首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
二连盆地的构造反转事件一直有争议.为了查明二连盆地巴音都兰凹陷早白垩世期间反转构造的发育期次以及不同时期发生反转构造的动力机制,利用新处理的覆盖全凹陷的3D地震数据和钻井资料,识别并分析了研究区在裂陷期发育的4期正反转构造,分别对应阿三段沉积末期、阿四段沉积末期、腾一下段沉积末期以及腾二段沉积期.研究表明:研究区早白垩世岩浆底辟较为活跃,在阿三段、阿四段和腾一下段以及腾二段沉积末期均发育过岩浆底辟活动,并导致盆地局部发生构造正反转,而腾二段沉积期间除了发育岩浆底辟作用导致构造反转外,还发育左旋压扭活动,并导致构造正反转.因此,研究区在早白垩世发育了两种不同成因类型的正反转构造,这主要与二连盆地在早白垩世期间伊泽纳琦板块对欧亚大陆的俯冲和异常地幔隆升引起的岩浆底辟作用以及腾二段沉积期伊泽纳琦板块俯冲方向发生改变而导致的区域走滑作用密切相关.   相似文献   

2.
This work disproves the magmatic (ophitic rises) and sedimentological (submarine trans-Pyrenean trough filled with breccias and hemipelagites) arguments presented in favour of a Danian distension step following a major Upper to Late Cretaceous Pyrenean compression phase. In the western Pyrenees (Bearn area) the tholeiitic magmatism is really Triassic or Lowermost Liassic in age. The ophites cross mechanically the Jurassic and Cretaceous enclosing sedimentary beds without any contact metamorphism, which could give proof of a Palaeocene age for the magmatic emplacement. As for the supposed submarine breccias rich in planktonic foraminifera, they really correspond to diapiric Early Cretaceous breccias, to Cretaceous or Tertiary tectono-karstic breccias or to Quaternary colluvial deposits. The Danian/Selandian trough does not exist. The proposed interpretation assigns that the Palaeocene interval must be included within the long compression (transpression) period, which begins in the Upper Cretaceous times and increases during the Early Cenozoic, leading to the main structural step of the Pyrenean cycle, towards the Middle–Upper Eocene. To cite this article: J. Canérot, C. R. Geoscience 338 (2006).  相似文献   

3.
A. S. GALE 《Sedimentology》1980,27(2):137-151
Campanian (Upper Cretaceous) Chalk exposed in a quarry near Portsmouth is unusual in the occurrence of a contemporaneous anticlinal fold, probably diapiric in origin. Hardgrounds and local slumps developed over the structure, and part of the chalk succession thins considerably over its crest. Erosional channels, sometimes containing bioclastic lag deposits, formed at two levels. Movement on the anticline occurred three times during the part of the Lower Campanian represented in the section; the third phase resulted in extensive fracturing of the crestal region of the fold. Burial of the structure and the onset of normal chalk deposition concluded the Cretaceous phase of its history.  相似文献   

4.
The Palaeozoic to Mesozoic accretionary complexes of southwest Japan include various types of mélange. Most mélanges are polygenetic in origin, being sedimentary or diapiric mélanges that were overprinted by tectonic deformation during subduction. Sedimentary mélanges, without a tectonic overprint, are present in the Permian accretionary complexes of the Akiyoshi and Kurosegawa belts and in the Early Cretaceous accretionary complex of the Chichibu Belt. These mélanges are characterized by dominant basalt and limestone clasts, within a mudstone matrix. The basalt and limestone clasts within the sedimentary mélanges were derived from ancient seamounts. Subduction of a seamount results in deformation of the pre-existing accretionary wedge, and it is difficult to incorporate a seamount into an accretionary wedge; therefore, preservation of seamount fragments requires a special tectonic setting. Oceanic plateau accretion might play an important role in interrupting the processes of subduction and accretion during the formation of accretionary complexes. Especially the Mikabu oceanic plateau might have caused the cessation of accretion during the Early Cretaceous. The subduction and accretion of volcanic arcs and oceanic plateaux helps to preserve sedimentary mélanges from tectonic overprinting by preventing further subduction.  相似文献   

