首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent high‐resolution aeromagnetic data have delineated an extensive swarm of undeformed northeast‐trending dolerite dykes in the southeastern Yilgarn Craton, known previously only from isolated exposures in surface mining operations. Owing to parallelism of the dykes to the Fraser Mobile Belt, the eastern segment of the Albany‐Fraser Orogen, the swarm is referred to here as the Fraser Dyke Swarm. Ion‐microprobe dating of baddeleyite from a granophyric segregation in the centre of one dyke yields a mean 207Pb/206Pb age of 1212 ± 10 Ma (95% confidence limits). The location of the Fraser Dyke Swarm, adjacent and parallel to the Fraser Mobile Belt, suggests that the dykes may have been emplaced into lines of weakness that originated during tectonic loading and downwards flexure of the craton margin. This is the first evidence of ca 1210 Ma mafic dykes and associated crustal‐scale extension in the southeast Yilgarn Craton, although the age is similar to those reported recently for dolerite and quartz diorite dykes in the central and southern part of the craton, suggesting that a genetic relationship may exist between intrusions in the two areas.  相似文献   

2.
Farming of southern bluefin tuna in South Australia currently contributes to more than 30% of the value of the aquaculture production in Australia. This study investigated the natural sedimentary setting of the area designated for this important industry in coastal waters off Port Lincoln, and explored the links between the natural distribution of sediments and potential environmental effects and risks to the industry. Sediments were mostly composed of poorly sorted silts and fine sands, predominantly skeletal remains of carbonate-secreting organisms. The contribution of plankton to the organic matter remaining in the sediments was calculated to be in excess of 80% using concentration-dependent stable-isotope mixing models. An erosional area was identified south of Rabbit Island where sediments contained up to 50% siliciclastic material, grainsize distributions were better sorted and coarser, and organic carbon and total nitrogen contents were very low. In contrast, deeper waters north of Cape Donington were identified as a depocentre for fine sediments, which contained organic matter levels twice those elsewhere in the region despite the extremely high carbonate contents (>80%). The heavier stable isotopic signature of nitrogen suggested that this organic matter comprised a greater fraction of weathered components, probably advected to the area by suspended and bedload transport. This local variability of sediment characteristics in the farming zone suggests that the benthic assimilative capacity of farmed sites will depend on their location. Wastes from pens located south of Rabbit Island in particular are likely to be quickly winnowed out by wave and tidal action. These pens are also less likely to be affected by resuspension of fine sediments that might be associated with unusually severe storms.  相似文献   

3.
A new structural evolution consisting of both extensional and contractional events has been defined for the St Ives Goldfield in the south-central Kalgoorlie Terrane of the eastern Yilgarn Craton in Western Australia. These events shaped the development of the fault architecture, which controlled the location of the regional anticlines, the magmatic centres, and the deposition of the Archaean greenstone successions. The fundamental grain of the St Ives Goldfield is north-northwest-trending. This trend is marked by faults which developed during D1 extension, which was oriented east-northeast–west-southwest. Across these faults we map major stratigraphic changes in the thickness and composition of units, especially of the previously undivided Black Flag Group volcaniclastic rocks. The centre of the St Ives Goldfield is dominated by the Kambalda Anticline. This north-northwest-trending regional fold was likely established early during the D1 extensional history, and was fully established during subsequent east-northeast-oriented D2 contraction. The regional anticline is an important architectural element because (1) magmatism and gold mineralising fluids were focussed into this domed region, and (2) deformation was partitioned across the limbs and crest of this structure. The D3 event involved regional uplift and extension, resulting in the formation of late basins (Merougil Conglomerate locally) and the emplacement of granitoids sourced from a metasomatised mantle wedge (Mafic-type porphyries). The most significant gold event in terms of endowment occurred during D4b sinistral strike-slip shearing and associated thrusting (e.g., Tramways and Republican thrusts). These thrusts were previously interpreted as the first contractional structures to deform the area (‘D1’), but are here reinterpreted as relatively late (D4b). In this D4b event, the north-northwest-trending faults underwent sinistral strike-slip shearing and were linked across the Kambalda Anticline by accommodation structures represented by generally east- to east-northeast-trending thrusts. Reactivation of D1 transfer structures may have influenced the location of these later accommodation structures. Late-stage mineralisation during D5 was the result of dextral strike-slip brittle shearing.  相似文献   

