首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-grade metamorphic rocks of Paleozoic–Mesozoic age to the north of Konya, consist of two different groups. The Silurian–Lower Permian Sizma Group is composed of reefal complex metacarbonates at the base, and flyschoid metaclastics at the top. Metaigneous rocks of various compositions occur as dykes, sills, and lava flows within this group. The ?Upper Permian–Mesozoic age Ardicli Group unconformably overlies the Sizma Group and is composed of, from bottom to top, coarse metaclastics, a metaclastic–metacarbonate alternation, a thick sequence of metacarbonate, and alternating units of metachert, metacarbonates and metaclastics. Although pre-Alpine overthrusts can be recognized in the Sizma Group, intense Alpine deformation has overprinted and obliterated earlier structures. Both the Sizma and Ardicli Groups were deformed, and metamorphosed during the Alpine orogeny. Within the study area evidence for four phases of deformation and folding is found. The first phase of deformation resulted in the major Ertugrul Syncline, overturned tight to isoclinal and minor folding, and penetrative axial planar cleavage developed during the Alpine crustal shortening at the peak of metamorphism. Depending on rock type, syntectonic crystallization, rotation, and flattening of grains and pressure solution were the main deformation mechanisms. During the F2-phase, continued crustal shortening produced coaxial Type-3 refolded folds, which can generally be observed in outcrop with associated crenulation cleavage (S2). Refolding of earlier folds by the noncoaxial F3-folding event generated Type-2 interference patterns and the major Meydan Synform which is the largest map-scale structure within the study area. Phase 3 structures also include crenulation cleavage (S3) and conjugate kink folds. Further shortening during phase 4 deformation also resulted in crenulation cleavage and conjugate kink folds. According to thin section observations, phases 2–4 crenulation cleavages are mainly the result of microfolding with pressure solution and mineral growth.  相似文献   

2.
The Late Ordovician Abercrombie Beds, south of Reids Flat, New South Wales, and adjacent to the Wyangala Batholith, show evidence of three successive fold episodes. First generation folds are tight to isoclinal, with fold axes ranging from vertical to horizontal and north‐trending, and steep axial‐plane slaty cleavage. Second generation folds are steeply plunging, tight to open with north‐striking axial planes. In pelitic rocks the axial plane structure is a crenulation cleavage which overprints the slaty cleavage. The first two fold episodes were accompanied by greenschist‐facies metamorphism. Granite emplacement occurred prior to the second fold episode. A third deformation was of relatively mild intensity and produced open, north‐trending folds with axial planes dipping moderately to the east, and crenulation cleavage as the axial plane structure in pelitic rocks. These latest folds are correlated with the latest folds in the Abercrombie Beds north of the Abercrombie River. The mapped area has no apparent macroscopic structure and may be considered as a single domain.  相似文献   

3.
Lower Palaeozoic sedimentary and volcanic rocks east of Queanbeyan, N.S.W., have undergone multiple deformation resulting in four systems of folds. The first of these consists of large isoclinal, recumbent folds (F1). The second generation folds (F2) are the most pronounced; they consist of flattened flexural‐slip folds with well developed axial‐plane slaty cleavage. Minor variants of this system are associated with meridionally‐trending faults. Third and fourth generation folds are minor kink systems.

The existence of first generation folds was established on the basis of F2 fold‐facing determinations, and their likely form was deduced from the geometrical variations of F2 folds. It is thought that all fold phases developed during the Late Silurian Bowning Orogeny.  相似文献   

4.
Abstract

A review of data on the Lys-Caillaouas massif leads to a re-interpretation of its Variscan structural evolution. During a first phase of N-S shortening upright folds with steep axial plane foliations were formed. Subsequent regional metamorphism was followed by porphyroblast rotation and formation of gently dipping crenulation cleavages. During this event a N-closing recumbent fold at the scale of the massif developed, with relatively undeformed first phase foliations in the upper limb (suprastrucfure) and highly deformed and transposed foliations in the lower limb (infrastructure). This recumbent fold is argued to result from temperature induced gravity collapse of a crustal block previously having subvertical planes of anisotropy.  相似文献   