5.
Palaeomagnetic data, and specifically remagnetizations, are used to constrain the geometric reconstruction at 100 Ma of three anticlines cored by gabbroic intrusions and Triassic shales in the Central High Atlas, Morocco. Previous palaeomagnetic results have revealed that the Mesozoic sediments of this region acquired a pervasive remagnetization at the end of the Early Cretaceous. The restoration of palaeomagnetic vectors to the remagnetization stage (100 Ma) allows us to determine the dip of the beds during this period and, thereby, to reconstruct structures during that time and determine the relative contributions of Mesozoic magmatic/diapiric uplift vs. Cenozoic compression to the present‐day dip. Our results indicate that three major anticlines in the Central High Atlas (Tasraft, Tassent and Tissila) were initiated to different degrees before the Late Cretaceous and were reactivated during Cenozoic compression to acquire their present‐day geometry. We also discuss the origin of these structures.  相似文献   

6.
大杨树盆地的构造特征及变形期次   总被引:4,自引:0,他引:4  
大杨树盆地是叠置于大兴安岭造山带的东部,与松辽盆地紧邻,呈北北东向长条带状展布的中新生代断陷-坳陷型盆地。大杨树盆地经历了多期变形作用,具有以伸展构造为主、并被挤压构造和反转构造叠加的构造特征。早白垩世龙江期主要受到了NWW—SEE向的拉伸作用,形成一系列北北东向控陷犁式正断层组合,在控陷断层的上盘发育小型箕状断陷;早白垩世九峰山期,大杨树盆地受挤压作用控制,使早期形成的断陷盆地发生反转作用,形成正反转构造,同时在某些地段形成逆冲断层和断层传播褶皱;早白垩世甘河期,大杨树盆地再次受到伸展作用,形成了一系列北北东向小型断陷。早白垩世晚期(甘河期之后)—晚白垩世早期,大杨树盆地受到强烈的挤压作用,使早期控陷正断层出现正反转作用,在盆地的浅部形成大型断层传播褶皱,使大杨树盆地全面隆升遭受剥蚀。第四纪大杨树盆地具有伸展的特征,发育一系列小型伸展断陷。  相似文献   

7.
A variety of distinct salt tectonic features are present in the Sab’atayn Basin of western Yemen. Based on the interpretation of regional 2D seismic reflection data and exploration wells in the central part of the basin, an Upper Jurassic evaporite formation produced numerous salt rollers, salt pillows, reactive, flip-flop, and falling diapirs. Due to regional extension, halokinetics began as soon as the early Cretaceous, within just a few million years after the deposition of the Tithonian Sab’atayn evaporite sequence, by formation of salt rollers. The salt locally formed salt pillows which evolved to reactive and active salt diapirs and diapiric salt walls as the result of renewed, but low-strain extension in the basin. Some of the diapiric walls further evolved into falling diapirs due to ongoing extension. As the result of a prominent extensional episode at the end of the Cretaceous, many of the diapiric walls in the basin are controlled by large normal faults on their updip flanks. As the post-Cretaceous sedimentary cover is largely missing in the study area, the assumed reactivation of salt structures during the Cenozoic remains poorly constrained. The interpreted changes in the style of salt tectonics in the Sab’atayn Basin offer a better understanding of the regional-scale tectonic development of the Arabian plate during the late Jurassic and Cretaceous.  相似文献   

8.
通过对华北克拉通北缘显生宙四次(P1,T3,J1,K1)底侵作用的研究,将华北克拉通的活化与岩石圈深部地幔物质的底辟体上涌联系起来。不同阶段底侵作用在岩浆来源深度、与构造格局关系、对地壳垂向增生的贡献、幔源物质脉动式上涌等方面的差异与变化,显示它们是一个分阶段连续热演化的深部过程,其动力学机制是深部的高热流和地幔物质的向上运移。对应于地幔物质上涌,必然存在同期的地幔底辟体隆起的岩石圈结构变化。通过对华北中生代盆山系形成机制的讨论,认为该区高分辨率面波层析成像所显示的地幔底辟体上涌的特征可以反映中生代岩石圈底侵作用的深部背景。  相似文献   

