首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cape Hoskins volcanoes form part of the Quaternary volcanic island arc that extends from Rabaul in the east to the Schouten Islands in the west, and they overlie the northerly dipping New Britain Benioff Zone. The products of the volcanoes range in composition from basalt to rhyolite, and are normative in quartz and hypersthene. They contain phenocrysts of plagioclase and subordinate augite, hypersthene, and in most samples iron‐titanium oxides; some samples also contain olivine or quartz or both, and some pumice contains hornblende and, rarely, biotite.

Chemical analyses of 29 volcanic rocks are presented; 22 were also analysed for 17 minor elements — Rb, Ba, Sr, Pb, Zn, Cu, Zr, Y, Ni, Co, Sc, Cr, V, Ga, B, U, and Th.

Chemically the rocks have many of the characteristics of the ‘island arc tholeiitic series’, but do not show a pronounced relative enrichment in iron and appear to be relatively enriched in Sr. Compared with volcanic rocks from the northern part of the Willaumez Peninsula, they are lower in K (but not Na), Ti, Rb, Ba, Zr, Pb, Th, Ni, and probably also V, Cu, and Zn: these differences are attributed to the greater depth of the Benioff Zone beneath the Willaumez Peninsula. The more basic of the Cape Hoskins rocks are similar in most respects to lavas of comparable composition from Ulawun volcano to the east.  相似文献   

2.
Palaeolatitude data obtained from palaeomagnetic studies of Australian formations are described and compared with the palaeoclimatic zones inferred from geological observations. The two techniques produce results which agree for most of the Palaeozoic. Only for the Early Cambrian (and late Proterozoic) and Mesozoic do the climatic indicators appear to contradict the palaeolatitude evidence. It is pointed out that each of these geological intervals follows immediately a period of widespread glaciation.  相似文献   

3.
Calculations of the angular discordance between the Upper Devonian Lambie/Catombal Groups and underlying Lower Devonian formations at 130 separate locations in six areas in the northeastern Lachlan Fold Belt show that the unconformity is of a low angle except for one locality, near Limekilnes (100°). Fewer than 3% of the calculated angular discordances exceed 30°, and 73%” are less than 20°. Attempts to discover a mid‐Devonian fold direction from the restored orientation of the Lower Devonian beds, after the Upper Devonian beds have been rotated to horizontal, have been unsuccessful. Scatter of the restored bedding poles, either primary, or introduced by deformation or imprecision inherent in the measurement technique, camouflages any consistent mid‐Devonian fold axis.

Although there was demonstrable uplift, tilting, and erosion in the mid‐Devonian, limb dips on any mid‐Devonian folds do not exceed 30°. From consideration of our data, and the interpretation of angular unconformities, we conclude that there is insufficient evidence in the northeastern Lachlan Fold Belt to support an orogenic scheme in which the intense meridional deformation is synchronous with the major mid‐Devonian facies change, and part of a terminal orogeny. Only when the structures above, below and across unconformities have been mapped in some detail, will it be possible to define the nature and extent of any diastrophism that accompanied the formation of the unconformities.  相似文献   