5.
The Phyllite-Quartzite (PQ) Nappe constitutes an external, allochthonous complex of the Hellenides on the island of Crete and shows a polyphase structural history. A first phase of deformation (F 1) produced recumbent isoclinal folds, a penetrative schistosity, and boudinage under high-P/low-T metamorphic conditions. Mylonite formation at the top of the PQ Nappe, below the overriding Tripolitza Nappe, further boudinage, and schistosity (S 2) represent a late tectono-metamorphic episode. Post-metamorphic small folds (F 3), lineations, and a crenulation cleavage were formed synchronously with transport of the PQ Nappe. A last phase (F 4) developed small folds, a fracture/crenulation cleavage, and large-scale folds after nappe movement. It is suggested that high-P/low-T metamorphism in the PQ rocks originated during subduction. Nappe transport of the higher, unmetamorphosed units, which were thrust over the PQ Nappe, began under waning metamorphic conditions. Subsequent transport of the PQ Nappe itself also occurred after the completion of metamorphism and after the formation of the mylonite at its top.  相似文献   

6.
In southwest Ireland an Upper Devonian to Lower Carboniferous clastic succession was deposited in an ENE–WSW trending half-graben, known as the South Munster Basin. Across the Galley Head peninsula on the south coast, this stratigraphical succession is attenuated due to the presence of a palaeogeographical feature called the Glandore High. Evidence suggests that the Glandore High was an east–west feature, faulted to the north and east, which was part of the southern flank (hangingwall rollover) of the South Munster Basin. During post-Carboniferous Variscan deformation the relatively thin stratigraphy of Galley Head underwent prolonged folding, causing a local periclinal fold pair to develop within the hinge zone of a regional syncline. The main cleavage then developed parallel to bedding on the overturned south limb of the anticline of this fold pair. The local enhanced shortening caused the development of a structural culmination, and south facing, tight to isoclinal folds. The culmination was enhanced and tightened by a fault system of contractional, strike-parallel faults linked by cross faults. Secondary folds occur across the hinges of regional anticlines and also on major fold limbs as isolated fold pairs and in monoclinal fold zones, some of which may have nucleated on irregular sandstone bodies. Local crenulation cleavages are related to late fault movements. Syn-cleavage, conjugate, wrench faults record 10 per cent to 15 per cent strike-parallel extension in the culmination. The deformation chronology of the Galley Head area is somewhat anomalous for the Irish Variscides in that the folds were well established before the onset of the main cleavage development. The enhanced shortening across the area was compartmentalized by major cross faults and a minor component of north–south sinistral shear was also active across the area causing a swing in strike and a late set of minor cross faults. Structural facing directions in southwest Ireland appear to be directly linked with the geometry of the deformed basins. Hence the southward facing along the south coast is due to the proximity of the southern margin of the South Munster Basin. Structural facing directions fan northwards across the basin and major folds are overturned to the north at the northern margin of the basin.  相似文献   

7.
In the Precambrian rocks west and southwest of the Mount Isa Fault three significant fold generations are recognized. Within individual successions, units containing an early phase of deformation are juxtaposed by a late fault against a sequence that does not share these earlier events.

Many of the large‐scale structures in the Judenan Beds are first‐generation folds, whereas west of the Judenan Beds the area is dominated by second‐generation folds. These two sets of folds are tentatively correlated and are referred to as the Judenan Folds. An earlier set of pre‐Judenan folding is only found in the units west of the Judenan Beds. One phase of the Sybella Granite is also associated with the Judenan folding. Later small‐scale folds associated with a crenulation cleavage are, however, of little regional importance and are commonly found only in zones of highly deformed rocks.  相似文献   

8.
The relationship between deformation and dehydration has been investigated in Hercynian regionally metamorphosed rocks exposed on NW Sardinia. Two episodes of prograde mineral growth (M1 & M2) involving dehydration are recognized: growth of chlorite/phengite porphyroblasts at anchizone metamorphic conditions, contemporaneous with the first phase of deformation, D1, and growth of biotite from chlorite and phengite coincident with the second phase of deformation, D2. Deformation during both episodes of dehydration is characterized by penetrative axial planar foliations defined by well-developed phyllosilicate preferred orientations quantified by XRD textural goniometry, tight to isoclinal similar folds (interlimb angles <40°), and mineral-filled veins (hydrofractures) orientated parallel to axial planar foliations, that formed contemporaneously with the development of the penetrative foliations. No prograde mineral growth occurred during D2 at chlorite-zone conditions. D2 deformation in the absence of dehydration is characterized by non-penetrative crenulation cleavages, poorly developed phyllosilicate preferred orientations, relatively open (interlimb angles >40°), low-strain similar folds and minor brittle deformation. Systematic variations in macrofold interlimb angles, with respect to the timing of mineral growth, indicate that enhanced shortening (c. 80%) occurred during dehydration. Microfabrics show that the onset of dehydration is associated with the transition from a crenulation cleavage to a penetrative foliation. The presence of axial planar hydrofractures that formed coevally with dehydration and fabric development requires that supralithostatic fluid pressures and low differential stresses (<c. 20 MPa) accompanied dehydration. These features demonstrate a connection between the timing of dehydration and the style of deformation.  相似文献   