9.
朱光  王薇  顾承串  张帅  刘程 《岩石学报》2016,32(4):935-949
郯庐断裂带晚中生代的演化历史是华北克拉通破坏过程的重要记录。中侏罗世末(燕山运动A幕),郯庐断裂带局部发生左行平移活动,而华北克拉通上出现了一系列北北东走向的缩短构造,指示了西太平洋伊泽奈崎板块俯冲的开始。晚侏罗世期间,郯庐断裂带没有发生活动,而华北克拉通出现局部伸展与岩浆活动及区域性隆升,应为弧后弱拉张背景。早白垩世初(燕山运动B幕),郯庐断裂带再次发生强烈的左行平移活动,华北克拉通北部与东部出现了一系列近南北向挤压产生的构造,应是鄂霍茨克洋最终关闭与伊泽奈崎板块高速俯冲双重作用的结果。随后的早白垩世期间,华北克拉通在弧后拉张背景下发生峰期破坏,郯庐断裂带呈现为强烈的伸展活动。早白垩世末的区域性挤压作用,结束了华北克拉通的峰期破坏,并使郯庐断裂带再次发生了一期左行平移活动。这期挤压作用出现在太平洋板块接替伊泽奈崎板块这一重大板块调整的背景之中。  相似文献   

10.
The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous–Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E–W basement faults. Primary attention is given to the role played by the E–W faults system and that of the NW–SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E–W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW–SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous–Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW–SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.  相似文献   

11.
沽源-红山子地区中生代火山作用与铀成矿关系   总被引:1,自引:0,他引:1  
根据沽源-红山子地段中生代火山作用的时间,火山岩的主量元素、微量元素、稀土元素构成等特点,笔者将区内火山活动划分为早白垩世早期和早白垩世晚期两个旋回,将火山岩划分为以粗面质岩石为主的碱性系列和以流纹质岩石为主的亚碱性系列。本区中生代岩浆作用与铀成矿的关系主要表现在:(1)铀成矿受多岩浆系列共存地段控制;(2)铀成矿受晚期岩浆旋回的超浅成酸性斑岩体控制;(3)与铀成矿密切的斑岩体表现为壳幔作用的成因特点;(4)成矿火山岩表现出高硅和高钾的化学成分特点。  相似文献   

12.
In the Cretaceous flysch of the Northern Pyrenees, polymict conglomerates interbedded in the flysch are described from the vicinity of Orio (near San Sebastián). These contain components derived from rocks of all periods from Paleozoic to Lower Cretaceous. During Late Maastrichtian times a diapir, originated in Keupez evaporites, penetrated the deep-sea Cretaceous flysch which was still undergoing deposition. This resulted in the expulsion of large quantities of diapiric mass. After the solution of the evaporites the pebbles, which had been dragged along with the diapiric masses, slumped into a neighbouring marginal depression where they were redeposited. The reddish strata of Late Maastrichtian and Danian age in this region are interpreted as being out-thrust and transported Keuper shales. It will be shown that the other breccias and conglomerates described by Feuillé and Mathey (1972) from the Late Cretaceous of the Basque Pyrenees probably have the same origin.The comprehensive name “Vascongadian Diapir Zone” is suggested for the diapir field on the northern edge of the Basque sedimentary trough.  相似文献   

13.
通过1∶5万区域地质调查,在青藏高原羌塘地块西南缘鸡夯地区原划上三叠统日干配错群中新识别出一套上侏罗统—下白垩统地层。本文根据该套地层的岩石组合以及古生物面貌特征,初步探讨了该套地层的沉积环境和沉积相特征,对其中发育的玄武岩夹层采用锆石U-Pb(LA-ICP-MS)同位素测年方法,获得其年龄为118.3±2.1Ma。在发育的生物碎屑灰岩夹层中采集了珊瑚、双壳类、腕足、腹足类化石,化石资料显示该套地层形成于晚侏罗世—早白垩世。这是首次在南羌塘地块发现该时期海相地层,这一发现证明南羌塘地块在晚侏罗世—早白垩世时期海水并未完全退出,而是局部发育海相三角洲。  相似文献   

