首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Charleston Granite from the Gawler Craton, South Australia, has been dated by the ion‐microprobe U‐Pb zircon method at 1585 ± 5 Ma (2σ). This confirms previous interpretations of population‐style U‐Pb zircon analyses which record a slightly older age due to the presence of inherited zircon. Inherited cores are present in many zircon crystals, and while the age of some cores can not be accurately determined due to extreme loss of radiogenic Pb, others have ages of ~ 1780, ~ 1970, and > 3150 Ma. These cores record a diverse crustal heritage for the Charleston Granite and indicate that ancient crustal material (> 3150 Ma) is present at depth in the Gawler Craton. This is also suggested by available Nd isotopic data for both the Charleston Granite and other Gawler Craton Archaean rocks. The Rb‐Sr and K‐Ar biotite ages from the Charleston Granite of 1560 to 1570 Ma are close to the U‐Pb zircon crystallization age and suggest that the granite has not experienced sustained thermal disturbance (> 250° C) since emplacement and cooling. However, a much younger Rb‐Sr total‐rock age of 1443 ± 26 Ma probably reflects low‐temperature disturbance to the Sr isotope system in feldspar.  相似文献   

2.
Mafic–ultramafic rocks in structurally dismembered layered intrusions comprise approximately 40% by volume of greenstones in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton. Mafic–ultramafic rocks in the Murchison Domain may be divided into five components: (i) the ~2810 Ma Meeline Suite, which includes the large Windimurra Igneous Complex; (ii) the 2800 ± 6 Ma Boodanoo Suite, which includes the Narndee Igneous Complex; (iii) the 2792 ± 5 Ma Little Gap Suite; (iv) the ~2750 Ma Gnanagooragoo Igneous Complex; and (v) the 2735–2710 Ma Yalgowra Suite of layered gabbroic sills. The intrusions are typically layered, tabular bodies of gabbroic rock with ultramafic basal units which, in places, are more than 6 km thick and up to 2500 km2 in areal extent. However, these are minimum dimensions as the intrusions have been dismembered by younger deformation. In the Windimurra and Narndee Igneous Complexes, discordant features and geochemical fractionation trends indicate multiple pulses of magma. These pulses produced several megacyclic units, each ~200 m thick. The suites are anhydrous except for the Boodanoo Suite, which contains a large volume of hornblende gabbro. They also host significant vanadium mineralisation, and at least minor Ni–Cu–PGE mineralisation. Collectively, the areal distribution, thickness and volume of mafic–ultramafic magma in these complexes is similar to that in the 2.06 Ga Bushveld Igneous Complex, and represents a major addition of mantle-derived magma to Murchison Domain crust over a 100 Ma period. All suites are demonstrably contemporaneous with packages of high-Mg tholeiitic lavas and/or felsic volcanic rocks in greenstone belts. The distribution, ages and compositions of the earlier mafic–ultramafic rocks are most consistent with genesis in a mantle plume setting.  相似文献   

3.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

4.
Rocks in the northern Leeuwin Complex of southwestern Australia preserve evidence of having formed during the breakup of Rodinia and the subsequent amalgamation of Gondwana. Detailed field mapping, structural investigation and U–Pb isotopic zircon analysis, using the Sensitive High‐mass Resolution Ion Microprobe (SHRIMP), have revealed that: (i) protoliths of pink granite gneiss and grey granodiorite gneiss crystallised at ca 750 Ma, coeval with breakup of western Rodinia; (ii) granulite/upper amphibolite facies metamorphism occurred at 522 ± 5 Ma, in the Early Cambrian, ~100 million years later than previous estimates and of identical age to estimates of the final amalgamation of Gondwana; and (iii) three major phases of ductile deformation occurred during or after this metamorphism and represent a progressive strain evolution from subvertical shortening (D1) to subhorizontal east‐west (D2) then north‐northwest‐south‐southeast (D3) contraction.  相似文献   