4.
Volcanic‐hosted massive sulfide (VHMS) deposits of the eastern Lachlan Fold Belt of New South Wales represent a VHMS district of major importance. Despite the metallogenic importance of this terrane, few data have been published for sulfur isotope distribution in the deposits, with the exception of previously published studies on Captains Flat and Woodlawn (Captains Flat‐Goulburn Trough) and Sunny Corner (Hill End Trough). Here is presented 105 new sulfur isotope analyses and collation of a further 92 analyses from unpublished sources on an additional 12 of the VHMS systems in the Hill End Trough. Measured δ34S values range from ‐7.4% to 38.3%, mainly for massive and stockwork mineralisation. Sulfur isotope signatures for polymetallic sulfide mineralisation from the Lewis Ponds, Mt Bulga, Belara and Accost deposits (group 1) are all very similar and vary from ‐1.7% to 5.9%. Ore‐forming fluids for these deposits were likely to have been reducing, with sulfur derived largely from a magmatic source, either as a direct magmatic contribution accompanying felsic volcanism or indirectly through dissolution and recycling of rock sulfide in host volcanic sequences. Sulfur isotope signatures for sulfide mineralisation from the Calula, Commonwealth, Cordillera and Kempfield deposits, Peelwood mine and Sunny Corner (group 2) are similar and have average δ34S values ranging from 5.4% to 8.1%. These deposits appear to have formed from ore fluids that were more oxidising than group 1 deposits, representing a mixed contribution of sulfur derived from partial reduction of seawater sulfate, in addition to sulfur from other sources. The δ34S values for massive sulfides from the John Fardy deposit are the highest in the present study and have a range of 11.9–14.5%, suggesting a greater component of sulfur of seawater origin compared to other VHMS deposits in the Hill End Trough. For barite the sulfur isotope composition for samples from the Commonwealth, Stringers and Kempfield deposits ranges from 12.6% to 38.3%. More than 75% of barite samples have a sulfur isotope composition between 23.4 and 30.6%, close to the previously published estimates of the composition of seawater sulfate during Late Silurian to earliest Devonian times, providing supporting evidence that these deposits formed concurrently with the Late Silurian volcanic event. Sulfur isotope distribution appears to be independent of the host rock unit, although there appears to be a relation linking the sulfur isotope composition of different deposits to defined centres of felsic volcanism. The Mt Bulga, Lewis Ponds and Accost systems are close to coherent felsic volcanic rocks and/or intrusions and have sulfur isotope signatures with a stronger magmatic affinity than group 2 deposits. By contrast, group 2 deposits (including John Fardy) are characterised by 34S‐enrichment and a lesser magmatic signature, are generally confined to clastic units and reworked volcanogenic sediments with lesser coherent volcanics in the local stratigraphy, and are interpreted to have formed distal from the magmatic source. An exception is the Belara deposit, which is hosted by reworked felsic volcanic rocks and has a more pronounced magmatic sulfur isotope signature.  相似文献   

5.
Upper Devonian continental and subaqueous sedimentary rocks and bimodal volcanic rocks of the Boyd Volcanic Complex of the south coast of New South Wales were deposited in a rapidly subsiding, 330°‐trending, transtensional basin. Structural analysis of synvolcanic and synsedimentary deformational structures indicate that basin formation is related to a 330°‐orientated subhorizontal σ1 and a 060°‐orientated subhorizontal σ3, which account for the development of the observed intrusion and fracture orientations. Rhyolitic, basaltic and associated clastic dykes are preferentially intruded along extensional 330°‐trending fractures, subordinately along sinistral, transtensional 010°‐trending fractures and along 290°‐trending fractures. One of the implications of such a palaeotectonic reconstruction is that the so called north‐trending Eden‐Comerong‐Yalwal Late Devonian rift does not represent a simple, single palaeobasin entity, but is presently a north‐trending alignment of exposures of sedimentary and volcanic rocks probably emplaced in different basins or sub‐basins, mildly folded during the Carboniferous Kanimblan compression (which also formed the north‐trending Budawang synclinorium) and then extended to the east by the Tasman Sea opening during the Jurassic. The development of scattered, rapidly subsiding, basins characterised by bimodal volcanism during the Late Devonian throughout the Lachlan Fold Belt, can be interpreted in terms of extensional collapse of a forming mountain belt contemporaneous with a sharp decrease of compressional stress after the Middle Devonian Tabberabberan orogenic event. This would promote a reorientation of σ3 and transition from a compressional to a transtensional tectonic environment, which could also favour block rotation and formation of release basins.  相似文献   

6.
The Werner deconvolution technique for automatic analysis of magnetic data is a powerful tool for the interpretation of magnetic profiles. In particular, the technique is a valuable aid to the interpretation of deep crustal structures beneath the continental margin which frequently lie below the penetration of all but the most high-powered seismic reflection tools. Inverse modelling of selected simple geological structures (buried scarp, graben, half-graben) confirms that the interface model is valuable in delineating the tops of magnetic bodies, while the thin sheet model gives an indication of the depth extent of the bodies. In the case of horizontal sheets in contact (simulating oceanic spreading anomalies), the thin sheet model delineates the boundary, while the interface model gives estimates which are too shallow.