14.
朱光  牛漫兰等 《地质学报》2002,76(3):325-334
郯庐断裂带内一系列走滑糜棱岩类的^40Ar/^39Ar测年表明,郯庐断裂早白垩世发生了左旋走滑运动。这一大规模的走滑运动,造成了两类走滑构造,一类为变质岩中低绿片岩相左旋韧性剪切带,另一类为中生代火成岩、沉积岩中的脆性、脆-韧性左行平移断层。这反映断裂带的走滑运动从早白垩世初期持续到早白垩世后期。断裂带的走滑运动诱发大规模的、以富钾、中酸性为主的岩浆活动。地球化学分析显示,这些岩浆岩既有壳源的信息,也有幔源的贡献,反映是断裂减压、壳-幔相互作用下形成的岩浆活动,也暗示断裂带在走滑期切入壳-幔边界。该断裂带走滑运动中,除了在莱阳盆地形成了拉分盆地外,还在合肥盆地东部造成了走滑挠曲盆地,控制下白垩统朱巷组的沉积,郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件,是西太平洋伊泽纳崎板块高速斜向俯冲的结果,属于滨太平洋构造。  相似文献   

15.
浙江中生代晚期火山—沉积岩系层序和时代   总被引:33,自引:7,他引:26  
浙江中生代晚期火山—沉积地层由上、下两个岩系组成,上岩系包括横山组、永康群、衢江群及天台群,下岩系包括建德群和磨石山群。这两个岩系的同位素年龄范围分别在110~90Ma和135~120Ma。根据同位素地质年代结合该区火山—沉积地层的古地磁和古生物研究资料,我们提出上岩系的形成时代为早白垩世晚期至晚白垩世早期,下岩系为早白垩世早期  相似文献   

16.
During late Mesozoic times, extensive magmatism took place in SE China, forming widespread granitoids. Recently, we identify a series of Early Jurassic mafic rocks and A-Type granites in southern Jiangxi and western Fujian provinces. The Early Jurassic A-Type granites occur as a NE-Trending belt. By integrated previously published data, we find that there are other three A-Type granite belts in SE China, i.e., the Lite Jurassic, Early Cretaceous, and Late Cretaceous A-Type granite belts, respectively, all of which are NE-Trending, parallel to the present coastline. The Lite Jurassic belt is located further inland, to the west of the Early Jurassic belt, whereas the Early Cretaceous belt almost overlaps the Early Jurassic belt and the Lite Cretaceous belt is located at the coastal area of SE China. Integrated these observations, we propose a repeated slab-Advance-retreat model for the late Mesozoic magmatie evolution of SE China.  相似文献   

17.
The geodynamic evolution of the diapir of Zag Et Tir is the result of the coexistence of the diapiric and tectonic activity from the Upper Cretaceous until the Quaternary. The interference of the tectonic and diapiric phenomena is at the origin of the basin individualization with differential sedimentation during the Miocene. This explains the current distribution of the Neogene deposits on both sides of Zag Et Tir Triassic structure. The submeridian faults that subdivide our sector played a significant role during the Atlasic compression, inducing an unequal distribution of the folds on both sides of these accidents, as well in kind as in number, showing the anteriority of the faults compared to the folds. To cite this article: R.A. Gharbi et al., C. R. Geoscience 337 (2005).  相似文献   

