variety of rock types in a post-collision extensional regime in the Eastern Pontides during the Neogene.  相似文献   

12.
The platform limestones of Apulia (Italy) outcropping in the Gargano peninsula have been restudied. Paleomagnetic research has been carried out on Upper Cretaceous, Lower Cretaceous and Jurassic rocks. Despite the low intensities of the NRM (10–100 μA/m), all samples (268) could be cleaned by stepwise A.F. and/or thermal demagnetization treatments. NRM directions could be determined accurately and reproducibly for 85% of the samples, using a ScT cryogenic magnetometer and double precision measuring procedures. NRM of the Jurassic limestone is carried by secondary haematite and the results are therefore rejected from further consideration. The Upper and Lower Cretaceous limestones have an NRM carried by magnetite. Minor bedding tilt corrections improve the grouping of the site-mean results. The Upper Cretaceous “Scaglia” limestone (Turonian-Senonian) reveals a characteristic mean direction of decl. = 327.7°, incl. = 38.2°, α95 = 4.3° (21 sites), while the Lower Cretaceous “Maiolica” limestone (Neocomian-Aptian/Albian) reveals a characteristic mean direction of decl. = 303.1°, incl. = 35.1°, α95 = 8.7° (8 sites). The Cretaceous results show a post-Aptian/Albian counterclockwise rotation of about 25°, which is expressed by the smeared distribution of the Late Cretaceous site-mean results and a post-Senonian (i.e. Tertiary) counterclockwise rotation of the same amount with respect to the pole. These results are in excellent agreement with contemporaneous paleomagnetic results from other peri-Adriatic regions. A Tertiary counterclockwise rotation of all the stable Adriatic block is strongly supported by the new results.  相似文献   

13.
Jurassic to Cretaceous red sandstones were sampled at 33 sites from the Khlong Min and Lam Thap formations of the Trang Syncline (7.6°N, 99.6°E), the Peninsular Thailand. Rock magnetic experiments generally revealed hematite as a carrier of natural remanent magnetization. Stepwise thermal demagnetization isolates remanent components with unblocking temperatures of 620–690 °C. An easterly deflected declination (D = 31.1°, I = 12.2°, α95 = 13.9°, N = 9, in stratigraphic coordinates) is observed as pre-folding remanent magnetization from North Trang Syncline, whereas westerly deflected declination (D = 342.8°, I = 22.3°, α95 = 12.7°, N = 13 in geographic coordinates) appears in the post-folding remanent magnetization from West Trang Syncline. These observations suggest an occurrence of two opposite tectonic rotations in the Trang area, which as a part of Thai–Malay Peninsula received clockwise rotation after Jurassic together with Shan-Thai and Indochina blocks. Between the Late Cretaceous and Middle Miocene, this area as a part of southern Sundaland Block experienced up to 24.5° ± 11.5° counter-clockwise rotation with respect to South China Block. This post-Cretaceous tectonic rotation in Trang area is considered as a part of large scale counter-clockwise rotation experienced by the southern Sundaland Block (including the Peninsular Malaysia, Borneo and south Sulawesi areas) as a result of Australian Plate collision with southeast Asia. Within the framework of Sundaland Block, the northern boundary of counter-clockwise rotated zone lies between the Trang area and the Khorat Basin.  相似文献   

14.
We conducted paleomagnetic investigations on limestone from the Lower Carboniferous Huaitoutala Formation in the Qaidam Basin near Delingha City, Qinghai Province, China. The characteristic remanent magnetization (D = 5.8°, I =  25.7°, k = 114.3, α95 = 4.8°) passes a fold test and indicates a paleopole position of − 39.2°N, 90.4°E and a paleolatitude of 13.5°N for the Qaidam Block for the early Carboniferous. Based on global tectonic reconstructions and paleontological evidence, we suggest that the Qaidam Block was adjacent to, but independent from, the North China, South China, Alashan–Hexi and Tarim blocks at this time. This result suggests that Pre-Carboniferous sutures reported around the Qaidam Basin represent collisional events within Gondwana, rather than the final sutures that gave rise to the present tectonic configuration.  相似文献   