As an illustration of the value of the Werner deconvolution method in regional marine studies, the magnetic basement in the Great Australian Bight (GAB) has been mapped using a set of magnetic profiles; seismic data in the GAB is of limited use in this mapping. Interpretation of the profiles confirms earlier assessments that there is a minimum of 10 km of sediment beneath the Ceduna Terrace (Great Australian Bight Basin), 3 km beneath the Eyre Terrace (Eyre Sub-basin), 6 km in the Duntroon Embayment, 3 km in the Polda Trough, and 4 km beneath the continental rise. The most prominent basement structure in the GAB is the east-west-trending scarp which delineates the northern flank of the Eyre Sub-basin, GAB Basin, and Polda Trough. The gross linearity of this escarpment for 1000 km and the fact that it appears to mark a northern boundary to the extensional basins of the margin suggests that continental extension in the pre-Middle Jurassic took place preferentially south of an old (Precambrian) lineament in the Gawler Block. Polda Trough sediments are probably included in fault-blocks underlying the northern part of the GAB Basin. The interpretation supports the concept of northwest-southeast extension prior to Late Cretaceous breakup.  相似文献   

7.
Two lithofacies maps of the Lachlan Fold Belt, one for the Ordovician and one for the Silurian, are illustrated. Both maps indicate shorelines in western New South Wales, Victoria and Tasmania.

The Ordovicoan map suggests open‐sea conditions eastwards from the shoreline with one major and two minor andesitic volcanoes (or volcanic centres). The Silurian map suggests segmentation of the Lachlan Fold Belt into the Melbourne Basin, Omeo Land, Newell Basin, and Budawang Land. The Newell Basin displays a nearshore (Louth‐Mitta Mitta) coarse clastics facies and an offshore (Wellington‐Cooma) platform carbonate facies. Acid volcanism was widespread over the Newell Basin in Silurian time, but did not occur in the Melbourne Basin.

The Louth‐Mitta Mitta and Wellington‐Cooma facies boundary coincides with the position of the Coolac‐Honeybugle Serpentine Belt and the outcrop area of the Girilambone Beds, suggesting that these features were already in some way prominent during the Silurian Period: the Serpentine Belt may have been a fault, and the Girilambone Beds may have been land.

The origin of base‐metal deposits in the Silurian rocks is thought to be somehow related to the heat generated in the subsurface during Silurian time as is indicated by the volcanism and granite intrusion; and also to the fact that the deposits occur in a transgressive sequence which contains the first phase of acid volcanism in the known geological history of the Lachlan Fold Belt.  相似文献   

8.
The Lachlan Fold Belt of southeastern Australia developed along the Panthalassan margin of East Gondwana. Major silicic igneous activity and active tectonics with extensional, strike-slip and contractional deformation have been related to a continental backarc setting with a convergent margin to the east. In the Early Silurian (Benambran Orogeny), tectonic development was controlled by one or more subduction zones involved in collision and accretion of the Ordovician Macquarie Arc. Thermal instability in the Late Silurian to Middle Devonian interval was promoted by the presence of one or more shallow subducted slabs in the upper mantle and resulted in widespread silicic igneous activity. Extension dominated the Late Silurian in New South Wales and parts of eastern Victoria and led to formation of several sedimentary basins. Alternating episodes of contraction and extension, along with dispersed strike-slip faulting particularly in eastern Victoria, occurred in the Early Devonian culminating in the Middle Devonian contractional Tabberabberan Orogeny. Contractional deformation in modern systems, such as the central Andes, is driven by advance of the overriding plate, with highest strain developed at locations distant from plate edges. In the Ordovician to Early Devonian, it is inferred that East Gondwana was advancing towards Panthalassa. Extensional activity in the Lachlan backarc, although minor in comparison with backarc basins in the western Pacific Ocean, was driven by limited but continuous rollback of the subduction hinge. Alternation of contraction and extension reflects the delicate balance between plate motions with rollback being overtaken by advance of the upper plate intermittently in the Early to Middle Devonian resulting in contractional deformation in an otherwise dominantly extensional regime. A modern system that shows comparable behaviour is East Asia where rollback is considered responsible for widespread sedimentary basin development and basin inversion reflects advance of blocks driven by compression related to the Indian collision.  相似文献   

9.