4.
The Phanerozoic cooling history of the Western Australian Shield has been investigated using apatite fission track (AFT) thermochronology. AFT ages from the northern part of the Archaean Yilgarn Craton, Western Australia, primarily range between 200 and 280 Ma, with mean confined horizontal track lengths varying between 11.5 and 14.3 μm. Time–temperature modelling of the AFT data together with geological information suggest the onset of a regional cooling episode in the Late Carboniferous/Early Permian, which continued into Late Jurassic/Early Cretaceous time. Present-day heat flow measurements on the Western Australian Shield fall in the range of 40–50 mW m−2. If the present day geothermal gradient of  18 ± 2 °C km−1 is representative of average Phanerozoic gradients, then this implies a minimum of  50 °C of Late Palaeozoic to Mesozoic cooling. Assuming that cooling resulted from denudation, the data suggest the removal of at least 3 km of rock section from the northern Yilgarn Craton over this interval. The Perth Basin, located west of the Yilgarn Craton, contains up to 15 km of mostly Permian to Lower Cretaceous clastic sediment. However, published U–Pb data of detrital zircons from Permian and Lower Triassic basin strata show relatively few or no grains of Archaean age. This suggests that the recorded cooling can probably be attributed to the removal of a sedimentary cover rather than by denudation of material from the underlying craton itself. The onset of cooling is linked to tectonism related to either the waning stages of the Alice Springs Orogeny or to the early stages of Gondwana breakup.  相似文献   

5.
The NNW-trending tectonic grain of the eastern Yilgarn Craton (EYC) was established as a result of predominantly ENE–WSW directed extension (D1 and D3) and E(ENE)–W(WSW) (D2, D4) to NE–SW directed (D5) contraction. The result has been a succession of NNW-striking temporally discrete fabric elements, which can be difficult to interpret reliably at any single location. Despite this, many past workers interpreted the NNW-striking fabric as the result of only one regional contractional event, and used it as a marker for correlating structural events across the region. In order to unravel the complexity, this paper presents a new sixfold (D1–D6) deformation nomenclature based on >10,000 new mesoscale structural observations, including their kinematic analysis and cross-cutting relationships. These mesoscale data were referenced with regional 3D map patterns, stratigraphic-magmatic-metallogenic considerations, and deep seismic reflection images. This integrated geodynamic-architectural approach is applicable to solving structural-event histories in other polydeformed terrains. Gold mineralisation occurred during the first five events, but was particularly concentrated from D3 onwards. The D3 event marked the most profound change in the tectonic evolution of the EYC, with changes in greenstones, granites and tectonic mode (lithospheric extension and core complexes), with the first significant gold deposited within extensional shear zones that dissect the crust. Later contraction (D4) was imposed at a high angle to the previously established anisotropic architecture. The outcome was the creation of a new dynamic permeability framework, which resulted in gold mineralisation during NNW-striking sinistral strike-slip faulting and associated thrusting. A further stress switch (D5) further modified the architecture resulting in N- to NNE-striking dextral strike-slip faulting, and the final period of gold mineralisation, before late-stage extension (D6).  相似文献   

6.
A series of linked extensional detachments, transfer faults, and sediment- and volcanic-filled half-grabens that pre-date regional folding are described in the Late Archaean Margaret anticline, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Coeval structures and rock units include layer-parallel extensional detachments, transfer faults (high-angle rotational faults rooted in the detachments and linking layer-parallel shear zones with varying amounts of extension); felsic intrusions, either as granitoids emplaced in or below the detachments, or as fine-grained intrusive bodies emplaced above the detachments and controlled by the high-angle faults; and half-grabens controlled by the high-angle faults and filled with clastic sedimentary and volcanic rocks. At least 1500 m of section is excised across the detachments. The detachments and high-angle faults are folded by the east-northeast regional compression that formed the Margaret anticline. Extensional deformation in the Margaret anticline is correlated with the regionally recognised felsic magmatism and associated volcanic and volcaniclastic basin fill dated at approximately 2685–2670 Ma across the Eastern Goldfields Province. This suggests the extensional event was province-wide and post-dated initial greenstone deposition (at around 2705 Ma) but pre-dated regional compressive deformation. We suggest the extension is the result of a thermal anomaly in the crust, generated by the insulating effect of a thick pile (of the order of 10 km or greater) of mafic and ultramafic volcanic rocks on precursor Archaean felsic crust. The thermal anomaly has generated renewed production of felsic and mafic volcanic rocks, coeval with uplift and extension in the upper crust.  相似文献   