9.
A horizontal cleavage and associated lineation are developed in a low-pressure igneous-related metamorphic terrain in southestern Sinai. The cleavage is axial planar to recumbent folds, which are never large, and varies from a smooth slaty cleavage to a discrete crenulation cleavage. Structural evidence on the macro, meso and microscales suggests that cleavage and lineation were formed during irrotational extension and not by simple shear. Estimates of strain using the March method indicate 50–70% vertical shortening. This structural evidence when combined with metamorphic and age data strongly suggests that the cleavage was formed by the forceful emplacement of a pluton at depth.  相似文献   

10.
An association of westerly verging asymmetric folds, easterly dipping cleavages and contractional faults control the pattern and intensity of structures at different scales in the southern Nallamalai fold–fault belt, Cuddapah district of Andhra Pradesh, Southern India. Variation in structural geometry is manifested across the section by the occurrence of relatively low amplitude folds, sometimes only a monocline and by the near absence of contractional faults in the WSW, but tight to isoclinal folds with frequent fold–fault interactions through the central areas towards ENE.The relationships of structural elements in terms of orientation, style, sense of movement and general vergence indicate their development under a progressive contractional deformation. The structures are interpreted to result from a combination of bulk inhomogeneous shortening across the belt and a top-to-west, variable simple shear. Localized developments of crenulation cleavage, rotation of cleavage in the shorter limbs of some mesoscale asymmetric folds and general variation of structural elements in morphology and associations across the belt, indicate partitioning of deformation and a varying degree of non-coaxiality in discrete domains of the bulk deformation.  相似文献   

11.
Structural studies of Lower Permian sequences exposed on wave‐cut platforms within the Nambucca Block, indicate that one to two ductile and two to three brittle — ductile/brittle events are recorded in the lower grade (sub‐greenschist facies) rocks; evidence for four, possibly five, ductile and at least three brittle — ductile/brittle events occurs in the higher grade (greenschist facies) rocks. Veins formed prior to the second ductile event are present in some outcrops. Further, the studies reveal a change in fold style from west‐southwest‐trending, open, south‐southeast‐verging, inclined folds (F1 0) at Grassy Head in the south, to east‐northeast‐trending, recumbent, isoclinal folds (F1 0; F2 0) at Nambucca Heads to the north, suggesting that strain increases towards the Coffs Harbour Block. A solution cleavage formed during D1 in the lower grade rocks and cleavages defined by neocrystalline white mica developed during D1 and D2 in the higher grade rocks. South‐ to south‐southwest‐directed tectonic transport and north‐south shortening operated during these earlier events. Subsequently, north‐northeast‐trending, open, upright F3 2 folds and inclined, northwest‐verging, northeast‐trending F4 2 folds developed with poorly to moderately developed axial planar, crenulation cleavage (S3 and S4) formed by solution transfer processes. These folds formed heterogeneously in S2 throughout the higher grade areas. Later northeast‐southwest shortening resulted in the formation of en échelon vein arrays and kink bands in both the lower and higher grade rocks. Shortening changed to east‐northeast‐west‐southwest during later north‐northeast to northeast, dextral, strike‐slip faulting and then to approximately northwest‐southeast during the formation of east‐southeast to southeast‐trending, strike‐slip faults. Cessation of faulting occurred prior to the emplacement of Triassic (229 Ma) granitoids. On a regional scale, S1 trends east‐west and dips moderately to the north in areas unaffected by later events. S2 has a similar trend to S1 in less‐deformed areas, but is refolded about east‐west axes during D3. S3 is folded about east‐west axes in the highest grade, multiply deformed central part of the Nambucca Block. The deformation and regional metamorphism in the Nambucca Block is believed to be the result of indenter tectonics, whereby south‐directed movement of the Coffs Harbour Block during oroclinal bending, sequentially produced the east‐west‐trending structures. The effects of the Coffs Harbour Block were greatest during D1 and D2.  相似文献   