Devonian and Carboniferous (Yarrol terrane) rocks, Early Permian strata, and Permian‐(?)Triassic plutons outcrop in the Stanage Bay region of the northern New England Fold Belt. The Early‐(?)Middle Devonian Mt Holly Formation consists mainly of coarse volcaniclastic rocks of intermediate‐silicic provenance, and mafic, intermediate and silicic volcanics. Limestone is abundant in the Duke Island, along with a significant component of quartz sandstone on Hunter Island. Most Carboniferous rocks can be placed in two units, the late Tournaisian‐Namurian Campwyn Volcanics, composed of coarse volcaniclastic sedimentary rocks, silicic ash flow tuff and widespread oolitic limestone, and the conformably overlying Neerkol Formation dominated by volcaniclastic sandstone and siltstone with uncommon pebble conglomerate and scattered silicic ash fall tuff. Strata of uncertain stratigraphic affinity are mapped as ‘undifferentiated Carboniferous’. The Early Permian Youlambie Conglomerate unconformably overlies Carboniferous rocks. It consists of mudstone, sandstone and conglomerate, the last containing clasts of Carboniferous sedimentary rocks, diverse volcanics and rare granitic rocks. Intrusive bodies include the altered and variably strained Tynemouth Diorite of possible Devonian age, and a quartz monzonite mass of likely Late Permian or Triassic age.

The rocks of the Yarrol terrane accumulated in shallow (Mt Holly, Campwyn) and deeper (Neerkol) marine conditions proximal to an active magmatic arc which was probably of continental margin type. The Youlambie Conglomerate was deposited unconformably above the Yarrol terrane in a rift basin. Late Permian regional deformation, which involved east‐west horizontal shortening achieved by folding, cleavage formation and east‐over‐west thrusting, increases in intensity towards the east.  相似文献   

10.
The geological map of the Broken Hill area in New South Wales shows a striking feature, the Grasmere Knee Zone, which consists of a major change in structural trend. North of the Grasmere Knee Zone, the analysis of the structure of the Late Silurian–Early Devonian Mt Daubeny Basin coupled with AMS measurements suggests that the basin has undergone two phases of folding. Correction of magnetic data from bedding orientation has consisted in unfolding sequentially fold F2 to obtain a simple syncline and unfolding fold F1. Although the fold tests, conglomerate test and dyke test may be considered to be positive concerning the high-temperature component (DAU-CH), paleomagnetic results from the Mt Daubeny Formation (locality DAU) are subject to caution, in particular due to the complex unfolding procedure. If component DAU-CH, carried by hematite, is interpreted to be primary in origin, the corresponding paleopole is consistent with an X-type of apparent polar wander path for Gondwana, in particular if one relies on the proposed optimum bedding correction. South of the Grasmere Knee Zone, the Mt. Daubeny Formation is considered to be rotated clockwise relative to the north. The tentative model presented herein proposes that a block corresponding to the Southwestern Subprovince of Lachlan Orogen indented the Tasmanides between the Central Subprovince of the Lachlan Orogen and the Delamerian Orogen from the mid-Devonian (Tabberabberan event) up to the Early Carboniferous, triggering rotations in the Broken Hill area. A later magmatic event, thought to be Early Cretaceous, may have induced fluid migration and deposition of magnetite leading to the occurrence of an important magnetic overprint (DAU-CM).  相似文献   

11.
HAO  NANA  YUAN  WANMING  ZHANG  AIKUI  FENG  YUNLEI  CAO  JIANHUI  CHEN  XIAONING  CHENG  XUEQIN  MO  XUANXUE 《Journal of Earth System Science》2015,124(1):171-196
Journal of Earth System Science - The East Kunlun Orogenic Belt has undergone a composite orogenic process consisting of multiple orogenic cycles and involving many types of magmatic rocks spread...  相似文献   

12.
In the Shoalhaven River Gorge, in the eastern Lachlan Fold Belt, the Ordovician quartz‐turbidite succession (Adaminaby Group) is affected by one major phase of deformation with northerly trending, gently plunging, upright, close to tight folds (F1) characterised by a range in half wavelengths up to 3 km. Several anticlinoria and synclinoria are developed and folds occur in at least four orders; these characteristics are consistent with buckling occurring at several scales and are controlled by the thickness of competent units in the multilayered succession. F1 folding is thick‐skinned in style with the whole crust probably having been affected by deformation. D1 occurred during the Silurian to Middle Devonian interval and was associated with crustal thickening and the shallowing of depositional environments over time. Locally, F1 is overprinted by south‐southeast‐trending, steeply to moderately inclined F2 that reorients F1 to recumbent attitudes. D2 is of Early to Middle Carboniferous age. Both deformations are related to convergence in an intra‐arc to backarc region and occurred inboard of a subduction zone, remnants of which occur in the New England Fold Belt.  相似文献   

13.
In the Buckambool area, Cobar, New South Wales, the boundary between dominantly shallow‐water, shelf sediments of the Winduck Group and fluviatile sediments of the Mulga Downs Group has been established as a small hiatus not resolvable by available fossil age data. Although dips are parallel over much of the area, disconformable and locally angular unconformable relations are present. This hiatus, late‐Early to Middle Devonian in age, marks a period of uplift, localised folding and erosion. These reflect movement of basement blocks along major fractures that are now revealed as lineaments.