5.
SHRIMP U–Pb zircon analysis indicates that detrital zircons from extensive quartzite units in the Southern Cross Granite‐Greenstone Terrane of the central Yilgarn Craton have ages ranging from ca 4350 Ma to ca 3130 Ma. Regional mapping studies indicate that the quartzites lie at the stratigraphic base of the exposed succession. The detrital zircon age profiles of the Southern Cross Granite‐Greenstone Terrane quartzites are remarkably similar to those of quartzites in the Narryer and South West Terranes, in the northwest and southwest of the Yilgarn Craton respectively, and are significantly older than any igneous rocks that have been dated anywhere in the Yilgarn Craton other than the Narryer Terrane. Similar detrital‐zircon‐bearing quartzites have not been identified in the Murchison Granite‐Greenstone Terrane. These age profiles suggest that the quartzites have a common depositional history. Granites in the central Yilgarn Craton are mainly younger than ca 2750 Ma and contain rare xenocrystic zircons older than 3100 Ma. If the central and western Yilgarn quartzites were all deposited at approximately the same time, the lack of preserved continental crust in the Southern Cross and Murchison Granite‐Greenstone Terranes, and the South West Terrane, that is older than 3100 Ma, suggests that pre‐3100 Ma Narryer‐like continental crust may have been rifted or extensively reworked during deposition of greenstone successions between ca 3000 and ca 2700 Ma. If not, then a ca 4350 Ma detrital zircon in the Southern Cross Granite‐Greenstone Terrane indicates more widespread, very old, continental crust than has previously been identified.  相似文献   

6.
The age of the Ashburton Province, comprising an older divergent‐margin megasequence and a younger convergent‐margin megasequence, is poorly constrained. The Boolaloo Granodiorite, which intruded the divergent‐margin megasequence on the western margin of the Ashburton Province, has given a SHRIMP zircon U–Pb age of 1786 ± 5 Ma, and therefore post‐dates convergent‐margin, backarc basin sequences, with established conventional zircon U7sbnd;Pb ages of ca 1843–1828 Ma. However, it pre‐dated deformation of convergent‐margin, remnant‐ocean sequences. Similarly aged (ca 1797–1791 Ma) granitoids are present in the adjacent Gascoyne Province, thereby identifying a magmatic fold‐thrust belt that abutted a remnant ocean in the Ashburton Province.  相似文献   

7.
Geological mapping and zircon U–Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) dating has identified a Mesoarchean (2857 ± 17 Ma) geological unit in the Luanjiajie area of the northern margin of the North China Craton, within the northern part of Liaoning Province, China. This unit is dominated by tonalitic and trondhjemite gneisses that form part of a typical tonalite–trondhjemite–granodiorite (TTG) rock assemblage. These Mesoarchean gneisses are enriched in Na and depleted in K, yield K2O/Na2O ratios of 0.34–0.50, have Rittmann index (σ) values of 1.54–3.04, and are calc-alkaline. They have EuN/EuN* values of 0.77–1.20 (average of 1.03), indicating that these samples have negligible Eu anomalies, and yield high LaN/YbN values (4.92–23.12). These characteristics indicate that these Mesoarchean gneisses have fractionated rare earth element (REE) compositions that are enriched in the light REE (LREE) and depleted in the heavy REE (HREE), with steeply dipping chondrite-normalized REE patterns. These gneisses are also enriched in Rb, Th, K, Zr, and Hf, and are relatively depleted in Ta, Nb, P, and Ti. In summary, the magma that formed these tonalitic and trondhjemite gneisses was most likely derived from the partial melting of lower-crustal basaltic rocks during subduction. The timing of formation (2.85 Ga) of the Luanjiajie tonalite and trondhjemite gneisses probably represents the timing of initiation of plate tectonics within the LongGang Block during a SE-directed subduction event. The presence of inherited zircons with ages of >3.0 Ga within the Luanjiajie gneisses suggests that this area may contain as yet undiscovered rocks that formed before 3.0 Ga.  相似文献   