15.
The Family Afrograptidae is a ‘conchostracan’ group with multiple radial costae reaching to the umbo on their carapaces. It comprises four described genera: Afrograpta, Camerunograpta, Congestheriella and Graptoestheriella with a total of thirteen described species which are occasionally reported from the Jurassic and the Cretaceous in Africa, Europe and South America (i.e. Afrograpta from the Upper Cretaceous of Cameroon; Camerunograpta from the Jurassic to Cretaceous of Cameroon; Congestheriella from the Jurassic to Upper Cretaceous of the Congo Basin, Brazil, Bulgaria, Venezuela and Argentina; and Graptoestheriella from the Upper Jurassic to Lower Cretaceous of Brazil). A new genus and a new species, Surreyestheria ockleyensis gen. et sp. nov., belonging to the Family Afrograptidae from the Lower Cretaceous (lower Barremian) Upper Weald Clay Formation of Ockley Village, Surrey County, southern England is described in this paper. The new genus mainly differs from the other four genera by the special reticulate ornamentation on its carapace. It indicates that the Family Afrograptidae was more diverse and more widely distributed in the late Mesozoic than previously supposed. Afrograptidae is a special branch of Estheriellina the latter originating in the late Palaeozoic and the former in the early Mesozoic. Afrograptids, as a whole had been widespread across Pangea in the Early Jurassic.  相似文献   

16.
1D (Petromod) hydrocarbon charge modeling and source rock characterization of the Lower Cretaceous and Upper Jurassic underlying the prolific Cretaceous and Tertiary reservoirs in the Basra oilfields in southern Iraq. The study is based on well data of the Majnoon, West Qurna, Nahr Umr, Zubair, and Rumaila oil fields. Burial histories indicate complete maturation of Upper Jurassic source rocks during the Late Cretaceous to Paleogene followed by very recent (Neogene) maturation of the Low/Mid Cretaceous succession from early to mid-oil window conditions, consistent with the regional Iraq study of Pitman et al. (Geo Arab 9(4):41–72, 2004). These two main phases of hydrocarbon generation are synchronous with the main tectonic events and trap formation associated with Late Cretaceous closure of the neo-Tethys; the onset of continent–continent collision associated with the Zagros orogeny and Neogene opening of the Gulf of Suez/Red Sea. Palynofacies of the Lower Cretaceous Sulaiy and Lower Yamama Formations and of the Upper Jurassic Najmah/Naokelekan confirm their source rock potential, supported by pyrolysis data. To what extent the Upper Jurassic source rocks contributed to charge of the overlying Cretaceous reservoirs remains uncertain because of the Upper Jurassic Gotnia evaporite seal in between. The younger Cretaceous rocks do not contain source rocks nor were they buried deep enough for significant hydrocarbon generation.  相似文献   

17.
通过1∶5万区域地质调查,在青藏高原羌塘地块西南缘鸡夯地区原划上三叠统日干配错群中新识别出一套上侏罗统—下白垩统地层。本文根据该套地层的岩石组合以及古生物面貌特征,初步探讨了该套地层的沉积环境和沉积相特征,对其中发育的玄武岩夹层采用锆石U-Pb(LA-ICP-MS)同位素测年方法,获得其年龄为118.3±2.1Ma。在发育的生物碎屑灰岩夹层中采集了珊瑚、双壳类、腕足、腹足类化石,化石资料显示该套地层形成于晚侏罗世—早白垩世。这是首次在南羌塘地块发现该时期海相地层,这一发现证明南羌塘地块在晚侏罗世—早白垩世时期海水并未完全退出,而是局部发育海相三角洲。  相似文献   