7.
The Laverton region, located in the eastern Yilgarn Craton (EYC) Western Australia, is second only to the Kalgoorlie region for gold endowment. The integration of high-density, potential-field data, regional- and camp-scale seismic reflection data, regional- and mine-scale structural analysis, and geochronologically-constrained stratigraphy, provided new insights into the 4D architecture and tectonic evolution of Laverton region.  相似文献   

8.
韩宁  江思宏  白大明  陈春良  刘源 《地质通报》2015,34(6):1086-1099
伊尔岗克拉通位于澳大利亚西南部,是地球上最古老的克拉通之一。该克拉通内产出的铁矿床均与条带状含铁建造(BIF)有关,可分为2种类型:1深成—表生矿床;2表生—富集矿床,主要分布在尤恩米(Youanmi)地体中。深成—表生型铁矿床具有相似的变形历史、镁铁质火成岩围岩、深成热液蚀变事件和高品位的铁矿石类型。深成热液蚀变包括早期碳酸盐-磁铁矿蚀变、中期形成磁铁矿矿石、晚期碳酸盐-赤铁矿蚀变,但是这些矿床在岩相、变质程度、矿物学和地球化学方面都存在差异,目前还没有统一的成因模型。表生—富集型铁矿床可能是通过表生淋滤BIF中的硅质条带形成的,但不含硅质条带的BIF的出现,说明没有对硅质条带的选择性表生溶解也可以形成高品位矿体。  相似文献   

9.
韩宁  江思宏  白大明  陈春良  刘源 《地质通报》2015,34(06):1086-1099
伊尔岗克拉通位于澳大利亚西南部,是地球上最古老的克拉通之一。该克拉通内产出的铁矿床均与条带状含铁建造(BIF)有关,可分为2种类型:①深成—表生矿床;②表生—富集矿床,主要分布在尤恩米(Youanmi)地体中。深成—表生型铁矿床具有相似的变形历史、镁铁质火成岩围岩、深成热液蚀变事件和高品位的铁矿石类型。深成热液蚀变包括早期碳酸盐-磁铁矿蚀变、中期形成磁铁矿矿石、晚期碳酸盐-赤铁矿蚀变,但是这些矿床在岩相、变质程度、矿物学和地球化学方面都存在差异,目前还没有统一的成因模型。表生—富集型铁矿床可能是通过表生淋滤BIF中的硅质条带形成的,但不含硅质条带的BIF的出现,说明没有对硅质条带的选择性表生溶解也可以形成高品位矿体。  相似文献   

10.
Deep seismic reflection data across the Archaean Eastern Goldfields Province, northeastern Yilgarn Craton, Western Australia, have provided information on its crustal architecture and on several of its highly mineralised belts. The seismic reflection data allow interpretation of several prominent crustal scale features, including an eastward thickening of the crust, subdivision of the crust into three broad layers, the presence of a prominent east dip to the majority of the reflections and the interpretation of three east-dipping crustal-penetrating shear zones. These east-dipping shear zones are major structures that subdivide the region into four terranes. Major orogenic gold deposits in the Eastern Goldfields Province are spatially associated with these major structures. The Laverton Tectonic Zone, for example, is a highly mineralised corridor that contains several world-class gold deposits plus many smaller deposits. Other non crustal-penetrating structures within the area do not appear to be as well endowed metallogenically as the Laverton structure. The seismic reflection data have also imaged a series of low-angle shear zones within and beneath the granite–greenstone terranes. Where the low-angle shear zones intersect the major crustal-penetrating structures, a wedge shaped geometry is formed. This geometry forms a suitable fluid focusing wedge in which upward to subhorizontal moving fluids are focused and then distributed into the nearby complexly deformed greenstones.  相似文献   