12.
The Proterozoic basins of India adjoining the Eastern Ghats Granulite Belt (EGGB) in eastern and southern India contain both Mesproterozoic and Neoproterozoic successions. The intracratonic set-up and contractional deformation fo the Neoproterozoc successions in the Paland sub-basin in the northeastern part of Cuddapah basin and similar crustal shortening in contemporaneous successions lying west of the EGGB and Nellore Schist Belt (NSB) are considered in relation to the proposed geodynamic evolution of the the Rodinia and Gondwana supercontinents. Tectonic shortening in the Palnad sub-basin (northeast Cuddapah), partitioned into top-to-westnorthwest thrust shear, flexural folds and cleavage development under overall E-W contraction, suggests foreland style continental shortening within an intracratonic set-up. A thrust sheet containing the Nallamalai rocks and overlying the Kurnool rocks in the northeastern part of Palnad sub-basin exhibits early tight to isoclinal folds and slaty (phylllitic) cleavage, which can be correlated with early Mesoproterozoic deformation structures in the nothern Nallamalai Fold Belt (NFB). NNE-SSW trending folds and cleavage affect the Kurnool Group and overprint earlier structures in the thrust sheet. Thrusting of the Nallamalai rocks and the later structures may have been related to convergence of the Eastern Ghats terrane and the East-Dharwar-Bastar craton during Early Neoproterozoic (Greenvillian) and/or later rejuvenation related to Pan-African amalgamation of East and West Gondwana.  相似文献   

13.
The lead-zinc bearing Proterozoic rocks of Zawar, Rajasthan, show classic development of small-scale structures resulting from superposed folding and ductile shearing. The most penetrative deformation structure noted in the rocks is a schistosity (S 1) axial planar to a phase of isoclinal folding (F 1). The lineations which parallel the hinges ofF 1 folds are deformed by a set of folds (F 2) having vertical or very steep axial planes. At many places a crenulation cleavage (S 2) has developed subparallel to the axial planes ofF 2 folds, particularly in the psammopelitic rocks. The plunge and trend ofF 2 folds vary widely over the area. Deformation ofF 2 folds into hook-shaped geometry and development of another set of axial planar crenulation cleavage are the main imprints of the third generation folds (F 3) in the region. In addition to these, there are at least two other sets of cleavage planes with corresponding folds in small scales. More common among these is a set of recumbent and reclined folds (F 4), developed on steeply dipping early-formed planes. Kink bands and associated sharp-hinged folds represent the other set (F 5). Two major refolded folds are recognizable in the map pattern of the Zawar mineralised belt. The larger of the two, the Main Zawar Fold (MZF), shows a broad hook-shaped geometry. The other large-scale structure is the Zawarmala fold, lying south-west of the MZF. Both the major structures show truncation of lithological units along their respective east ‘limbs’, and extreme variation in the width of formations. The MZF is primarily the result of superimposition ofF 3 onF 2.F 1 folds are relatively smaller in scale and are recognizable in the quartzite unit which responded to deformation mainly by buckle shortening. Large-scale pinching-and-swelling that appears in the outcrop pattern seems to be a pre-F2 feature. The structural evolutionary model worked out to explain the chronology of the deformational features and the large-scale out-crop pattern envisages extreme east-west shortening following formation ofF 1 structures, resulting in the formation of tight and isoclinal antiforms (F 2) with pinched-in synforms in between. These latter zones evolved into a number of ductile shear zones (DSZs). The east-west refolding of the large-scaleF 2 isoclinal antiforms seems to be the consequence of a continuous deformation and resultant migration of folds along the DSZs. The main shear zone which wraps the Zawar folds followed a curved path. Because of the penetrative nature of theF 2 movement, the early lineations which were at high angles to the later ones (as is evident in the west of Zawarmala), became subparallel to the trend ofF 2 folding over a large part of the area. Further, the virtually coaxial nature ofF 2 andF 3 folds and the refolding ofF 3 folds by a new set of N-S folds is an indication of continuous progressive deformation.  相似文献   

14.
In the history of superposed deformations of the iron formations at the western border of the Kolar Gold Field in S India, an important event was the successive growth of broadly coaxial plane noncylindrical folds in course of a progressive deformation concomitant with development of ductile mesoscopic shear zones. The noncylindrical folds were initiated as active folds by the creation of a buckling instability at successive stages on newly developed foliation surfaces. The nucleation of noncylindrical folds and the subsequent axial-plane folding of the tightened mature folds are explained by the mechanical inhomogeneity of the rocks and the heterogeneous character of strain. The correlation between increasing tightness and increasing noncylindricity of the folds indicates that the initial curvatures of hinge lines were accentuated by an extension parallel to the subhorizontal stretching lineation. From the patterns of deformed lineations over folds of varying tightnesses, it is concluded that the passive accentuation of hinge-line curvatures was mostly achieved when the folds had already become isoclinal or very tight.  相似文献   