8.
《International Geology Review》2012,54(13):1626-1640
Dolerite dike swarms are widespread across the North China Craton (NCC) of Hebei Province (China) and Inner Mongolia. Here, we report new geochemical, Sr–Nd–Pb isotope, and U–Pb zircon ages for representative samples of these dikes. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb analysis yielded consistent Permian ages of 274.8 ± 2.9 and 275.0 ± 4.5 Ma for zircons extracted from two dikes. The dolerites have highly variable compositions (SiO2 = 46.99–56.18 wt.%, TiO2 = 1.27–2.39 wt.%, Al2O3 = 14.42–16.20 wt.%, MgO = 5.18–7.75 wt.%, Fe2O3 = 8.03–13.52 wt.%, CaO = 5.18–9.75 wt.%, Na2O = 2.46–3.79 wt.%, K2O = 0.26–2.35 wt.%, and P2O5 = 0.18–0.37 wt.%) and are light rare earth element (LREE) and large ion lithophile element (LILE, e.g. Rb, Ba, and K, and Pb in sample SXG1-9) enriched, and Th and high field strength element (HFSE, e.g. Nb and Ta in sample SXG1-9, and Ti) depleted. The mafic dikes have relatively uniform (87Sr/86Sr)i values from 0.7031 to 0.7048, (206Pb/204Pb)i from 17.77 to 17.976, (207Pb/204Pb)i from 15.50 to 15.52, (208Pb/204Pb)i from 37.95 to 38.03, and positive ?Nd(t) (3.6–7.3), and variable neodymium model ages (TDM1 = 0.75–0.99 Ga, TDM2 = 0.34–0.74 Ga). These data suggest that the dike magmas were derived from partial melting of a depleted region of the asthenospheric mantle, and that they fractionated olivine, pyroxene, plagioclase, K-feldspar, and Ti-bearing phases without undergoing significant crustal contamination. These mafic dikes within the NCC formed during a period of crustal thinning in response to extension after Permian collision between the NCC and the Siberian Block.  相似文献   

9.
The late Carboniferous to Triassic tectonic history of eastern Australia includes important periods of regional-scale crustal extension and contraction. Evidence for these periods of tectonism is recorded by the extensive Pennsylvanian (late Carboniferous) to Triassic basin system of eastern Australia. In this study, we investigate the use of U–Pb dating of detrital zircons in reconstructing the tectonic development of one of these basins, the eastern Galilee Basin of Queensland. U–Pb detrital zircon ages were obtained from samples of stratigraphically well-constrained Cisuralian and Lopingian (early and late Permian, respectively) sandstone in the Galilee Basin. Detrital zircons in these sandstones are dominated by a population with ages in the range of 300–250 Ma, and ages from the youngest detrital zircons closely approximate depositional ages. We attribute these two fundamental findings to (1) appreciable derivation of detrital zircons in the Galilee Basin from the New England Orogen of easternmost Australia and (2) syndepositional magmatism. Furthermore, Cisuralian sandstone of the Galilee Basin contains significantly more >300 Ma detrital zircons than Lopingian sandstone. The transition in detrital zircon population, which is bracketed between 296 and 252 Ma based on previous high-precision U–Pb zircon ages from Permian ash beds in the Galilee Basin, corresponds with the Hunter–Bowen Orogeny and reflects a change in the Galilee Basin from an earlier extensional setting to a later foreland basin environment. During the Lopingian foreland basin phase, the individual depocentres of the Galilee and Bowen basins were linked to form a single and enormous foreland basin that covered >300 000 km2 in central and eastern Queensland.  相似文献   

10.
The Borborema Province is the western part of a major Brasiliano belt that extends from Brazil through NW Africa in pre-drift reconstructions. This province resulted from convergence and collision among the West African, Congo-São Francisco, and Amazonian cratons about 600 Ma. This study focuses on the Pernambuco–Alagoas (PEAL) domain, which is a complex of magmatic, migmatitic, and metamorphic rocks, located in the southern part of the Borborema Province. U–Pb geochronology and Sm–Nd data for metasedimentary sequences (Rio Una, Inhapi) of the PEAL domain and a sample from a sequence of the Transversal Zone domain suggest that their deposition occurred during a Cryogenian extensional event, within the interval 850–631 Ma (or slightly younger). This extensional event occurred in the PEAL, Transversal Zone, and Sergipano domains before the onset of the Brasiliano collision and was followed by syn- and post-collisional magmatism. The Rio Una sequence and the sequence from Transversal Zone domain were deposited over a Rhyacian (ca. 2.0–2.2) basement having a juvenile Palaeoproterozoic Nd signature, whereas the Inhapi sequence was deposited over an Early Neoproterozoic (Tonian) basement. The deposition of the studied sequences is coeval with metasedimentary sequences to the north and south in other domains of the Borborema Province. However, differences in Nd isotopic signatures between the sequences from PEAL, Transversal Zone, and Sergipano domains suggest that they were formed in distinct basins. Metasedimentary sequences from the PEAL domain have Meso- and Palaeoproterozoic T DM model ages. These data suggest that the orogens where the metasedimentary sequences are located have a strong ensialic component. T DM model ages of ca. 1.0 Ga and εNd (0.6 Ga) values around zero recorded in granites from the southern part of the PEAL, suggesting that juvenile material was accreted to the southern part of the PEAL domain crust during the Tonian. The migmatites from the PEAL domain have a wide range of T DM ages along with a wide range of εNd (0.6 Ga) values. The transition between the northern and southern parts of the PEAL domain denotes the approximate northern margin of a Late Mesoproterozoic to Early Neoproterozoic rift.  相似文献   