11.
World-class mineral systems, such as those found in the Archaean eastern Yilgarn Craton, are the product of enormous energy and mass-flux systems driven by lithospheric-scale processes. These processes can create big footprints or signatures in the lithosphere, which can be observed at a range of scales and via a variety of methods: including geophysics, isotopes, tectonostratigraphy and geochemistry. We use these datasets to describe both the architecture (structure) of world-class gold systems of the Yilgarn Craton and the signatures of their formation. By applying an understanding of the most critical elements of the process, and their signatures, new areas, especially undercover, may be targeted more predictably than before.  相似文献   

12.
Mineral exploration drilling 60 km west of Leonora in 2008 intersected >95 m of poorly consolidated granitoid-dominated breccia at the base of a Cenozoic paleochannel beneath Lake Raeside. The breccia, initially interpreted as a kimberlite, is composed of poorly consolidated fragments of granitic gneiss, felsite and metamorphosed mafic rock within a matrix of fine to medium-grained breccia. Microscopic examination revealed quartz grains displaying well-developed planar deformation features (PDFs) dominated by the ω? {1013} planar set, diaplectic silica glass and diaplectic plagioclase glass. These features constitute the diagnostic hallmarks of shock metamorphism owing to high-velocity impact of a large meteorite or asteroid. The PDFs in quartz grains of the breccia are distinctly different from metamorphic deformation lamellae produced tectonically or in diatremes. Airborne total magnetic intensity data suggest an outline of an 11 km-diameter crater, consistent with the significant thickness of the shock-metamorphosed breccia at >95 m, suggestive of the existence of a large impact structure.  相似文献   

13.
We use numerical modelling codes to simulate aspects of some current hypotheses for the origin of gold deposits and hydrothermal systems in the Yilgarn Craton of Western Australia. In particular, we investigate conceptual models advocating vertically continuous hydrothermal systems as well as those invoking extensive lateral flow and possible links with advection of heat by late orogenic granitic magmatism. Numerical models of part of the Eastern Goldfields Province and Southern Cross Province have been built with FLAC3D, to simulate crustal‐scale coupled interaction between deformation and fluid flow. These illustrate the potential for fluid focusing and mixing in shear zones, including downflow of meteoric water, lateral fluid flow driven by topographic elevation and upwards flow of fluids derived from melting and metamorphism in the deep crust. In some cases, downflow also occurs within the middle crust, at depths where fluid influx might trigger melting if the geothermal gradient were appropriate. The models indicate that tectonic wedging within a layered crust and diverging thrust systems that generate ‘pop‐up’ wedges may be important in facilitating efficient fluid upflow and downflow during uplift, while topographic elevation related to asymmetric thrust migration and loading tends to promote lateral fluid flow. However, the effect of topography appears more important than the precise depth or location of the site of fluid production in the deep crust. The effects of thermal convection and fluid‐fluid interaction have also been numerically modelled for a simplified section across the Kalgoorlie Terrane. Modelling under both hydrostatic and lithostatically overpressured pore‐pressure gradients has effectively delineated domains of convective fluid flow within the middle and upper crust, and has identified two generic sites that are favourable for fluid mixing, notably hangingwall and footwall environments in major shear zones, such as the Bardoc Shear, and in broad antiforms, such as the Goongarrie ‐ Mt Pleasant Antiform. The thermal effect of small plutons embedded in a regional metamorphic regime can cause significant lateral displacement of fluid convection patterns, over distances greater than pluton diameter, as well as more proximal effects on precipitation and dissolution of mineral species. However, these results are highly dependent on the pore‐pressure gradient and the permeability structure of the crust, and require magmatic and metamorphic fluid generation to be precisely timed with respect to deformation, thus reinforcing the dynamic feedback between deformation, magmatism and fluid production and migration.  相似文献   