18.
冈底斯弧弧后早白垩世裂谷作用的沉积学证据   总被引:9,自引:0,他引:9  
冈底斯弧弧后地区早白垩世地层的一个显著特点是 ,由下而上普遍从陆相 -海陆交互相碎屑岩变化为海相碳酸盐岩。该地区在早白垩世中期开始了广泛的海侵 ,沉积范围由早期仅局限于班公湖 -怒江缝合带附近而扩展至羌塘地体南缘和拉萨地体 ,沉积了巨厚的台地相灰岩 ;与塔里木南部和思茅地区同期海平面变化非常不同 ,那里在晚白垩世才出现海侵。砂岩组分研究显示 ,早白垩世早期碎屑物源主要来自北侧的造山带 ,向上则逐步受到南侧火山弧的控制。在海侵层系的下部 ,发现了丰富的双峰型火山岩和双峰式火山岩碎屑。因而推断该区在早白垩世发生了强烈的裂谷沉降作用。与此同时的在印度和巴基斯坦境内的 L adakh- Kohistan弧后裂谷作用还形成了具有洋壳基底的Shyok边缘海。因此 ,在早中白垩世 ,欧亚大陆南缘为西太平洋型的活动大陆边缘 ,因强烈的弧后裂谷作用产生了一系列边缘海盆地 ;在包括青藏高原南部在内的欧亚大陆南缘 ,既没有构造动力、也没有古地理和古地形证据支持在早白垩世末 ( 99Ma± )即出现强烈的抬升。  相似文献   

19.
Pedogenic carbonates were collected from Early Cretaceous strata in Sichuan and Liaoning, China. These paleosol carbonates and calcareous paleosols were evaluated in order to reconstruct atmospheric CO2 concentrations during the Early Cretaceous using a paleosol barometer. Using the isotopic ratios of pedogenic carbonates from Early Cretaceous (early-middle Berriasian, early Valanginian) strata in Sichuan Basin, averaged atmospheric pCO2 is estimated to have been 360 ppmv in the early-middle Berriasian and a mean value of 241 ppmv in the early Valanginian. In the late Barremian in western Liaoning, however the average was 530 ppmv, with a range of 365 ppmv and 644 ppmv, lower than previous estimates of pCO2 for these time periods, consistent with the suggestion of overall climate cooling and paleotemperature fluctuation during the Early Cretaceous. This indicates that not all of the Cretaceous was a high or continuous CO2 greenhouse, especially during Early Cretaceous.  相似文献   

20.
This study presents new zircon U–Pb geochronology, geochemistry, and zircon Hf isotopic data of volcanic and subvolcanic rocks that crop out in the Bayanhushuo area of the southern Great Xing’an Range (GXR) of NE China. These data provide insights into the tectonic evolution of this area during the late Mesozoic and constrain the evolution of the Mongol–Okhotsk Ocean. Combining these new ages with previously published data suggests that the late Mesozoic volcanism occurred in two distinct episodes: Early–Middle Jurassic (176–173 Ma) and Late Jurassic–Early Cretaceous (151–138 Ma). The Early–Middle Jurassic dacite porphyry belongs to high-K calc-alkaline series, showing the features of I-type igneous rock. This unit has zircon εHf(t) values from +4.06 to +11.62 that yield two-stage model ages (TDM2) from 959 to 481 Ma. The geochemistry of the dacite porphyry is indicative of formation in a volcanic arc tectonic setting, and it is derived from a primary magma generated by the partial melting of juvenile mafic crustal material. The Late Jurassic–Early Cretaceous volcanic rocks belong to high-K calc-alkaline or shoshonite series and have A2-type affinities. These volcanics have εHf(t) and TDM2 values from +5.00 to +8.93 and from 879 to 627 Ma, respectively. The geochemistry of these Late Jurassic–Early Cretaceous volcanic rocks is indicative of formation in a post-collisional extensional environment, and they formed from primary magmas generated by the partial melting of juvenile mafic lower crust. The discovery of late Mesozoic volcanic and subvolcanic rocks within the southern GXR indicates that this region was in volcanic arc and extensional tectonic settings during the Early–Middle Jurassic and the Late Jurassic–Early Cretaceous, respectively. This indicates that the Mongol–Okhotsk oceanic plate was undergoing subduction during the Early–Middle Jurassic, and this ocean adjacent to the GXR may have closed by the Late Middle Jurassic–Early Late Jurassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号