15.
Three-dimensional analysis of irrotational, longitudinal, finite strain was carried out on samples from a crescentic sheet which intruded and was deformed with a host gneiss unit of probable Helikian age. Analytical methods were compared using deformed feldspar grains representing four ideal degrees of strain intensity observed in the porphyritic sheet. The polar plot and Rf/φ, Rs methods proved most reliable and sensitive.Data derived from fabric and strain analysis at 38 sites in the units suggest a two-stage deformational sequence. The first stage produced recumbent, isoclinal, similar (class 2) folds with northwest-trending hinge surface traces. This fold form was modified during the second stage to produce an overall type 2 fold interference pattern. The second stage produced upright, open buckle folds as well as the resultant strain fabric currently observed. Strain analysis confirms the general fold geometries of the model, and also documents competency contrasts between the matrix and feldspar grains with increased strain intensity and magnitude. Deformation of feldspar grains in the sheet involved modification of a fabric of low strain magnitude (?s = 0.3) and a k value near unity to magnitudes of ?s = 2.6 and k = 0.6. Matrix strain intensities and magnitudes are consistently higher than those of the feldspar markers in the sheet. This variation is related to competency differences between the matrix and the feldspar grains. Fabric anisotropy accounts for the strain gradient observed between the sheet and gneiss.  相似文献   

16.
Integrated aeromagnetic and field-based structural analysis provides a method for establishing a constrained regional-scale tectonic model where insufficient outcrop, remoteness or restricted access precludes widespread structural mapping. In this method the different scales of observation lead to uncertainty in integrating the observations. An integrated analysis of the Deering Hills region of the Musgrave Province shows that this uncertainty is largely dependent on the magnetic data resolution, the scale of deformation, and mineralogy. In the Deering Hills, four deformation events are defined, each with different structural character. These differences in character result in different levels of uncertainty in integrating these observations with aeromagnetic data. D1 was only evident at small scales in outcrop, and therefore any correlation with aeromagnetic data is inherently uncertain. However, well-defined relative timing to D2, and the parallel nature of an S1 foliation and regional D1 structures identified in the aeromagnetic data permitted the derivation of a moderately reliable regional model indicating northwest to southeast directed shortening at a deep crustal level during the Musgravian Orogeny. This resulted in a pervasive gneissic foliation, and a regional array of northeast-trending reverse-shear zones and tight to isoclinal upright folds. A higher confidence regional model was derived for the second deformation event (D2), which was identified at the regional scale in outcrop and could be directly correlated with features in the aeromagnetic data. North–south-directed crustal shortening, either in the late Musgravian Orogeny or during deformation ca 1060 Ma resulting in east-southeast- and southeast-trending reverse- and dextral-reverse shear zones and southeast-trending recumbent isoclinal nappes. For the third and fourth deformation events, links could not be made between field observations and aeromagnetic data, and the regional models for these events are low in confidence. The regional setting of D3 is not defined, and D4 is interpreted to represent the development of shear zones during north–south compression in the Petermann Orogeny.  相似文献   