Terminal deformation in the area, reflected by folding and re‐activation of lineaments, postdated deposition of the Mulga Downs Group, and is probably Carboniferous in age.  相似文献   

14.
Igneous rocks derived from high‐temperature, crystal‐poor magmas of intermediate potassic composition are widespread in the central Lachlan Fold Belt, and have been assigned to the Boggy Plain Supersuite. These rocks range in composition from 45 to 78% SiO2, with a marked paucity of examples in the range 65–70% SiO2, the composition dominant in most other granites of the Lachlan Fold Belt. Evidence is presented from two units of the Boggy Plain Supersuite, the Boggy Plain zoned pluton and the Nallawa complex, to demonstrate that these high‐temperature magmas solidified under a regime of convective fractionation. By this process, a magma body solidified from margin to centre as the zone of solidification moved progressively inwards. High‐temperature near‐liquidus minerals with a certain proportion of trapped interstitial differentiated melt, separated from the buoyant differentiated melt during solidification. In most cases much of this differentiated melt buoyantly rose to the top of the magma chamber to form felsic sheets that overly the solidifying main magma chamber beneath. Some of these felsic tops erupted as volcanic rocks, but they mainly form extensive high‐level intrusive bodies, the largest being the granitic part of the Yeoval complex, with an area of over 200 km2. Back‐mixing of fractionated melt into the main magma chamber progressively changed the composition of the main melt, resulting in highly zoned plutons. In the more felsic part of the Boggy Plain zoned pluton back‐mixing was dominant, if not exclusive, forming an intrusive body cryptically zoned from 63% SiO2 on the margin to 72% SiO2 in the core. It is suggested that tonalitic bodies do not generally crystallise through convective fractionation because the differentiated melt is volumetrically small and totally trapped within the interstitial space: back‐mixing is excluded and homogeneous plutons with essentially the composition of the parental melt are formed.  相似文献   

15.
Zircons from two igneous and two sedimentary units in the Bombala area of southeastern New South Wales have been examined by the sensitive high resolution ion microprobe (SHRIMP) to establish a timeframe in which to interpret these rocks. Previous studies have correlated these rocks with Late Devonian units of the south coast, solely upon the basis of stratigraphy and lithology as palaeontological evidence was absent. The two igneous units are the Hospital Porphyry and Paradise Porphyry occurring beneath the sedimentary units. Both give a Frasnian age that can be correlated with the Boyd Volcanic Complex. The sedimentary samples are from the basal and upper sections of the Rosemeath Formation, a fluvial ‘redbed’ consisting of conglomerate, coarse sandstone, and associated red siltstone and mudstone. Detrital zircons from the basal conglomeratic section at Kilbrechin indicate a dominant provenance from local Silurian granites and volcanics and a maximum depositional age that can be correlated with the Frasnian‐Famennian Merrimbula Group. However, detrital zircons from the upper coarse sandstone section of the Rosemeath Formation at Endeavour Lookout challenge the positive correlation trend with a lack of Silurian‐age grains and a presence of grains ranging from Late Devonian to Early Carboniferous in age. These results imply either that the south coast correlation is not valid for the upper sequences, or that the Merrimbula Group sequences also extend upward into the Carboniferous. The general coarseness of the Rosemeath Formation also suggests a relatively local provenance. No Early Carboniferous source is known in the immediate vicinity suggesting that Early Carboniferous igneous activity in this region of the Lachlan Orogen may have been more extensive than is currently realised.  相似文献   

16.
An early Ludlovian (early eβ1) to early Gedinnian (early eγ) age is assigned to the Cliftonwood Limestone—Elmside Formation strata of the Yass Basin, New South Wales. Several Australian sequences are correlated with the Yass Basin succession.  相似文献   