11.
Numerous intrusive rocks of varying ages and compositions exist in the Paleozoic to Tertiary periods in the Eastern Pontides. Carboniferous intrusive rocks are commonly observed in the southern part of the Eastern Pontides. The nature of the rocks in the northern part of the region has not been determined because of Upper Cretaceous and Tertiary volcano-sedimentary units. Whole-rock geochemical, isotopic and geochronological data obtained from five different mapped granitoid bodies located in the northern part of the Eastern Pontides allow for the proper reconstruction of Carboniferous magmatism and the geodynamic evolution of the region.According to laser ablation ICP-MS U–Pb zircon dating, the Özdil, Soğuksu, Seslikaya, Kızılağaç and Şahmetlik plutons have similar 206Pb/238U vs. 207Pb/235U concordia ages of 340.7 ± 1.8 Ma and 323.1 ± 1.5 Ma, 348.4 ± 1.6 Ma, 335.4 ± 1.4 Ma, 337.2 ± 0.6 Ma and 334.5 ± 1.4 Ma, respectively. The aluminium saturation index (ASI) values of all of the samples from the plutons are between 1.0 and 1.32, which indicate peraluminous melt compositions. The plutons have SiO2 contents between 59 and 79 wt.% and show low- to high-K calc-alkaline characteristics. The plutons are enriched in large-ion lithophile and light rare earth elements and are depleted in high-field strength elements. Chondrite-normalized rare earth element patterns are characterized by concave-upward shapes and pronounced negative Eu anomalies, with LaCN/YbCN = 1.9–46.8 and EuCN/Eu* = 0.19–1.76. The studied plutons show considerable variations in 87Sr/86Sr(i) (0.70255 to 0.71006) and εNd(i) values (− 4.8 to − 7.1), as well as Nd model ages (1.15 to 2.47 Ga). The Pb-isotopic ratios are 206Pb/204Pb = 17.11–18.60, 207Pb/204Pb = 15.58–15.64 and 208Pb/204Pb = 36.95–38.62. The crystallization temperatures of the melts range from 676 to 993 °C, as determined by zircon and apatite saturation thermometry.These data suggest that the Carboniferous granitic magmas were produced by the partial melting of meta-mafic to meta-felsic lower crustal source rocks, with minor contributions from the mantle. Collectively, these rocks represent a late stage of Hercynian magmatism in the northern part of the Eastern Pontides.  相似文献   

12.
Biotite from granite and gneiss in the southwestern part of the Yilgarn Craton near Perth has been dated by the Rb‐Sr technique at about 430–500 Ma in a belt at the western edge of the craton. The belt widens southward from 30 km near Perth to 55 km east of Harvey. The eastern boundary of the belt passes along the east margin of the Saddleback greenstone belt. A transition zone 15–40 km wide separates the belt of young dates from an eastern chronological plateau where biotite dates, mainly 2300–2600 Ma, are marginally younger than regional Rb‐Sr whole rock dates which average about 2550 Ma. In contrast to biotite dates, whole rock dates greater than 2500 Ma persist to the western edge of the craton. The 430–500 Ma dates probably represent resetting during uplift in the Early Palaeozoic.  相似文献   