17.
Structural, petrological and textural studies are combined with phase equilibria modelling of metapelites from different structural levels of the Roc de Frausa Massif in the Eastern Pyrenees. The pre‐Variscan lithological succession is divided into the Upper, Intermediate and Lower series by two orthogneiss sheets and intruded by Variscan igneous rocks. Structural analysis reveals two phases of Variscan deformation. D1 is marked by tight to isoclinal small‐scale folds and an associated flat‐lying foliation (S1) that affects the whole crustal section. D2 structures are characterized by tight upright folds facing to the NW with steep NE–SW axial planes. D2 heterogeneously reworks the D1 fabrics, leading to an almost complete transposition into a sub‐vertical foliation (S2) in the high‐grade metamorphic domain. All structures are affected by late open to tight, steeply inclined south‐verging NW–SE folds (F3) compatible with steep greenschist facies dextral shear zones of probable Alpine age. In the micaschists of the Upper series, andalusite and sillimanite grew during the formation of the S1 foliation indicating heating from 580 to 640 °C associated with an increase in pressure. Subsequent static growth of cordierite points to post‐D1 decompression. In the Intermediate series, a sillimanite–biotite–muscovite‐bearing assemblage that is parallel to the S1 fabric is statically overgrown by cordierite and K‐feldspar. This sequence points to ~1 kbar of post‐D1 decompression at 630–650 °C. The Intermediate series is intruded by a gabbro–diorite stock that has an aureole marked by widespread migmatization. In the aureole, the migmatitic S1 foliation is defined by the assemblage biotite–sillimanite–K‐feldspar–garnet. The microstructural relationships and garnet zoning are compatible with the D1 pressure peak at ~7.5 kbar and ~750 °C. Late‐ to post‐S2 cordierite growth implies that F2 folds and the associated S2 axial planar leucosomes developed during nearly isothermal decompression to <5 kbar. The Lower series migmatites form a composite S1–S2 fabric; the garnet‐bearing assemblage suggests peak P–T conditions of >5 kbar at suprasolidus conditions. Almost complete consumption of garnet and late cordierite growth points to post‐D2 equilibration at <4 kbar and <750 °C. The early metamorphic history associated with the S1 fabric is interpreted as a result of horizontal middle crustal flow associated with progressive heating and possible burial. The upright F2 folding and S2 foliation are associated with a pressure decrease coeval with the intrusion of mafic magma at mid‐crustal levels. The D2 tectono‐metamorphic evolution may be explained by a crustal‐scale doming associated with emplacement of mafic magmas into the core of the dome.  相似文献   

18.
In the Shoalhaven River Gorge, in the eastern Lachlan Fold Belt, the Ordovician quartz‐turbidite succession (Adaminaby Group) is affected by one major phase of deformation with northerly trending, gently plunging, upright, close to tight folds (F1) characterised by a range in half wavelengths up to 3 km. Several anticlinoria and synclinoria are developed and folds occur in at least four orders; these characteristics are consistent with buckling occurring at several scales and are controlled by the thickness of competent units in the multilayered succession. F1 folding is thick‐skinned in style with the whole crust probably having been affected by deformation. D1 occurred during the Silurian to Middle Devonian interval and was associated with crustal thickening and the shallowing of depositional environments over time. Locally, F1 is overprinted by south‐southeast‐trending, steeply to moderately inclined F2 that reorients F1 to recumbent attitudes. D2 is of Early to Middle Carboniferous age. Both deformations are related to convergence in an intra‐arc to backarc region and occurred inboard of a subduction zone, remnants of which occur in the New England Fold Belt.  相似文献   

19.
Sheath folds or “eye” folds on decimetric to metric scales are well-developed in the metachert-marble-green rock interlayers of the Changchun Formation and in the marble lens of the Tienhsiang Formation, within the Tananao Group between Tienhsiang and Tailuko, along E-W cross-island highway of Taiwan. Closely associated with the sheath folds are the tight to isoclinal folds with rectilinear axes which are parallel to the hinge line of the “eyes”, and the directions of these folds range from N-S to N30°E with gentle plunges to the north or south.The sheath folds are believed to have been formed during the second phase of deformation in this region. The traces of the earlier folding can generally be found at the hinges or limbs of these sheath folds.The explanation presented here is that the sheath fold might be generated episodically during the F2 deformational phase throughout the entire history of progressive shearing as a result of episodic instability of the flow with successive refolding of metamorphic fabric, during Plio-Pleistocene deformation of Taiwan.  相似文献   

20.
Prabir Dasgupta   《Sedimentary Geology》2008,205(3-4):100-110
Four types of soft-sediment folds of distinct geometry can be recognized in the upper part of the Talchir Formation (Lower Permian) of Jharia Basin, India. These folds, on systematic examination, indicate some events of progressive deformation. Experimental study reveals that if a layered stack of clay and overlying sand is allowed to flow slowly down a slope, differential velocity due to viscosity contrast leads to the deformation of the rheologic interface. The sharp planar contact gradually becomes wavy leading to the development of round-hinged folds involving sediments adjacent to it. With the advancement of the flow these folds gradually become overturned with the rotation of the axial plane in the direction of flow. Computer simulation suggests that progressive deformation of these folds by simple shearing may lead to the formation of tight isoclinal folds, which on dislocation along intrastratal normal faults may lead to the development of rootless isoclinal folds. The sheath folds observed in the studied section also indicate accentuation of the curved hinge due to simple shearing. The spatial distribution of these fold types in conjunction with the inferred direction of progressive deformation indicate basinward translation of the slump slice. If the same stack of sediments rapidly flows down the slope, the waveform generated at the interface quickly breaks in the form of roll-up recumbent fold due to Kelvin–Helmholtz instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号