18.
The South Anyui fold zone (western Chukotka) is considered a suture zone related to closure of the South Anyui oceanic basin and collision of Eurasia with the Chukotka–Arctic Alaska microcontinent in the Early Cretaceous. The existence of a compensatory sedimentation basin (foredeep) during folding in the terminal Jurassic–initial Cretaceous remains debatable. This work presents first data on age estimates of detrital zircons from Upper Mesozoic terrigenous sequences of the South Anyui suture zone obtained by the fission-track method. The distal flysch of presumably Late Jurassic age and the proximal flysch of probably Late Triassic age were sampled in the Uyamkanda River basin. The fission-track dating showed that sandstones from the flysch sections contain detrital zircons of two different-age populations. Young zircon populations from sandstones of distal turbidites in the upper course of the Uyamkanda River (two samples) are 149 ± 10.2 and 155.4 ± 9.0 Ma old (Late Jurassic), whereas those from coarse-grained proximal turbidites sampled in the lower course of the Uyamkanda River (one sample) is 131.1 ± 7.5 Ma old (Early Cretaceous). The data obtained indicate that the Late Mesozoic folding in the South Anyui suture zone was accompanied by the formation of a marginal sedimentary basin. Sediments accumulated in this basin compose tectonic nappes that constitute a fold–thrust structure with the northern vergence.  相似文献   

19.
Radiolaria from chert in the Indarung Area belong to the Transhsuum hisuikyoense Zone, indicating an Aalenian, lower Middle Jurassic, age. Carbonate in the area has been dated as Upper Jurassic to Lower Cretaceous from the occurrence of Lovcenipora, and overlying tuff has given a radiometric K/Ar age of 105±3 (Albian, uppermost Lower Cretaceous). The chert and carbonate are probably in tectonic contact, with the chert faulted into the limestone during ENE-directed compression. This comprises one of the best dated occurrences of allochthonous material in Sumatra and confirms the accretion of oceanic material along the Sunda margin during Mid- to Late-Cretaceous times.  相似文献   

20.
The upper part of Madbi Formation organic-rich shale is considered an important regional source rock in the Masila Basin, Yemen. Ten cutting samples from this Upper Jurassic organic-rich shale were collected from wells drilled in the Kharir Oilfield, Masila Basin in order to geochemically assess the type of organic matter, thermal maturity and depositional environment conditions. Results reveal that Upper Jurassic organic-rich shale samples contain high organic matter more than 2.0 wt.% TOC and have very good to excellent hydrocarbon potential. Marine algae organic matter is the main source input for the Upper Jurassic shale sequence studied. This has been identified from organic petrographic characteristics and from the n-alkane distributions, which dominated by n-C14-n-C20 alkanes. This is supported by the high value of the biomarker sterane/hopane ratio that approaches unity, as well as the relatively high C27 sterane concentrations. A mainly suboxic depositional environment is inferred from pr/ph ratios (1.75–2.38). This is further supported by relatively high homohopane value, which is dominated by low carbon numbers and decrease towards the C35 homohopane. The concentrations of C35 homohopane are very low. The depositional environment conditions are confirmed by some petrographic characteristics (e.g. palynofacies). Detailed palynofacies analysis of Madbi shales shows that the Madbi shale formation is characterised by a mix of amorphous organic matter, dinoflagellates cysts and phytoclasts, representing a suboxic, open marine setting. The Upper Jurassic marine shale sequence in the Masila Basin is thermally mature for hydrocarbon generation as indicated by biomarker thermal maturity parameters. The 22 S/22 S + 22R C32 homohopane has reached equilibrium, with values range from 0.58 to 0.62 which suggest that the Upper Jurassic shales are thermally mature and that the oil window has been reached. 20 S/(20 S + 20R) and ββ/(ββ + αα) C29 sterane ratios suggest a similar interpretation, as do the moretane/hopane ratio. This is supported by vitrinite reflectance data ranging from 0.74% to 0.90%Ro and thermal alteration of pollen and spore. The thermal alteration index value is around 2.6–3.0, corresponding to a palaeotemperature range of 60–120°C. These are the optimum oil-generating strata. On the basis of this study, the Madbi source rock was deposited under suboxic conditions in an open marine environment and this source rock is still within the oil window maturity range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号