13.
We report a new paleomagnetic pole for the Black Range Dolerite Suite of dykes, Pilbara craton, Western Australia. We replicate previous paleomagnetic results from the Black Range Dyke itself, but find that its magnetic remanence direction lies at the margin of a distribution of nine dyke mean directions. We also report two new minimum ID-TIMS 207Pb/206Pb baddeleyite ages from the swarm, one from the Black Range Dyke itself (>2769 ± 1 Ma) and another from a parallel dyke whose remanence direction lies near the centre of the dataset (>2764 ± 3 Ma). Both ages are slightly younger than a previous combined SHRIMP 207Pb/206Pb baddeleyite weighted mean date from the same swarm, with slight discordance interpreted as being caused by thin metamorphic zircon overgrowths. The updated Black Range suite mean remanence direction (D = 031.5°, I = 78.7°, k = 40, α95 = 8.3°) corresponds to a paleomagnetic pole calculated from the mean of nine virtual geomagnetic poles at 03.8°S, 130.4°E, K = 13 and A95 = 15.0°. The pole's reliability is bolstered by a positive inverse baked-contact test on a younger Round Hummock dyke, a tentatively positive phreatomagmatic conglomerate test, and dissimilarity to all younger paleomagnetic poles from the Pilbara region and contiguous portions of Australia. The Black Range pole is distinct from that of the Mt Roe Basalt (or so-called ‘Package 1’ of the Fortescue Group), which had previously been correlated with the Black Range dykes based on regional stratigraphy and imprecise SHRIMP U–Pb ages. We suggest that the Mt Roe Basalt is penecontemporaneous to the Black Range dykes, but with a slight age difference resolvable by paleomagnetic directions through a time of rapid drift of the Pilbara craton across the Neoarchean polar circle.  相似文献   

14.
A continuously cored section of more than 300 m through the Nambeet Formation and the basal part of the conformably overlying Willara Formation in the Olympic 1 petroleum well, drilled in the Canning Basin of northern Western Australia, yields valuable information that increases by more than 40% the number of precise isotopic ages available to constrain the Ordovician Period. New CA-IDTIMS U–Pb zircon ages for seven bentonite layers in the Olympic 1 core are integrated into a new conodont biostratigraphic framework for the Early Ordovician comprising four biozones recognised in this well. The weighted mean U–Pb dates range from 479.37 ± 0.16 Ma within the late Tremadocian Paroistodus proteus conodont Biozone, to 470.18 ± 0.13 Ma near the boundary between the Floian and Dapingian stages within the Jumudontus gananda conodont Biozone. The intervening Prioniodus oepikiSerratognathus bilobatus conodont Biozone (early Floian) and succeeding Oepikodus communis conodont Biozone (middle Floian) are similarly well constrained by isotopic dates centred on ca 477 Ma for the early Floian and by three ages of 473–471 Ma for the middle Floian. The seven new isotopic dates significantly increase the precision of dating for the Early Ordovician, where previously only two ages with limited or imprecise biostratigraphic control were known globally.  相似文献   

15.
In an attempt to elucidate the pre-Variscan evolution history of the various geological units in the Austrian part of the Bohemian Massif, we have analysed zircons from 12 rocks (mainly orthogneisses) by means of SHRIMP, conventional multi-grain and single-grain U–Pb isotope-dilution/mass-spectrometry. Two of the orthogneisses studied represent Cadomian metagranitoids that formed at ca. 610 Ma (Spitz gneiss) and ca. 580 Ma (Bittesch gneiss). A metagranite from the Thaya batholith also gave a Cadomian zircon age (567±5 Ma). Traces of Neoproterozoic zircon growth were also identified in several other samples, underlining the great importance of the Cadomian orogeny for the evolution of crust in the southern Bohemian Massif. However, important magmatic events also occurred in the Early Palaeozoic. A sample of the Gföhl gneiss was recognised as a 488±6 Ma-old granite. A tonalite gneiss from the realm of the South Bohemian batholith was dated at 456±3 Ma, and zircon cores in a Moldanubian metagranitic granulite gave similar ages of 440–450 Ma. This Ordovician phase of magmatism in the Moldanubian unit is tentatively interpreted as related to the rifting and drift of South Armorica from the African Gondwana margin. The oldest inherited zircons, in a migmatite from the South Bohemian batholith, yielded an age of ca. 2.6 Ga, and many zircon cores in both Moravian and Moldanubian meta-granitoid rocks gave ages around 2.0 Ga. However, rocks from the Moldanubian unit show a striking lack of zircon ages between 1.8 and 1.0 Ga, reflecting an ancestry from Armorica and the North African part of Gondwana, respectively, whereas the Moravian Bittesch gneiss contains many inherited zircons with Mesoproterozoic and Early Palaeoproterozoic ages of ca. 1.2, 1.5 and 1.65–1.8 Ga, indicating a derivation from the South American part of Gondwana.  相似文献   