17.
The Lower to ?Middle Devonian Kowmung Volcaniclastics form the upper part of a succession of Upper Siluran to mid‐Devonian flyschoid rocks in the Yerranderie area of N.S.W., and contain two major facies associations. (1) A mudstone facies association represents the ambient, background sedimentation, comprising predominantly buff mudstone that is host to an assemblage of coarser‐grained sediments, including graded‐bedded to massive siltstone, sandstone, conglomerate, allodapic limestone, and large allochthonous limestone blocks and associated limestone breccia. Bouma sequences are common, sole structures occur and maximum bed thickness is about 3 m. (2) A volcaniclastic facies association intrudes and interrupts the accumulation of the ambient mudstone facies association, and contains massive to partly graded, quartzofeldspathic siltstone, sandstone, breccia and conglomerate. Sedimentation units in the volcaniclastic facies association are up to 120 m thick. The two facies associations interfinger. Stratigraphically, the base of the Kowmung Volcaniclastics is taken as the first sedimentation unit of the volcaniclastic facies association. The mudstone facies association below this level is part of the Siluro‐Devonian Taralga Group.

Both facies associations were deposited in relatively deep‐water. The dominant transport process in both associations was mass‐flow, involving granular mass‐flows (turbidity currents, grain flows), debris flows and avalanches. Massive mudstone is hemipelagic in origin. The volcaniclastic facies association probably represents a submarine volcanic apron around the emergent, volcanic Bindook Complex. Grossly, the succession coarsens upwards, and there is evidence of several sources of sediment, rather than a single point at the head of a submarine fan.

Provenance is diverse. In the mudstone facies association, framework grains in sandstone are microlitic volcanic‐rock fragments with a mafic to intermediate volcanic source. Clasts in conglomerate and breccia are consistent with derivation from the regionally extensive, quartzose Ordovician flyschoid successions. Clasts of ?penecontemporaneous limestone also occur. The volcaniclastic facies association was probably derived largely from the nearby, coeval Bindook Complex, which consists of silicic ash‐flow and ash‐fall tuff, lava, associated sediment and granitoids. Detritus was either derived directly from volcanic eruptions or was worked in fringing littoral and fluvial environments prior to redeposition by mass‐flow. Quartzite boulders mixed with volcanic clasts in the conglomerate suggest that Ordovician quartzarenite was also exposed around the volcanic complex. Tentative provenance correlations have been made between the different rock units in the Kowmung Volcaniclastics and their possible sources in the northern part of the Bindook Complex.  相似文献   

18.
International Journal of Earth Sciences - The presence of evaporate and incompetent formations (i.e., decollement horizons) within the sedimentary sequence of fold-thrust belts can control their...  相似文献   

19.
New structural, petrological, chemical, isotope, and paleomagnetic data have provided clues to the Late Riphean–Paleozoic history of the Uda–Vitim island arc system (UVIAS) in the Transbaikalian sector of the Paleoasian ocean, as part of the Transbaikalian zone of Paleozoids. The island arc system consists of three units corresponding to main evolution stages: (i) Upper Riphean (Late Baikalian), (ii) Vendian–Lower Paleozoic (Caledonian), and (iii) Middle–Upper Paleozoic (Hercynian). The earliest stage produced the base of the system composed of Late Riphean ophiolite (971–892 Ma, U-Pb) and volcanic (837–789 Ma, U-Pb) and sedimentary rocks (hemipelagic siliceous sediments and dolerite sills) which represent the Barguzin–Vitim oceanic basin and the Kelyana island arc. The main event of the second stage was the formation of the large UVIAS structure (over 150,000 km2) which comprised the Transbaikalian oceanic basin, the forearc and backarc basins, and the volcanic arc itself, and consisted of many volcanic-tectonic units exceeding 100 km2 in area (Eravna, Oldynda, Abaga, etc.). Lithology, stratigraphy, major–element compositions, and isotope ages of Vendian–Cambrian volcanic rocks and associated sediments indicate strong differentiation of calc-alkaline series and the origin of the island arc system upon oceanic crust, in a setting similar to that of the today’s Kuriles–Kamchatka island arc system. The Middle–Upper Paleozoic stage completed the long UVIAS history and left its imprint in sedimentary and volcanic rocks in superposed trough basins. The rocks were studied in terms of their biostratigraphic and isotope age constraints, as well as major- and trace-element compositions, and were interpreted as products of weathering and tectonic-magmatic rework of the UVIAS units.  相似文献   

20.
The Sipadan island is the only oceanic island found in Malaysia, and is popularly known for its beautiful corals and diving activities. The aquifer of the island is affected by seawater intrusion associated with groundwater exploitation. Geologically, the…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号