14.
Southern Cross, where gold deposits are sited in narrow greenstone belts surrounding granitoid domes, was one of the earliest gold mining centres in Western Australia. SHRIMP U–Pb zircon and Pb‐isotope studies of the largest granitoid dome, the Ghooli Dome (80 × 40 km), provide important constraints on the crustal evolution and structural history of the central part of the Archaean Yilgarn Craton, Western Australia, which includes Southern Cross. The north‐northwest‐south‐southeast‐oriented ovoid Ghooli Dome has a broadly concentric foliation that is subhorizontal or gently dipping in its central parts and subvertical along its margins. Foliated granitoids in the dome are dated at ca 2724 ± 5 and 2688 ± 3 Ma using the SHRIMP U–Pb zircon and Pb–Pb isochron methods, respectively. These new data, together with the published SHRIMP U–Pb zircon age of 2691 ± 7 Ma at another locality, 20 km from the centre of the Koolyanobbing Shear Zone, suggest that the Ghooli Dome was emplaced at ca 2.72–2.69 Ga. Because the Ghooli Dome and the other domes, which are enveloped by narrow greenstone belts, are cut by the >650 km‐long and 6–15 km‐wide Koolyanobbing Shear Zone, the ca 2.69 Ga age is interpreted as the maximum age of the last major movement on this structure. The pre‐2.69 Ga history, if any, of the shear zone remains unknown. The shear zone is intruded by an undeformed porphyritic granitoid which has a SHRIMP U–Pb zircon age of 2656 ± 4 Ma. This age is, thus, the minimum age of major movement along this shear zone. Post‐gold mineralisation pegmatitic‐leucogranite from the Nevoria gold mine has a SHRIMP U–Pb zircon age of 2634 ± 4 Ma, with xenocrystic zircon cores of ca 2893 ± 6 Ma, constraining the minimum age of gold mineralisation there to ca 2.63 Ga. The ca 2.72–2.69 Ga granitoids also contain ca 2.98 and 2.78 Ga xenocrystic zircon cores, suggesting an extensive crustal prehistory for their source. Whereas there is a general temporal relationship between the periods of older (ca 3.0 Ga) and younger (ca 2.80 and 2.73 Ga) volcanism and the older (2.98, 2.78 and 2.72–2.69 Ga) granitoid intrusions, there is no known volcanism temporally associated with the 2.65–2.63 Ga granitoid intrusions in the Yilgarn Craton. Other heat sources and/or tectonic processes, required for the generation of these intrusions, are interpreted to be related to a lithospheric delamination event related to continental collision.  相似文献   

15.
16.
Recent geological mapping and exploration drilling has identified widespread but poorly exposed komatiites in the southern part of the Sandstone greenstone belt, which represent the most significant occurrence of komatiites so far recognised in the north-central Yilgarn Craton. Despite serpentinisation and talc – carbonate alteration, relict olivine-cumulate and less common olivine-spinifex textures are preserved. Whole-rock geochemistry indicates the presence of aluminium-depleted and aluminium-undepleted komatiites, both of which are also found in the Forrestania greenstone belt of the south-central Yilgarn Craton.  相似文献   

17.
The collection of a range of different seismic data types has greatly improved our understanding of the crustal architecture of Australia's Archaean Yilgarn Craton over the last few years. These seismic data include broadband seismic studies, seismic receiver functions, wide-angle recordings and mine-scale to deep seismic reflection transects. Each data set provides information on the three-dimensional (3D) tectonic model of the Yilgarn Craton from the craton scale through to the mine scale. This paper demonstrates that the integration and rationalisation of these different seismic data sets into a multi-scale 3D geological/seismic model, that can be visualised at once in a single software package, and incorporating all available data sets, significantly enhances this understanding. This enhanced understanding occurred because the integrated 3D model allowed easy and accurate comparison of one result against another, and facilitated the integrated questioning and interrogation across scales and seismic method. As a result, there are feedback questions regarding understanding of the individual seismic data sets themselves, as well as the Yilgarn Craton as a whole.The methodology used, including all the data sets in the model range, had to allow for the wide range of data sets, frequencies and seismic modes. At the craton scale, P-wave, S-wave and surface wave variations constrained the 3D lithospheric velocity model, revealing noticeable large-scale velocity variations within and across the craton. An interesting feature of the data, easily identified in 3D, is the presence of a fast S-wave velocity anomaly (> 4.8 km s− 1) within the upper mantle. This velocity anomaly dips east and has a series of step-down offsets that coincide approximately with province and terrane boundaries of the Yilgarn Craton.One-dimensional receiver function profiles show variations in their crustal velocity across the craton. These crustal velocity variations are consistent with the larger-scale geological subdivision of the craton, and provide characteristic profiles for provinces and terranes. The receiver function results and the deep seismic reflection data both agree on the depth to the Moho, and both indicate an increase in Moho depth to the east. The 2D seismic refraction results in the south-west of the craton provide crustal thickness information, an indication of middle and lower crustal compositions, and information regarding the broad-scale architectural framework.At the province- and terrane-scale, the deep seismic reflection data and the mine-scale seismic data provide geometric constraints on crustal architecture, in particular the orientation of the region's fault systems as well as variations in the thickness of the granite–greenstone succession. Integration of the results from wide-angle seismic refraction data coincident with the deep seismic reflection data provided additional constraints on likely upper crustal lithologies.The integrated 3D seismic model implies the dominant geodynamic process involved the development of an orogenic belt that developed with a series of contractional (folding and thrusting) events, separated by equally important extensional events. The seismic reflection data in particular suggests that extensional movement on many shear zones was more common than previously thought.The seismic reflection data suggest that the dominant mineral systems involved deeply sourced fluid flowing up crustal-penetrating shear zones. These deeply sourced fluids were further focussed into sites located above fault-breached domal regions in the upper crust.  相似文献   