16.
New zircon U–Pb ages for a felsic volcanic rock (2,588 ± 10 Ma) and an intrusive granite (≥2,555 ± 6 Ma) in the Gadag greenstone belt in the Western Dharwar Craton, southern India, are similar to dates for equivalent rocks in the Eastern Dharwar Craton and indicates docking of the two cratons prior to this time. The zircons in the intrusive granite are strongly overprinted, and coexisting titanites yielded two different age populations: the dominant group gives an age of 2,566 ± 7 Ma, interpreted as the emplacement age, whereas the minor group gives an age of 2,516 ± 10 Ma, reflecting a hydrothermal overprint. In situ U–Pb dating of monazite and xenotime in gold reefs of the Gadag (2,522 ± 6 Ma) and Ajjanahalli (2,520 ± 9 Ma) gold deposits reveal a previously undated episode of gold mineralization at 2.52 Ga, substantially younger than the 2.55 Ga Hutti deposit in the eastern Dharwar Craton. The new dates confirm that both the younger greenstone belts and lode gold mineralization in the Dharwar Craton are about 100–120 My, younger than in other well-dated Archaean cratons. Although gold mineralization across the craton postdates most of the magmatic activity and metamorphism at upper crustal levels, widespread thermal reworking of the lower-middle crust, involving partial melting, metamorphism, and lower crustal granitoid intrusion, occurred concurrently with gold mineralization. It is likely that the large-scale hydrothermal fluid flow that produced widespread gold deposition was also part of this tectono-thermal event during the final stages of cratonization of the Dharwar Craton in southern India.  相似文献   

17.
《Chemical Geology》2002,182(2-4):203-225
Accessory gangue scheelite (CaWO4) from the Archaean Mt. Charlotte lode Au deposit can be divided into two types with different rare earth element (REE) signatures. In some scheelite grains, specific REE signatures are reflected by different cathodoluminescence colours, which can be used to map their often complex oscillatory intergrowths. Domains with specific REE contents from two grains were sampled for Sm/Nd, Rb/Sr and Pb isotopic analyses using a micro-drilling technique.Type I scheelite is strongly enriched in middle REE (MREE) and Eu anomalies are either absent or slightly positive. Four fragments collected from Type I regions of two crystals have initial 87Sr/86Sr and εNd values ranging from 0.70141 to 0.70163 and +2.5 to +3.5, respectively, and Pb isotope ratios reflecting the composition of greenstone sequence. This may indicate that Nd and Pb have their source, either locally or regionally, in the greenstones. Basic greenstone lithologies have 87Sr/86Sr<0.7015, and the radiogenic Sr signatures indicate that part of the Sr originated from felsic lithologies located either within or beneath the host greenstone pile. Alternatively, the Sr signature may have evolved from preferential leaching of a Rb-rich mineral during hydrothermal alteration of the greenstone.The REE patterns of Type II scheelite are either flat or MREE-depleted and have strong positive Eu anomalies. Three fragments collected from Type II regions of the same two crystals have initial 87Sr/86Sr ratios and εNd values between 0.70130 and 0.70146, and +1.1 to +2.6, respectively, and Pb isotope signatures that are once again similar to that of the greenstone. This implies that 87Sr/86Sr ratios in Type II fluids were closer to those of the host dolerite (0.7008–0.7013), due to more extensive fluid interaction with the dolerite.A positive correlation between Na and REE suggests that REE3+ are accommodated by the coupled substitution REE3++Na+=2 Ca2+ into both Type I and Type II scheelite. This is consistent with a fractional crystallisation model to explain the change in REE patterns from Type I to Type II, but not with a model involving different coupled substitutions and fluids from different origins. We propose that the complex REE and isotopic signatures of scheelite at Mt. Charlotte are related to small (<m) to medium (<km) scale processes involving mixing between “fresh” batches of hydrothermal fluid with fluids that had already been involved in extensive wall-rock alteration.The very high-εNd values measured in some scheelites have been previously used to link gold mineralisation with komatiites containing unusually high Sm/Nd ratios. However, tiny (<20 μm) grains of secondary hydroxyl-bastnäsite were found within micro-fractures of one scheelite grain containing an extremely high-εNd signature. The hydroxyl-bastnäsite probably formed during recent REE redistribution within the scheelite as a result of meteoric fluid circulation. The scale of this cryptic low-temperature alteration is sufficient to explain the anomalously high-εNdi values observed in scheelite from Western Australia.  相似文献   

18.
SHRIMP U–Pb zircon ages are reported from a paragneiss, a pegmatite, a metasomatised metasediment and an amphibolite taken from the upper amphibolite facies host sequence of the Cannington Ag–Pb–Zn deposit at the southeastern margin of the Proterozoic Mt Isa Block. Also reported are ages from a middle amphibolite‐facies metasediment from the Soldiers Cap Group approximately 90 km north of Cannington. The predominantly metasedimentary host rocks of the Cannington deposit were eroded from a terrane containing latest Archaean to earliest Palaeoproterozoic (ca 2600–2300 Ma) and Palaeoproterozoic (ca 1750–1700 Ma) zircon. The ca 1750–1700 Ma group of zircons are consistent with sedimentary provenance from rocks of Cover Sequence 2 age that are now exposed to the north and west of the Cannington deposit. The metasedimentary samples also include a group of zircon grains at ca 1675 Ma, which we interpret as the maximum depositional age of the sedimentary protolith. This is comparable to the maximum depositional age of the metasediment from the Maronan area (ca 1665 Ma) and to previously published data from the Soldiers Cap Group. Metamorphic zircon rims and new zircon grains grew at 1600–1580 Ma during upper amphibolite‐facies metamorphism in metasedimentary and mafic magmatic rocks. Zircon inheritance patterns suggest that sheet‐like pegmatitic intrusions were most likely derived from partial melting of the surrounding metasediments during this period of metamorphism. Some zircon grains from the amphibolite have a morphology consistent with partially recrystallised igneous grains and have apparent ages close to the metamorphic age, although it is not clear whether these represent metamorphic resetting or crystallisation of the magmatic protolith. Pb‐loss during syn‐ to post‐metamorphic metasomatism resulted in partial resetting of zircons from the metasomatised metasediment.  相似文献   

19.
Whole-rock chemistry and precise U – Pb zircon chronology have been used to determine the provenance of Archean greenschist-facies siliciclastic sedimentary rocks of the Diemals Formation in the Marda – Diemals area of the central Yilgarn Craton, Western Australia. Field evidence shows that these siliciclastic rocks are, at least in part, derived from uplift and erosion of underlying greenstones, and this is borne out by the similar La/Sc, Cr/Th and REE chemistry of Diemals Formation siltstones and some sandstones to mafic volcanic rocks of the underlying greenstones. The higher Cr/V and lower Y/Ni of some siltstones is consistent with input from ultramafic and mafic rocks. Diemals Formation sandstones and siltstones cannot be separated in terms of ratios such as Zr/La, and siliciclastic rock chemistry reflects provenance rather than the effects of transport and depositional processes, such as sorting. Chemistry does not support input to Diemals Formation sedimentary rocks from the Marda volcanic complex despite both units being close to each other, and having overlapping maximum depositional and crystallisation ages, respectively. Instead, it is likely that detritus for the two units was deposited in adjacent, physically discrete basins. Some Diemals Formation sandstones are geochemically similar to felsic rocks intruding the underlying greenstone succession, with higher La/Sc and lower Cr/Th, and LREE-enriched patterns with negative Eu anomalies. Support for a genetic relationship is shown by the overlap in the maximum depositional age of these sandstones with the crystallisation age of the geochemically identical Pigeon Rocks Monzogranite. Combined whole-rock chemistry and precise U – Pb zircon chronology indicates that Diemals Formation sedimentary rocks were in large part derived from the underlying mafic volcanic rocks, with progressive unroofing of this succession leading to erosion of felsic intrusive rocks, now represented by sandstones found at various levels in the Diemals Formation.  相似文献   

20.
Zaika  V. A.  Sorokin  A. A. 《Geotectonics》2021,55(6):779-794
Geotectonics - The Mongol–Okhotsk fold belt is one of the major structural elements of East Asia. In this article, we present U–Pb age and Hf isotope data for detrital zircons from...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号