18.
The Bardoc Tectonic Zone is an ~80 km-long and up to 12 km wide, intensely sheared corridor of Late Archaean supracrustal rocks that is bounded by pre- to syn-tectonic granites in the Eastern Goldfields Province, Yilgarn Craton. This zone has produced over 100 t of gold from a range of deposits, the largest being Paddington (~40 t Au). This shear system is connected along strike to the Boulder – Lefroy Shear Zone, which hosts considerably larger deposits including the giant Golden Mile Camp (>1500 t produced Au). In contrast to the diverse characteristics of gold deposits associated with the Boulder – Lefroy Shear Zone, mineralogical and geochemical data from five representative localities in the Bardoc Tectonic Zone have relatively uniform features. These are: (i) quartz – carbonate veins in competent mafic units with wall-rock alteration characterised by carbonate + quartz + muscovite + chlorite ± biotite + sulf-arsenide + sulfide + oxide + gold assemblages; (ii) arsenopyrite as the dominant sulfur-bearing mineral; (iii) a unique three-stage paragenetic history, commencing with pyrrhotite, and progressing to arsenopyrite and then to pyrite-dominated alteration; (iv) a lack of minerals indicative of oxidising conditions, such as hematite and sulfates; (v) δ34 sulfur compositions of pre- to syn-gold iron sulfides ranging from 1 to 9 ‰; and (vi) a lack of tellurides. These features characterise a coherent group of moderately sized orogenic-gold deposits, and when compared with the larger gold deposits of the Boulder – Lefroy Shear Zone, potentially highlight the petrological and geochemical differences between high-tonnage and smaller deposits in the Eastern Goldfields Province.  相似文献   

19.
Over the last decade there have been significant advances in our understanding of the stratigraphy, magmatism, deformation, metamorphism and timing of mineralisation, in the eastern Yilgarn Craton (EYC) of Western Australia. The integration of these disciplines has enabled a holistic review of the tectonic history of the EYC which favours a paraautochthonous tectonic model.  相似文献   

20.
The eastern Yilgarn Craton (EYC) is one of the world's premier gold provinces subject to over a century of mineral exploration. Prolonged interest in the terrane has led to the assembly of multiple world-class data sets suitable for testing district scale targeting methodologies. District scale targeting is concerned with identifying a mineral camp ∼60 km × 60 km in size within a prospective region or province ∼1000 km × 1000 km in size. Exploration at the district scale necessitates the development of predictive exploration models, which can be applied to large regions. Recent advances in the study of the geodynamic evolution and 3D architecture of the EYC, together with an understanding of their interrelationship with the orogenic gold mineral system, has resulted in identification of critical mineralisation processes responsible for the region's rich gold endowment. Here we describe and map these critical processes, using them as a basis for district scale targeting. We relate gold mineralisation to three temporally constrained geodynamic periods, integrated with regional hydrothermal alteration. Unlike many targeting methodologies, this methodology does not incorporate the location of known gold deposits in the analysis, yet it predicted 75% of known gold mineralisation in 5% of the area. The methodology allows critical mineralisation processes to be identified and mapped through time and space. These critical processes are mostly generic and can be applied to other granite–greenstone orogenic gold regions, such as the Abitibi in Canada. An important outcome of this work for the EYC is the identification of a number of new target areas, not known currently for significant gold mineralisation, in what is otherwise thought to represent a mature terrane for gold exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号